
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 91

PWiseHA: Application of Harmony Search
Algorithm for Test Suites Generation using Pairwise

Techniques

Aminu Aminu Muazu1

Department of Computer Science
Umaru Musa Yar’adua University

Katsina, Nigeria.
Email: aminu.aminu [AT] umyu.edu.ng

Umar Danjuma Maiwada2

Department of Computer Science
Umaru Musa Yar’adua University

Katsina, Nigeria.
Email: umar.danjuma [AT] umyu.edu.ng

Abstract--- Pairwise testing is an approach that tests every

possible combinations of values of parameters. In this approach,

number of all combinations are selected to ensure all possible

pairs of parameter values are included in the final test suite.

Generating test cases is the most active research area in pairwise
testing, but the generation process of the efficient test suite with

minimum size can be considered as one of optimization problem.

In this research paper we articulate the problem of finding a

pairwise final test suite as a search problem and the application

of harmony search algorithm to solve it. Also, in this research

paper, we developed a pairwise software testing tool called

PWiseHA that will generate test cases using harmony search

algorithm and this PWiseHA is well optimized. Finally, the

result obtained from PWiseHA shows a competitive results if

matched with the result of existing pairwise testing tools.

PWiseHA is still in prototype form, an obvious starting point for

future work.

Keywords--- Software testing, Pairwise testing, interaction

strength, Test suites, Harmony search algorithms.

I. INTRODUCTION

 The entire aspiration of a software company is to ensure

that a software is delivered with a high quality to it customers
[1] [2]. Therefore, to achieve a high-quality software, the

software need to be tested. The software testing makes sure
that software achieves the user requirements, such that to
avoid failures visible to customers. Testing is very important

phases in software development lifecycle. Lack of testing
may lead to harmful consequences which include the loss of
an important data, the fortunes, and even the lives of people

[3]. The main aim of software testing is to minimize the
recognized software fault which is not accepted [4] [5] [6].

As such, the software engineers need only to consider a
significant huge number of test data. Software testing refer to
sequence of processes that was aimed to ensure that the

software configuration does what it was planned to do and
that it does not do something unplanned [7]. To test all likely

combinations of inputs data and execution paths is called

exhaustive testing, but it’s beyond our reach [8].
 Combinatorial testing refer to a specification based

testing standard that requires for each d-way (where d
indicates the combination strength degree) combination of
input parameters of a given system, for every combination of

a valid values of these d parameters can be covered by at least
one test case [7] [9]. In pertinent literature, it is reported that
d-way interaction small value of d is more effective in testing.

Combinatorial testing is communal as a real technique to
uncover accidental feature interactions which are confidential

to a given software system. This tenacity has made clear that
test cases are created by mingling tuples that are from
different input parameters. This approach was recognized

with success in terms of providing a very low cos t testing in
our true situations. The critical issues of testing a software is
to detect software faults and generate an optimized test suite.

Combinatorial testing provides probability for fault
detection, which triggered by the interaction among

parameters in the software under testing [10]. For this large
interaction space, the exhaustive testing is generally
impractical, even though there are available resources (tools)

to do it, because most of the interaction values do not cause
any failure. Combinatorial testing provides the smaller test
suite that cover the large interaction parameter values [11]

[12].
 Combinatorial testing is an organized approach for

sampling large provinces of test data. Observations have been
found that most of the system faults are encountered when
there is interactions between parameters values [7] [11]. This

is the origin of pairwise definition, which can also refer to as
2-wise testing. In this techniques number of all combinations
are selected set by set to ensure all possible pairs of parameter

values are included in the final test suite. On the other hand,
many evidences suggest that most software failures are
caused by an unwanted pairwise interactions between the

parameters of a system [13].

http://www.ijcit.com/
mailto:aminu.aminu@umyu.edu.ng
mailto:umar.danjuma@umyu.edu.ng

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 92

Only one issues is considered most in pairwise testing, that
is, each pairwise interaction most be covered by at least one
test in the final test suite [14].

Most of the time, testing all the test cases
(exhaustively) is always impossible, this is because of timing

constraints and also resources [15] [16]. The main problem is

to reduce the quantity of combinations while keeping the
effectiveness of detecting errors. Some number of techniques
have been explored such that to address this particular

problem. Therefore, pairwise is a better technique to prevent
many of this problems.

In this research paper, we expressed the problem of
generating pairwise test suites as a search problem and

applying harmony search algorithm in solving the problem.
Also, we introduced a pairwise tool called PWiseHA that
may well serve as a configuration for generating pairwise test

suites with harmony search algorithm.
We carry out a successions of experiments in order to

evaluate the effectiveness and performance of our pairwise
prototype tool normally known as PWiseHA. In lieu of the
evaluation, we have used the available benchmark problems

from the pairwise site [17]; it has presented list of many tools
for generating pairwise test suits, where most of them
included with their competence actions in terms of generating

final test suites. Our tactic is more reasonable in that, if
related with the existing pairwise tools in [17]. PWiseHA is

still in a prototype form, which is an obvious starting point
for future work would be to complete the implementation.

II. PROBLEM STATEMENT

Nowadays software systems can be run with different
number of configurations, these configurations are made up
of parameters and their respective values. All of these

configurations need to be considered during testing.
The pairwise type of testing is a combinatorial testing

skill that tests all possible pairs of input parameter values
[18]. The most leading challenge in pairwise testing is that to
find a test suites which consist of the smallest number of test

cases that covers all pairs of input parameters of a software
system [19]. Normally, in pairwise testing the capable way of
finding a best solution is not predictable, because the time

needed to generate the test cases grows promptly as the
increased numbers of parameters with their respective values.

Although, there are many existing pairwise strategies that
minimized the number of test cases in a software system, but
most of these strategies are not well optimized; rather they

provide an acceptable solutions [20].
The exact research problem is therefore to develop a

harmony search algorithm prototype tool which is proficient

for creating and reducing as much as promising test suites
that contain all pairs of input parameters values of the

software under testing. The basics behind choosing the
harmony search algorithm in PWiseHA is that it has the
power to control the search between the local solutions and

global solutions based on its parameters [20].

III. RELATED WORK

Software testing consumes most of the time and cost

spent on software development. Basically, a lot of researchers
developed different pairwise strategies to solve this problem
and by generating an optimized test suite [4] [5].

The Automatic Efficient Test Generator (AETG) is a
testing tool that constructs a test suite by adopting one test at

a time approach using greedy algorithm [21]. The In-
Parameter Order (IPO) is a testing tool strategy that
constructs a test suite by adopting one parameter at a time

using a horizontal and vertical algorithm [1] [12]. The Test
Configuration for pairwise interaction (TConfig) is a testing
tool that constructs a test suite using recursive algorithm [17].

The main idea for Jenny strategy is it start with one pair
(itself) and it will then search for if there is other one pair, if

there is not then it goes to two pairs. It will also search for if
there are other 2-pairs, if not it will then go to 3-pairs. The
same thing for other pairs. Therefore, the process will

continue until all pairs are covered [17]. The Disability
Discrimination Act (DDA) constructs a test suite using
greedy algorithm [17]. The All-Pairs Testing (AllPairs) is a

testing tool that constructs a test suite using greedy algorithm
[17]. The Pairwise Independent Combinatorial Tool (PICT)

constructs a test suite using core generation algorithm with
random selection [17], PICT is not reliable to provide a non-
optimal test size when compared with other strategies

because of random conduct [14]. The rest: the Combinatorial
Test Services (CTS) tool, the TestCover testing tool, the
EXACT testing tool, the IPO family known as IPOS, the

ecFeed testing tool, and the JCUnit testing tool uses some sort
of deterministic algorithms [19].

IV. MATERIALS AND METHODOLOGY

A. Harmony Search Algorithms for pairwise testing

The Harmony search first begun when listening to an

attractive piece of standard music. This is when musicians
compose the harmony, they frequently try many possible
combinations of the music pitches that are stored in the

memory, which can be considered as an optimization process
of adjusting the pitches (input) to obtain the optimal output

(a perfect harmony). Harmony search draws the inspiration
from harmony improvisation and has gained good result in
the optimization area [4] [22].

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 93

Figure 1. Pseudocode of Harmony search algorithm [14].

The music improvisation is simply a way for searching a

better harmony, and it’s achieved when attempting different

combinations of pitches that satisfies the following rules [23]:
o Playing any one pitch from the memory

o Playing an adjacent pitch of one pitch from the
memory

o Playing a random pitch from the possible range

This method is represented in each variable selection of
the Harmony Search algorithm. Similarly, it should follow any
of the three rules below:

o Choosing any value from the Harmony Search
memory

o Choosing an adjacent value from the Harmony
Search memory

o Choosing a random value from the possible

value range
The above mentioned three rules in the harmony search

algorithm are maintain by the following parameters: Harmony

Memory Considering Rate (HMCR) and Pitch Adjustment Rate
(PAR) [22] [24].

The first step will initialize the harmony memory. Now
the harmony memory consists of a number of randomly
generated solutions to the optimization problem under

consideration, whereby these test cases are generated using
pairwise techniques.

The second step will improvise a new solution from the

harmony memory. Each component of this solution is obtained
based on the HMCR. Still here the test cases were generated

using pairwise techniques.
The third step will update the harmony memory. Also

new test pair which was generated from the second step is

evaluated and if it’s better than the worst in the harmony
memory, it will replace it. Else, it will eliminated.

The fourth step will repeat second step to third step until
a present termination criterion is met (i.e. the maximal number

of iterations is met).
Harmony Search algorithm is in used successfully in an

extensive variety of optimization problems. It present numerous
advantages with respect to traditional optimization techniques
[23]. Figure 1 displays the pseudocode of Harmony Search

Algorithm.

B. PWiseHA Implementation

 This prototype tool contain only one algorithm that will
optimize and generate a near optimal final test suite. Here in this
algorithm the concept and procedures in harmony search is

applied that would work with pairwise testing techniques.
The steps used in PWiseHA are as follows:

1
st
 Step: Here it will initialize the harmony search memory.

2
nd

 Step: Here it will improvise a new solution from the harmony
memory.

3
rd

 Step: Here it will update the harmony memory.
4

th
 Step: Here it will repeat second step to third step until a

present termination criterion is met.

 In Figure 2, we have displays the pseudocode of
PWiseHA strategy. This PWiseHA prototype tool was

developed using Java programming language (in JCreator LE
4.50 environment) and Java foundation classes AWT and Swing
are used for the Graphical User Interface (GUI) with JDK 1.6.

Here, the Java programming language has been chosen because
it has the features of platform-independent (which means it has
the ability to run the same program on different operating

systems), java GUI is user friendly, and also it has rich API’s for
manipulation of array lists.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 94

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 95

Figure 2. Pseudocode of PWiseHA

The PWiseHA prototype tool structure contains a set of GUI,
a set of java classes, a simple database to store the final test
suit result and Operating System (OS). All the components of

PWiseHA strategy depends on the OS layer, which will run
the overall prototype. Some fragment codes of PWiseHA
were shown in Figure 3.

Figure 3. Some fragment codes of PWiseHA

The PWiseHA GUI’s were developed in such away it has

many attributes which requires a test engineer to read and

execute the configuration test file and displays the final test

suit. This attribute are illustrated in the TABLE I.

TABLE I. THE PWISEHA FORM ATTRIBUTES

Attribute Name Type Description

Read input file Button It will read a text file

Generate test case Button It will generate the final test suite

Clear Button It will clear all the text on text area

Exit Button It will close the window

 Text Area It will display a result

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 96

The Figure 4 present the PWiseHA form with a displayed
information of final test suite. Finally, the implementation of

PWiseHA prototype tool has been demonstrated in fine
points.

Figure 4. The PWiseHA form design with a displayed information of final test suite

V. RESULTS AND DISCUSSION

 Evaluation of the PWiseHA mainly emphasized on the
efficiency when generating a better final test suites sizes

compared with existing strategies and the performance in
terms of execution time when generating the final test suites.

We used the benchmark problems that are presented in

pairwise testing website [17] to compare PWiseHA with
those existing strategies. The website listed thirteen pairwise
tools for generating final tes t suites, most of them with their

efficiency measures [17]. These tools include: AETG, IPO,

TConfig, CTS, Jenny, TestCover, DDA, AllPairs, PICT,
EXACT, IPOS, ecFeed and JCUnit. The efficiencies of these

tools were compared using six benchmark configurations
with the notation xy , where x represent the input parameters
and y represent their distinct values. The configurations

appears on different sizes, which are as follows: 34, 313,
415317229, 41339235, 2100, and 1020.

TABLE II: COMPARISON OF PWISEHA WITH SOME STRATEGIES IN [10] WHEN GENERATING BETTER AND BEST FINAL TEST SUITES

C
o

n
fi

g
u

r
a

ti
o
n

A
E

T
G

IP
O

T
C

o
n

fi
g

C
T

S

J
e
n

n
y

T
e
st

C
o

v
e
r

D
D

A

A
ll

P
a

ir
s

P
IC

T

E
X

A
C

T

IP
O

S

e
c
F

e
e
d

J
C

U
n

it

P
W

is
e
H

A

34 9 9 9 9 11 9 ? 9 9 9 9 10 10 9

313 15 17 15 15 18 15 18 17 18 15 17 19 23 17

415317229 41 34 40 39 38 29 35 34 37 ? 32 37 49 44

41339235 28 26 30 29 28 21 27 26 27 21 23 28 33 27

2100 10 15 14 10 16 15 15 14 15 10 10 16 18 22

1020 180 212 231 210 193 181 201 197 210 ? 220 203 245 1048

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 97

TABLE II displays the final test suite size of these tool,

alongside the PWiseHA, it displays equal or sometimes better

efficiencies on all of the benchmark configurations except
that of the last two configurations.

TABLE III: EVALUATION PERFORMANCE OF PWISEHA IN TERMS OF EXECUTING TIME WHEN GENERATING FINAL TEST SUITES.

Configuration PWiseHA (Execution Time in sec)

34 0.271

313 0. 326

415317229 18.250

41339235 9.232

2100 3.810

1020 45.600

Performance in terms of execution time is also measured
(but no comparison), see TABLE III for the evaluation which

is also good, because almost each of the configurations is
executed in less than a minute which means it can s ave time

during execution which will be able to lead to saving of cost
as well.

VI. CONCLUSION

In this paper, we proposed and developed a strategy for
pairwise testing called PWiseHA that generated an optimized
final test suites by applying harmony search algorithm. Our

evaluation results are inspiring, typically in terms of
generating an optimal test suite in a suitable execution time.

As part of our forthcoming work, PWiseHA is still in a
prototype form, an obvious starting point for future work
would be to complete the implementation.

ACKNOWLEDGMENT

This work is partly supported by a research grant of

Tertiary Education Trust Fund (TETFund) from Umaru Musa
Yar’adua University Katsina, Nigeria.

REFERENCES

[1] A. A. Muazu and A. A. Muazu. Design of a Harmony

Search Algorithm Based on Covering Array T-Way
Testing Strategy. 1

st
 International Conference on

Information Technology in Education & Development
(ITED), ISBN: 978-978-35911-7-7, Page 33 – 38. April,
2018.

[2] X. Dianxiang, X. Weifeng, K. Michael, T. Lijo, and W.
Linzhang. An Automated Test Generation Technique for
Software Quality Assurance. IEEE transactions on

reliability. VOL. 64, NO. 1. 2015.
[3] M. I. Younis, and K. Z. Zamli. A parallel t-way test

generation strategy for multicore systems. ETRI Journal.
32(1), 73-83. 2010.

[4] A. B. Nasir, A. A. Alsewari, A A. Muazu and K. Z.
Zamli. Comparative Performance Analysis of Flower
Pollination Algorithm and Harmony Search based

strategies: A Case Study of Applying Interaction Testing
in the Real World. 2

nd
 International Conference on New

Directions in Multidisciplinary Research & Practice,
ISBN: 978-969-9948-47-3, 2016.

[5] A. A. Alsewari and K. Z. Zamli. Design and

implementation of a harmony-search-based variable-
strength t-way testing strategy with constraints support.
Journals on Information and Software Technology. 54,

553–568. 2012.
[6] F. Konrad, and L. Horst. Combinatorial Robustness

Testing with Negative Test Cases . IEEE 19th
International Conference on Software Quality,
Reliability and Security (QRS). DOI

10.1109/QRS.2019.00018. 2019.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 4, July 2020

www.ijcit .com 98

[7] K. C. Ashis, C. Parna, C. Poulami and C. Aleena.
Optimum Testing Time of Software using Size-Biased
Concept. ArXiv: 1908.00307 v1 [stat.ME] 1 Aug 2019.

[8] B. Hambling. Software testing an ISTQB–ISEB
foundation guide. 2011.

[9] K. Tai, and Y. Lie. Test generation strategy using
pairwise. IEEE transaction on software engineering.
28(1), 109-111. 2002.

[10] S. G. Laleh, C. Jaganmohan, L. Yu, K. Raghu, K.

Richard BEN: a combinatorial testing-based fault

localization tool. IEEE Eighth International Conference
on Software Testing, Verification and Validation

Workshops (ICSTW). 978-1-4799-1885-0. 2015.
[11] R. Bryce, and C. Colbourn. A density-based greedy

algorithm for higher strength covering arrays. Software

Testing, Verification and Reliability. 19(1), 37–53.
2009.

[12] J. Yan, and J. Zhang. Combinatorial testing: principles

and methods. Journal of Software. 20(6), 1393-1405.
2009.

[13] K. Z. Zamli, M. Klaib, M. Younis, N. Isa and R.
Abdullah. Design and implementation of a t-way test
data generation strategy with automated execution tool

support information science. Journal of information
science. 181(9), 1741-1758. 2012.

[14] A. A. Alsewari and K. Z. Zamli. A harmony search based

pairwise sampling strategy for combinatorial testing.
International Journal of the Physical Sciences. 7(7),

1062 - 1072. 2012.
[15] Y. Cui, L. Li and S. Yao. A new strategy for pairwise

test case generation. Third International Symposium on

Intelligent Information Technology Application. 3, 303-
306. 2009.

[16] L. Z. Hasneeza, K. Z. Zamli. Migrating bird’s
optimization based strategies for pairwise testing. 9th
Malaysian Software Engineering Conference. 978-1-

4673-82274. 2015.
[17] J. Czerwonka (2019, oct.) Pairwise testing,

combinatorial test case generation. [Online]. Available:
http://www.pairwise.org. 2019.

[18] A. Nahid and K. Susmita. Review Paper on Various

Software Testing Techniques & Strategies . Global
Journal of Computer Science and Technology Volume
XIX Issue II Version I. 2019.

[19] F. Pedro and C. Yoons ik. “PWiseGen: Generating Test
Cases for Pairwise Testing Using Genetic Algorithms”.

IEEE International Conference on Computer Science
and Automation Engineering (CSAE 2011), Shanghai,
China. 2011.

[20] A. A. Muazu and A. A. Muazu. One-Parameter-at-a-
Time combinatorial testing Strategy Based on Harmony
Search Algorithm Supporting Mixed Covering Array

Mathematical Notation (OPATHS). 1
st
 International

Conference on Information Technology in Education &

Development (ITED), ISBN: 978 978-35911-7-7, Page
33 – 38. April, 2018.

[21] D. M. Cohen, S. R. Dalal, A. Kajla and G. C. Patton. The

automatic efficient test generator (AETG) system.
Journals on International Symposium on Software
Reliability Engineering (IEEE ISSRE). 303-309. 1994.

[22] D. Manjarresa, I. Landa, S. Gil. A survey on applications
of the Harmony search algorithm. Eng. Appl. Artif. Intel.

26(8), 1818–1831. 2013.
[23] Z. W. Geem, J. H. Kim, G. V. Li. A new heuristic

optimization algorithm: Harmony search, Simulation 76

(2) (2001) 60–68. 2001.
[24] Z. W. Geem. (ed.), Music-Inspired Harmony Search

Algorithm (Springer, Berlin, 2001). 2001.

http://www.ijcit.com/
http://www.pairwise.org/

