PWiseHA: Application of Harmony Search Algorithm for Test Suites Generation using Pairwise Techniques


  • Aminu Aminu Muazu Department of Computer Science, Umaru Musa Yar'adua University, Katsina, Nigeria
  • Umar Danjuma Maiwada Department of Computer Science, Umaru Musa Yar'adua University, Katsina, Nigeria



Software testing, Pairwise testing, interaction strength, Test suites, Harmony search algorithms.


Pairwise testing is an approach that tests every possible combinations of values of parameters. In this approach, number of all combinations are selected to ensure all possible pairs of parameter values are included in the final test suite. Generating test cases is the most active research area in pairwise testing, but the generation process of the efficient test suite with minimum size can be considered as one of optimization problem. In this research paper we articulate the problem of finding a pairwise final test suite as a search problem and the application of harmony search algorithm to solve it. Also, in this research paper, we developed a pairwise software testing tool called PWiseHA that will generate test cases using harmony search algorithm and this PWiseHA is well optimized. Finally, the result obtained from PWiseHA shows a competitive results if matched with the result of existing pairwise testing tools. PWiseHA is still in prototype form, an obvious starting point for future work.


A. A. Muazu and A. A. Muazu. Design of a Harmony Search Algorithm Based on Covering Array T-Way Testing Strategy. 1st International Conference on Information Technology in Education & Development (ITED), ISBN: 978-978-35911-7-7, Page 33 – 38. April, 2018.

X. Dianxiang, X. Weifeng, K. Michael, T. Lijo, and W. Linzhang. An Automated Test Generation Technique for Software Quality Assurance. IEEE transactions on reliability. VOL. 64, NO. 1. 2015.

M. I. Younis, and K. Z. Zamli. A parallel t-way test generation strategy for multicore systems. ETRI Journal. 32(1), 73-83. 2010.

A. B. Nasir, A. A. Alsewari, A A. Muazu and K. Z. Zamli. Comparative Performance Analysis of Flower Pollination Algorithm and Harmony Search based strategies: A Case Study of Applying Interaction Testing in the Real World. 2nd International Conference on New Directions in Multidisciplinary Research & Practice, ISBN: 978-969-9948-47-3, 2016.

A. A. Alsewari and K. Z. Zamli. Design and implementation of a harmony-search-based variable-strength t-way testing strategy with constraints support. Journals on Information and Software Technology. 54, 553–568. 2012.

F. Konrad, and L. Horst. Combinatorial Robustness Testing with Negative Test Cases. IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). DOI 10.1109/QRS.2019.00018. 2019.

K. C. Ashis, C. Parna, C. Poulami and C. Aleena. Optimum Testing Time of Software using Size-Biased Concept. ArXiv: 1908.00307 v1 [stat.ME] 1 Aug 2019.

B. Hambling. Software testing an ISTQB–ISEB foundation guide. 2011.

K. Tai, and Y. Lie. Test generation strategy using pairwise. IEEE transaction on software engineering. 28(1), 109-111. 2002.

S. G. Laleh, C. Jaganmohan, L. Yu, K. Raghu, K. Richard BEN: a combinatorial testing-based fault localization tool. IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW). 978-1-4799-1885-0. 2015.

R. Bryce, and C. Colbourn. A density-based greedy algorithm for higher strength covering arrays. Software Testing, Verification and Reliability. 19(1), 37–53. 2009.

J. Yan, and J. Zhang. Combinatorial testing: principles and methods. Journal of Software. 20(6), 1393-1405. 2009.

K. Z. Zamli, M. Klaib, M. Younis, N. Isa and R. Abdullah. Design and implementation of a t-way test data generation strategy with automated execution tool support information science. Journal of information science. 181(9), 1741-1758. 2012.

A. A. Alsewari and K. Z. Zamli. A harmony search based pairwise sampling strategy for combinatorial testing. International Journal of the Physical Sciences. 7(7), 1062 - 1072. 2012.

Y. Cui, L. Li and S. Yao. A new strategy for pairwise test case generation. Third International Symposium on Intelligent Information Technology Application. 3, 303-306. 2009.

L. Z. Hasneeza, K. Z. Zamli. Migrating bird’s optimization based strategies for pairwise testing. 9th Malaysian Software Engineering Conference. 978-1-4673-82274. 2015.

J. Czerwonka (2019, oct.) Pairwise testing, combinatorial test case generation. [Online]. Available: 2019.

A. Nahid and K. Susmita. Review Paper on Various Software Testing Techniques & Strategies. Global Journal of Computer Science and Technology Volume XIX Issue II Version I. 2019.

F. Pedro and C. Yoonsik. “PWiseGen: Generating Test Cases for Pairwise Testing Using Genetic Algorithms”. IEEE International Conference on Computer Science and Automation Engineering (CSAE 2011), Shanghai, China. 2011.

A. A. Muazu and A. A. Muazu. One-Parameter-at-a-Time combinatorial testing Strategy Based on Harmony Search Algorithm Supporting Mixed Covering Array Mathematical Notation (OPATHS). 1st International Conference on Information Technology in Education & Development (ITED), ISBN: 978 978-35911-7-7, Page 33 – 38. April, 2018.

D. M. Cohen, S. R. Dalal, A. Kajla and G. C. Patton. The automatic efficient test generator (AETG) system. Journals on International Symposium on Software Reliability Engineering (IEEE ISSRE). 303-309. 1994.

D. Manjarresa, I. Landa, S. Gil. A survey on applications of the Harmony search algorithm. Eng. Appl. Artif. Intel. 26(8), 1818–1831. 2013.

Z. W. Geem, J. H. Kim, G. V. Li. A new heuristic optimization algorithm: Harmony search, Simulation 76 (2) (2001) 60–68. 2001.

Z. W. Geem. (ed.), Music-Inspired Harmony Search Algorithm (Springer, Berlin, 2001). 2001.



How to Cite

Aminu Muazu, A., & Umar Danjuma Maiwada. (2020). PWiseHA: Application of Harmony Search Algorithm for Test Suites Generation using Pairwise Techniques. International Journal of Computer and Information Technology(2279-0764), 9(4).