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Abstract – We study linked list sorting and merging on the 

PRAM (Parallel Random Access Machine) model. In this 

paper we show that n real numbers can be sorted into a 

linked list in constant time with n2+ processors or in 

𝐎(𝐥𝐨𝐠 𝐥𝐨𝐠 𝐧)) time with n2 processors. We also show that 

two sorted linked lists of n integers in {0, 1, …, m}  can be 

merged into one sorted linked list in  𝐎(𝐥𝐨𝐠(𝐜)𝐧√𝐥𝐨𝐠 𝐥𝐨𝐠 𝐦)  

time using 𝐧/(𝐥𝐨𝐠(𝐜)𝐧√𝐥𝐨𝐠 𝐥𝐨𝐠 𝐦)  processors, where c is an 

arbitrarily large constant. 
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I. INTRODUCTION 

 

In this paper we study parallel merging and sorting. The 

computation models we use are the EREW (Exclusive Read 

Exclusive Write) PRAM (Parallel Random Access Machine), 

the CREW (Concurrent Read Exclusive Write) PRAM and the 

CRCW (Concurrent Read Concurrent Write) PRAM [1]. On a 

PRAM memory is shared among all processors. On the EREW 

PRAM in one step no more than one processor can read or write 

one memory cell. On the CREW PRAM multiple processors 

can read one memory cell in one step but no more than one 

processor can write into one memory cell in one step. On the 

CRCW PRAM multiple processors can read or write into one 

memory cell in one step. When multiple processors write into 

one memory cell in one step an arbitration scheme needs to be 

used to decide the result written into the memory cell. On the 

Priority CRCW PRAM the highest priority processor wins the 

write among the processors writing into the memory cell. The 

priority can be the index of the processor. On the Arbitrary 

CRCW PRAM an arbitrary processor wins the write. On the 

Common CRCW PRAM when multiple processors write the 

same memory cell in one step they have to write the same value 

and that value is writing into the memory cell. Among these 

three variants of CRCW PRAM, Priority CRCW is the 

strongest model, Arbitrary CRCW PRAM is weaker than the 

Priority CRCW PRAM, and Common CRCW PRAM is the 

weakest among the three. In this paper we will use the Common 

CRCW PRAM and the Arbitrary CRCW PRAM. 

Let Tp be the time complexity of a parallel algorithm using p 

processors. Let T1 be the time complexity of the best serial 

algorithm for the same problem. Then pTp  T1. When pTp=T1 

then this parallel algorithm is an optimal parallel algorithm.  

When we have a TP time algorithm using P processors, then 

when we use p processors the time can be expressed or 

translated as TPP/p+TP.  

A parallel algorithm for a problem of size n using polynomial 

number processors (i.e. nc processors for a constant c) and 

running in polylog time (i.e. O(logcn) time for a constant c) is 

regarded as belong to the NC class [2], where NC is Nick’s class.  

Researchers in parallel algorithm field are working to achieve 

NC algorithms and optimal parallel algorithms.   

In the conventional setting, the result of merging or sorting is 

placed in an array with small numbers precedes larger numbers. 

It is known that merging takes at least O(loglogn) time with 

n/loglogn processors on the CREW PRAM [3] and sorting takes 

at least O(logn) time [4] on the EREW PRAM and at least 

O(logn/loglogn) time [5] on the CRCW PRAM with 

polynomial number of processors.  

In order to avoid these lower bounds for merging and sorting 

researchers studies other variants of merging and sorting. For 

example, if we do not require the sorting result of n numbers be 

placed in an array of size n we can do better than the     

O(logn/loglogn) time if we allow the sorted result be placed in 

an array of size larger than n with n memory cells storing the 

sorted data in ascending order and other memory cells filled 

with blank or letting the memory cells between two sorted 

number be filled with either one of these two numbers. This is 

called padded sorting and can be done in O(loglogn) time with 

n2 processors [6].  

We have been working on another line of merging and sorting, 

namely we consider placing the sorted result of merging and 
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sorting on a linked list with smaller numbers precede larger 

numbers on the linked list. We have previous experience 

achieving better complexity by sorting integers into a linked list 

[7]. In this paper we show that if we use n2+ processors then we 

can sort n real numbers into a linked list in constant time. If we 

use n2 processors then we can sort n real numbers into a linked 

list in O(loglogn) time. Another result we want to demonstrate 

is to merge two sorted linked lists (smaller numbers precede 

larger numbers on the linked list) into one sorted linked list in 

𝑂(log(𝑐)𝑛√log log 𝑚)  time using             𝑛/

(log(𝑐)𝑛√log log 𝑚) processors, where log(1)n=logn, 

log(i)n=loglog(i-1)n and c is an arbitrarily large constant. 

Previoulsy Bhatt et al [8] and Hagerup [9] showed that integers 

in {0, 1, …, m-1}can be sorted into linked list in 

O(nloglogm/p+loglogm) time using p processors. When p>n 

their algorithm can be improved to O(loglogm/log(p/n)+1) 

time. No previous algorithms are known to sort real numbers 

into a linked list except to sort them into an array in (logn) 

time on the EREW PRAM or (logn/loglogn) time on the 

CRCW PRAM. Here we sort them into a linked list in constant 

time. 

Previous merging results are about merging two sorted arrays. 

These includes Kruskal’s [10] and Valiant’s [11] results of 

merging real numbers in O(n/p+loglogn) time using p 

processors on the CREW PRAM and Berkman and Vishkin’s 

result [12] of merging integers in {0, 1, …,m-1} in 

O(n/p+logloglogm) time on the CRCW PRAM. 

The main novelty of our results is that we noticed that real 

numbers can be sorted into a linked list much faster than sorting 

them into an array. Our merging algorithm is also applied to 

merging two sorted linked lists. Previous results deal with 

sorting and merging them in arrays. 

  

II. SORT N REAL NUMBERS INTO A LINKED LIST  

 

Let A [0...n-1] be the array of n input real numbers. We are 

going to sort these real numbers on a linked list in constant time 

using n2+ processors, where  is an arbitrary small positive 

constant, or sort them on a linked list in O(loglogn) time using 

n2 processors. We do this on the Common CRCW PRAM. 

First we find the minimum element m in A. This can be done in 

constant time with n2 processors [10] on the Common CRCW 

PRAM. Call this element m. Let MIN=m-1.  

Then for each element A[i] we will copy array A to a new array 

Ai. This takes constant time with n2 processors. We then 

compare A[i] with every element Ai[j] in Ai. If A[i] < Ai[j] or 

(A[i] ==Ai[j] && i<=j) then we will do Ai[j] =MIN. Then we 

will find the maximum element Ai[k] in Ai. This takes constant 

time using n1+ processors (or O(loglogn) time with n 

processors) for Ai [10]. For all i=0, 1… n-1, this takes constant 

time with n2+ processors (or O(loglogn) time with n2 

processors). Ai[k] is the largest element smaller than A [i]. Thus 

we can make a link from A [k] to A [i].  

Thus we have described a Common CRCW PRAM algorithm 

that can sort n real numbers into a linked list in constant time 

with n2+ processors, or in O(loglogn) time with n2 processors.  

 

Theorem 1: All the n real numbers can be sorted into a linked 

list in constant time with n2+ processors or in O(loglogn) time 
with n2 processors on the Common CRCW PRAM. 

 

We have not been able to reduce the number of processors 

significantly while keeping the time. We are working on it to 

see whether it is possible to reach an optimal NC algorithm [2] 

with o(logn/loglogn) time. 
 

III. MERGE TWO SORTED LINKED LIST OF N 

INTEGERS EACH INTO A SORTED LINKED 

LIST  

 

It is known that n integers in {0, 1, 2…m-1} can be sorted into 

a linked list using nt processors in O(loglogm/logt) time on the 

Arbitrary CRCW PRAM [13, 14]. Here we show how to merge 

two sorted linked lists of n integer each into a sorted linked list 

in 𝑂(log(𝑐)𝑛√log log 𝑚) time using 𝑛/(log(𝑐)𝑛√log log 𝑚)   

processors, where log(1)n=logn and log(i)n=loglog(i-1)n, and c is 

an arbitrarily large constant. 

It is known that two arrays of n sorted integers can be merged 

in O (n/p+logloglogm) time using p processors [12] on the 

Arbitrary CRCW PRAM. Here we provide an alternative as our 

algorithm is for merging two sorted linked lists. 

If we have two arrays of sorted integers in array A and B, then 

we can sample every t-th integer in them, i.e. picking the A[0], 

A[t], A[2t] … and B[0], B[t], B[2t]… When sorted integers are 

on linked lists L and M we cannot sample every   t-th integer 

directly. We will have to use linked list contraction. Linked list 

contraction can contract every t1 consecutive integers (nodes) 

on a linked list into a super node, where t  t1  2t. This can be 

done on the EREW PRAM in O(n/p+logtlog(c) n) time for an 

arbitrary large constant c using p processors [15]. After nodes 

have been contracted into super nodes then we sample the first 

node (integer) in every super node. This will give us O(n/t) 

sampled integers when L and M each has n integers in the linked 

list.  

We will let t=√log log 𝑚 2√log log 𝑚.  
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So, total time taken by contraction of a linked list is O(n/p+log(c) 

nlogt) =         O(n/p+log(c) n√log log 𝑚) using p processors 

on the EREW PRAM. 

We then sample the first node in each super node. This gives us 

n/ (√log log 𝑚 2√log log 𝑚)  sampled node. We can use 

2√log log 𝑚  processors for each sampled node (thus 

n/√log log 𝑚 processors for the linked list). Thus we can sort 

sampled nodes from both linked lists into a sorted linked list in 

O(loglogm/log 2√log log 𝑚 ) =O( √log log 𝑚 ) time on the 

Arbitrary CRCW PRAM [13, 14].  When we have p processors 

this translates to time 

O((n/ √log log 𝑚)√log log 𝑚 /p+log(c) n √log log 𝑚 ) 

=O(n/p+ log(c)n√log log 𝑚)  time.  

After the sampled nodes merged into a linked list we have to 

insert integers that have not been sampled into the linked list. 

Let l1, l2… lt be the sampled integers from linked list L and let 

m1, m2… mt be the sampled integers from linked list M. When 

they have been sorted on a linked list they appear as n1, n2 …n2t. 

Now there are no more than t integers from L that are between 

ni and ni+1 (i.e. larger than ni and smaller than ni+1). Because if 

there are at least t integers from L between ni and ni+1 then there 

is at least 1 integer among them being sampled. However, 

between ni and ni+1 there are no other integers being sampled.  

Thus we need to merge the (no more than t) integers in L and 

the (no more than t) integers in M that are between ni and ni+1. 

Because these integers are contracted into super nodes and 

therefore the integers come from L can be placed in an array 

and the integers from M can be placed into another array. Thus 

we are talking about merging two arrays of t integers each into 

one array. This can be done in O(t/p+loglogt) 

=O(t/p+logloglogm) time [10,-11]. For all the input integers 

this becomes O(n/p+logloglogm) time.  

Therefore, overall our algorithm has 

O(n/p+log(c) n √log log 𝑚 ) time with p processors on the 

Arbitrary CRCW PRAM.  

Note that the space used by our algorithm is not linear. This is 

because we need space to place the nodes in a super node. 

Because we need O(t) space for a super node to place the node 

contracted into it, thus the space requirement is O(nt) 

=O(n√log log 𝑚 2√log log 𝑚). We can reduce the space to 

linear by merging nodes in two super nodes by accessing the 

binary tree for the nodes in the super node built during the 

linked list contraction. However, this may require more than 

√log log 𝑚 time because we cannot use indexing to access 

nodes.  

 

Theorem 2: Two sorted linked lists of size n each can be 

merged into a sorted linked list in O(n/p+log(c) n√log log 𝑚) 

time using p processors on the Arbitrary CRCW PRAM. 
 

IV. CONCLUSIONS 

 

We studied sorting and merging on linked list. Our sorting 

algorithm allows us to sort n real numbers into a linked list in 

constant time with n2+ processors or in O(loglogn) time with n2 

processors. The most intriguing part of this is that we have not 

been able to reduce We studied sorting and merging on linked 

list. Our sorting algorithm allows us to sort n real numbers into 

a linked list in constant time with n2+ processors or in 

O(loglogn) time with n2 processors. The most intriguing part of 

this is that we have not been able to reduce the number of 

processors significantly while keeping the time. Our linked list 

merging algorithm can merge two sorted linked lists of integers 

into one sorted linked list. Although this algorithm is slower 

than the O(logloglogm) time for merging two arrays, it provides 

an alternative as it is for merging two linked lists instead of two 

arrays. 

 

REFERENCES 

[1] R. M. Karp, V. Ramachandran, Parallel algorithms for 

shared-memory machines.  In Handbook of Theoretical 

Computer Science (Vol. A): Algorithms and Complexity, J. van 

Leeuwen, Ed., New York, NY: Elsevier, 869-941(1991). 

[2]. S. A. Cook. Towards a Complexity Theory of Synchronous 

Parallel Computation. L’ Enseignement Mathématique, 27, 99-

124(1981).  

[3]. A. Borodin, J. E. Hopcroft. Routing, merging and sorting 

on parallel models of computation. Proc. 1982 ACM Sypm. On 

Theory of Computing (STOC’1982), 338-344(1982) 

[4]. S. A. Cook, C. Dwork, R. Reischuk. Upper and lower time 

bounds for parallel random access machines without 

simultaneous writes. SIAM J. Comput. Vol. 15, No. 1, 87-

97(1986). 

[5]. P. Beame, J. Hastad. Optimal bounds for decision problems 

on the CRCW PRAM. Proc. 1987 ACM Symp. On Theory of 

Computing (STOC’1987), 83-93(1987). 

[6]. T. Goldberg, U. Zwick. Optimal deterministic approximate 

parallel prefix sums and their applications. Proc. 3rd. Israel 

Symp. On Theory and Computing Systems, 220-228(1995).  

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 10 – Issue 2, March 2021 
 

www.ijcit.com    95 
 

[7]. Y. Han, X. Shen. Parallel integer sorting is more efficient 

than parallel comparison sorting on exclusive write PRAMs. 

SIAM J. Comput. 31, 6, 1852-1878(2002).  

[8]. P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, 

S. Saxena. Improved deterministic parallel integer sorting. 

Information and Computation, 94, 29-47(1991). 

[9]. T. Hagerup. Towards optimal parallel bucket sorting. 

Information and Computation. 75, 39-51(1987). 

[10]. C. P. Kruskal. Searching, merging, and sorting in parallel 

computation. IEEE Trans. Comput., C-32, 942-946(1983).  

[11]. L. G. Valiant. Parallelism in comparison provlems. SIAM 

J. on Computing, Vol. 4. No. 3, 348-355(1975). 

[12]. O. Berkman, U. Vishkin. On parallel integer merging. 

Information and Computation. 106, 266-285(1993). 

[13]. N. Goyal. An Arbitrary CRCW PRAM Algorithm for 

Sorting Integers into the Linked List and Chaining on a Trie. 

Master’s Thesis. University of Missouri at Kansas City. 2020.  

[14] Y. Han, N. Goyal, H. Koganti. Sort Integers into a Linked 

List. Computer and Information Science. Vol. 13, No.1, 51-

57(2020).  

[15]. Y. Han. Uniform linked lists contraction. In arXiv.org 

with paper id 2002.05034. 

 

 

http://www.ijcit.com/

