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Abstract—We propose a simple yet effective three-

dimensional convolutional neural network (3D-CNN) for urban 
land-cover classification using co-registered hyperspectral 
imagery (HSI) and LiDAR data. The network treats the entire 
spectral-LiDAR stack as a three-dimensional volume and uses a 
series of 3×3×3 convolutions to capture both spectral and spatial 
context simultaneously. LiDAR elevation data is added as an 
extra channel in the input. During preprocessing, each 
hyperspectral band and LiDAR DSM are normalized to zero 
mean and unit variance. Training uses small local patches (P×P) 
centered on labeled pixels, with random flips and 90-degree 
rotations, called dihedral augmentation, applied across all 
channels. To address class imbalance, inverse-frequency class 
weighting and label smoothing are included in the cross-entropy 
loss. Evaluation on the Houston2013 dataset shows that the 
model achieves high accuracy, a single model reaches an Overall 
Accuracy (OA) of about 0.90 and an Average Accuracy (AA) of 
about 0.92 over five runs. An ensemble of five runs improves 

these results to OA ≈ 0.912, AA ≈ 0.928, and a kappa coefficient 

(κ) of approximately 0.904. Classes with distinctive spectral and 
spatial signatures, like water, synthetic grass, and tennis courts, 
reach nearly 100% recall. Meanwhile, classes with similar 
appearances, such as highway and road, show higher confusion, 
with highway recall around 46.9%. These results confirm that 
combining spectral and three-dimensional structural information 
significantly enhances accuracy in urban classification. 

Keywords-hyperspectral imagery, LiDAR, 3D-CNN, data 
fusion, patch classification, class imbalance, remote sensing 

I.  INTRODUCTION 

Remote sensing image classification is crucial for many 
applications, including urban planning, land use monitoring, 
and environmental management. Traditional methods mainly 
use pixel-based classification techniques, which often fail to 
properly represent complex spatial relationships and feature 
dependencies. The introduction of multisource data, such as 
HSI and LiDAR, offers opportunities to improve classification 
accuracy by combining more comprehensive feature sets[1-3]. 
The integration of HSI and LiDAR data has attracted 
significant interest over the past five years because each 
provides complementary information. HSI offers extensive 
spectral data across multiple bands, aiding in material 

identification and land cover classification. In contrast, LiDAR 
provides detailed three-dimensional structural information, 
including elevation and surface features. Combining these two 
data types has consistently shown substantial improvements in 
classification accuracy across various remote sensing 
applications, such as urban planning, environmental 
monitoring, and vegetation mapping[4-6].  

Intermediate fusion methods, also known as feature-level 
fusion, aim to combine the advantages of both early and late 
fusion. In this approach, feature extraction from HSI and 
LiDAR data is performed separately, and the resulting feature 
representations are then fused. For instance, Principal 
Component Analysis (PCA) can be applied to reduce the 
dimensionality of HSI data, while LiDAR features such as 
elevation or point density can be extracted and integrated. This 
fused feature set is then used as input to a classifier[7-9]. 
Although intermediate fusion can improve classification 
accuracy by better capturing the interaction between spectral 
and spatial information, it still struggles with preserving 
complex spatial relationships, which is critical for accurate 
classification in heterogeneous environments. The 
effectiveness of this approach depends on how well the 
features are fused, and often, important spatial correlations may 
still be missed[10].  

Deep learning architectures are often used in HSI and 
LiDAR fusion, typically with complex modules or attention 
mechanisms[11,12]. In contrast, our goal is to create a simple, 
lightweight 3D-CNN that is easy to implement and interpret. 
By treating the spectral axis as an additional spatial dimension, 
the 3D-CNN directly learns combined spectral-spatial 
features[13]. We prioritize clarity and reproducibility; the 
entire process, including normalization, patch extraction, 
augmentation, network design, optimization, and metrics, is 
thoroughly outlined to match the released implementation. The 
rest of the paper is organized as follows: In Methods (Section 
2), we describe the dataset, preprocessing, network 
architecture, and training process. Experiments (Section 3) 
detail the setup using Houston 2013 data. Results (Section 4) 
include both quantitative and qualitative outcomes. Discussion 
(Section 5) interprets the results and addresses limitations. 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 14– Issue 3, September 2025  
  

www.ijcit.com     148 

Finally, the Conclusion (Section 6) summarizes the 
contributions and outlines future directions. 

II. METHODS 

A. Data and Preprocessing 

The multimodal remote sensing dataset comprises co-
registered HSI and LiDAR-derived digital surface model 
data. We consider the Houston 2013 datasets, which provide 
hyperspectral imagery and LiDAR-derived elevation data. 
Let H W B H  be the hyperspectral image, where H and W 
denote the spatial height and width, and B is the number of 
spectral bands per pixel. Each spatial location (i, j) corresponds 

to a vector , ,:

B

i j H . The corresponding LiDAR elevation 

data is represented as a single-channel matrix H WL , 

where ,i jL indicates the elevation at spatial position (i,j). The 

label map {0,1, , }Y K   with K=15 foreground classes and 0 

as background.  

To harmonize the input features, we apply per-band z-score 
normalization independently for both the hyperspectral and 

LiDAR modalities. Let    1, , 1, ,H W  denote the 

set of valid pixel locations. For each spectral band 

   1, ,b B  , we compute the mean and standard deviation 

over all valid pixels: 

, ,

( , )

1
b

i

i j b

j






 H   

(

,

2

, )

,

1
i j bb b

i j

 


 

 H 

The standardized hyperspectral tensor is then computed 
element-wise as 
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For the LiDAR data,we define the mean and standard 
deviation of the elevation values across valid pixels as 
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We apply a similar normalization: 


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Following normalization, to formulate the multimodal input 
representation, the normalized LiDAR data are reshaped to 
conform to the hyperspectral tensor’s dimensions and 

subsequently concatenated along the spectral axis. The 
resulting per-pixel fused feature vector is 

1

, ,1 , ,2 , , ,( , [ , , ]) , , B

i j i j i j B i ji j  H H H LZ 

where valid pixel ( , )i j  . This produces a unified 

feature tensor 
( 1)H W B  Z over all valid pixels, which serves 

as the input to the subsequent 3D convolutional layers. 

B. Patch Extraction and Augmentation 

We perform local patch classification. For each labeled 
pixel at location (𝑖,𝑗) , we extract a square window of side 𝑃 
(an odd number) centered at (𝑖,𝑗) from each channel. In our 
implementation 𝑃=15 (spatial radius 7 pixels). For border 
pixels, we apply zero-padding (i.e. assume 0 outside the 

image). The result is a 3D cube of size 𝑃×𝑃 in space and 145 

in channel dimension, which we reshape to shape (𝐶,𝑃,𝑃) with 
C=145. Let the patch size be P=15 and radius r=⌊P/2⌋=8. Using 

zero padding, for each (i,j)∈Ω we extract a cube 

( 1) , ( , , ) ( , )[ ]B P P

ij ij c u v i u r j v r c       Z Z Z    

(6) 

The dataset is 
( , ){( , )}ij ij i jy  ZD  with labels 

{1, , }ij ijy Y K   . 

During training we augment each P×P spatial patch by 
randomly applying a geometric transform T chosen from the 
dihedral group of the square (all 90° rotations and mirror flips). 
The same transform is applied to every channel (all HSI bands 
and the LiDAR channel) so spectral alignment is preserved. 
We sample a random transformation T from the dihedral group 
of the square through independent flips and a random rotation: 

90
flip flip( ) ( )b a

k y xT R 
                               (7) 

where , ~ Bernoulli(1/ 2)a b  are independent. a=1 means 

“apply horizontal (left–right) flip,” a=0 means “skip it.” b=1 
means “apply vertical (up–down) flip,” b=0 means “skip 

it.” ~ Unif{1,2,3}k  selects a rotation by 90∘,180∘, or 270∘ 

with equal probability. ∘ is function composition: A∘B means 

“apply B first, then A.”  The exponent “(⋅)0” means “do 

nothing,” and “(⋅)1” means “apply the operation once.” So, 

right to left, we (i) maybe flip horizontally, (ii) maybe flip 
vertically, then (iii) rotate by a random quarter-turn. 

Let a patch be C P P Z  with channels 1, ,c C   and 

pixel coordinates (u,v) where , {0, , 1}u v P    (row, 

column). 

Horizontal flip ( flipx ): ( , ) ( , 1 )u v u P v  .              (8) 
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Vertical flip ( flipy ): ( , ) ( 1 , )u v P u v  .                   (9) 

Clockwise rotations: 

90

180

270

: ( , ) ( , 1 ),

: ( , ) ( 1 , 1 ),

: ( , ) ( 1 , ).

R u v v P u

R u v P u P v

R u v P v u







 

   

 

                        (10) 

To apply T to the whole tensor without collisions, we map 
destination pixels (u,v)(u,v)(u,v) to their source via the inverse 
transform: 

1

(aug)

, , , ( , )
for all , , .c u v c T u v

c u vZ Z                               (11) 

Applying identically to all P×P spatial slices means that the 

same ( , ) ( , )u v T u v  is used for every channel c. We never 

permute the spectral/LiDAR axis, so band alignment is 
preserved. 

III. EXPERIMENTS 

A. Input tensorization 

For each labeled pixel, we extract a zero-padded P×P 

neighborhood from hyperspectral and LiDAR data, concatenate 
along channels, and transpose to channel-first. With P=9 and 
C=B+1=145, each sample is a torch.FloatTensor of shape 
(C,P,P); the label is a zero-based torch.LongTensor matching 
nn.CrossEntropyLoss. When DataLoader collates a mini-batch 
of size N, the batch shape is (N,C,P,P). During forward, we add 
a singleton channel with x = x.unsqueeze(1), resulting in 
(N,1,C,P,P). The spectral-LiDAR stack is treated as depth 
D=C, so nn.Conv3d(1,16,kernel_size=3,stride=1) processes 3D 
neighborhoods across wavelengths and pixels. Valid 3×3×3 
kernels contract each dimension by two per layer; three blocks 
map (1,C,P,P) to (64,C−6,P−6,P−6) before flattening. 
Augmentations (flips and rotations) operate identically across 
all channels, keeping spectral-LiDAR alignment. The 

unsqueeze aligns the dataset’s (N,C,P,P) batch with Conv3d’s 

NCDHW signature, avoiding extra reorders beyond the initial 
transpose. During training, tensors are moved to the active 
device, labels squeezed from (N,1) to (N), and the forward pass 
runs on contiguous float32 inputs. 

B. Residual 3D blocks 

The backbone consists of three identical 3D convolutional 
blocks arranged sequentially, each employing valid padding 
(without zero padding), a kernel size of 3, and a stride of 1. 
This configuration is followed by Batch Normalization and a 
ReLU activation function. This minimalist architecture was 
selected to integrate spectral and spatial context effectively 
while maintaining a modest parameter count and a predictable 
receptive field. Concretely, 

1 1 1 16

2 2 16 32 1

3 3 32 64 2

ReLU BN (Conv3D ( )) ,

ReLU BN (Conv3D ( )) ,

ReLU BN (Conv3D ( )

=

= )

( )

( )

( )









h x

h h

h h

                     (12) 

Because no padding is used, every block contracts each 
dimension by two voxels. Formally, the size update per 
dimension is 

in

out in1 2
D k

D D
s

 
    
 

                            (13) 

Hence after three layers 
64 ( 6) ( 6) ( 6)

3

N C P P      h . For 

C=145, P=15, this is N×64×139×9×9, which is then flattened 
for the classifier. The effective receptive field grows linearly 
with depth; for stride 1 and k=3, the receptive field after L 

layers is 32 1 7Lr L r     along the spectral and both 

spatial axes. In practice, this design strikes a balance: it is deep 
enough to integrate a 7×7×7 spectral-spatial neighborhood, yet 
shallow enough to avoid over-parameterization. Batch 
normalization stabilizes optimization across batches with 
varying class composition, and ReLU preserves sparsity while 
preventing vanishing gradients, producing compact features 
amenable to the final linear classifier. 

C. Normalization, activation, and dropout 

This stage standardizes intermediate feature statistics, 
injects nonlinearity, and regularizes the representation before 
the classifier. Batch normalization operates independently on 
each output channel of every 3D convolution, stabilizing the 
distribution of activations across mini-batches and accelerating 
optimization. Concretely, for channel c with pre-activation 

tensor 
cz , we compute the batch mean 

c  and variance 2

c , 

normalize, and then apply a learned affine transform: 

2
ˆ ˆ, BN ( )c c

c c c c c

c

z
z z z


 

 


  


                          (14) 

where c  and c  are trainable scalars and ε\varepsilonε is a 

small constant for numerical stability. During training, c  and 

variance 
2

c are computed from the current batch; at inference, 

the running estimates accumulated during training are used, 
ensuring deterministic behavior. This mechanism reduces 
internal covariate shift and permits higher learning rates 
without divergence. 

Nonlinearity is introduced with the rectified linear unit 

ReLU( ) max(0, )t t . which zeroes negative responses while 

leaving positive values unchanged. ReLU’s piecewise-linear 
form preserves gradient flow for active units, combats 
vanishing gradients, and promotes sparse activations-useful 
when discriminative structures occupy a small fraction of the 
spectral-spatial volume. In our setting, ReLU is applied 
immediately after every batch-normalized convolutional 
output, yielding well-conditioned, non-saturated feature maps 
for subsequent layers. 

Finally, dropout regularizes the final convolutional 
representation before flattening. We adopt inverted dropout 
with keep probability q=0.7 (drop p=0.3), so the expected 
activation magnitude is preserved between training and 
inference:  
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3 3

1
, ~ Bernoulli( )q

q
h m h m                        (15) 

Here m is a binary mask sampled independently per 

element, and ⊙  denotes Hadamard product. At test time, 

dropout is disabled and no rescaling occurs. Placing dropout 
after the final normalized, rectified features encourages the 
network to rely on redundant, complementary cues across 
spectral and spatial neighborhoods rather than memorizing 
idiosyncratic high-variance filters. Together, batch 
normalization, ReLU, and inverted dropout form a compact, 
robust stack: normalization tames dynamics, activation 
supplies expressive capacity, and dropout hedges against co-
adaptation-yielding features that are both stable and 
discriminative for the downstream linear classifier. 

D. Classification head 

After the final convolutional block and dropout, the 
network converts the compact 3D feature volume into a 1D 
representation suitable for linear discrimination. Concretely, 

we first flatten the normalized, rectified tensor 
3h  along its 

depth and spatial axes: 

2

3vec , 64( 6)( 6)( ) fN D

fD C P


    v h              (16) 

For the canonical configuration C=145 and P=15, this 

evaluates to 264 139 9 720,576fD     . This vectorization 

preserves sample order and leaves batch size N untouched, 
yielding a dense feature for each patch.  

The classifier is a single fully connected layer that maps 
these features to class logits. Let the number of classes be K 

(here K=15). With weights fK D
W


 and bias Kb , the 

logits are computed as N KW b   z v . These logits are 

subsequently consumed by the cross-entropy loss with class 
weights, without any additional nonlinearity. 

E.  Class-balanced cross-entropy 

Imbalanced supervision is a defining trait of urban HIS-
LiDAR scenes: large, homogeneous surfaces (e.g., roads) 
dominate, while small structures (e.g., tennis courts) are rare. 
To prevent the classifier from collapsing onto majority classes, 
we weight the cross-entropy by the inverse class frequency 

computed on the training split. Let T  be the training 
index set after a stratified 50/50 split of labeled pixels. Let 

cn be the number of training samples in class c and 
1

K

c

c

N n


 . 

Following the widely used “balanced” heuristic, the per-class 

weights are c

c

N
w

K n
 . These weights enter a standard 

softmax cross-entropy. Denote by Kz the logits produced 

for one patch and by

1

( )
c

j

z

zK

j

e
p y c

e




 


x∣  the induced class 

probabilities. Over a mini-batch B , the loss is 

( , )

1
( ) log

| |
( )

ijy ij ij

i j

w p y


   Z∣
B

L
B

                         (17) 

Operationally, this choice raises the penalty for misclassifying 
minority classes and lowers it for majority ones, equalizing 
their effective contribution to the gradient. Because the weights 
are computed on the current training labels and then transferred 
to the active device, the implementation remains simple and 
efficient. Importantly, weighting leaves the decision surface 
unchanged at optimum for separable data but improves 
convergence under finite-sample noise, yielding higher per-
class recall and a more meaningful Average Accuracy without 
introducing architectural complexity. 

F. Adam with step decay 

We optimize network parameters with Adam, chosen for its 
robust behavior across heterogeneous batches and 
nonstationary gradients typical of augmented spectral-spatial 

data. Using standard notation, for parameter
t and gradient 

tg , 

2

1 1 1 2 1 2

1

1 2

(1 ) , (1 ) ,

ˆ
ˆ ˆ, ,

1 1 ˆ

t t t t t t

t t t

t t t t tt t

t

m m g v v g

m v m
m v

v

   

  
 

 



     

   
  ò

         (18) 

Adam’s bias-corrected moments adapt the step size per-
parameter, dampening noisy filters while allowing confidently 
estimated directions to progress faster. To complement this 
adaptivity with a simple curriculum, we apply a piecewise-
constant decay to the global learning rate via PyTorch’s 

StepLR 
/ 3

0 0, 10
e s

e        . With step s=30 epochs and 

factor γ=0.5, the schedule halves 
e at epochs 30 and 60 for a 

100-epoch run. Early training thus enjoys larger exploratory 
updates that quickly shape discriminative spectral-spatial 
filters; later, reduced steps stabilize fine-grained adjustments 
near minima, curbing oscillations in the linear head. This 
pairing-Adam for per-parameter adaptivity and StepLR for 
coarse global annealing—has proven reliable for small, fully 
supervised patch classifiers, offering predictable convergence 
without elaborate tuning or warm-up heuristics. 

G.  Evaluation Metrics 

Let K KC  be the confusion matrix on the test set S  

(the other half of Ω). With 
abC  the number of examples of true 

class a predicted as b: 

(1)Overall Accuracy (OA): 1

1 1

OA

K

cc

c

K K

ab

a b

C

C



 





                (19) 

(2)Per-class accuracy (recall) and Average Accuracy (AA): 
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K
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c cK
c

cb

b

C

K
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



                       (20) 

(3)Cohen’s κ: 

1

, ,

OA, ,
1

 ( )( )
cb acK

b a o e

o e

c ab ab e

a b a b

C C
p p

p p
C C p





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

 


 
      (21) 

The script reports the (degenerate) mean±std from 
repeating deterministic evaluation R=3 times on the same 
trained model, and similarly for AA, κ, and per-class 
accuracies (the variance is usually zero since weights are 
frozen). We perform 5 independent runs with different random 
seeds to account for stochasticity. Each run involves training 
the network for 200 epochs using the training mask. After 
training, predictions are made for all nodes, and metrics are 
computed on the test mask. We report the mean and standard 
deviation across runs for OA, AA, and per-class accuracies. 
The learning rate is scheduled by cosine annealing over the 200 
epochs (ending at 1e-5). During each epoch, we iterate over 
mini-batches of 32 samples (handled by DataLoader), 
computing gradients and updating weights. The training lasts 
for 200 epochs, with the best model selected based on 
validation performance (see Experiments). 

IV. RESULTS 

A. Dataset background 

The Houston 2013 dataset was captured by the ITRES 
CASI-1500 airborne sensor over the University of Houston 
campus and adjacent rural areas in Texas in the year 2013. 
After excluding noisy bands, the dataset comprises 144 valid 
spectral bands. The entire scene encompasses 349 × 1905 
pixels with a spatial resolution of 2.5 m per pixel. It includes 15 
land-cover classes, namely: healthy grass, stressed grass, 
synthetic grass, tree, soil, water, residential, commercial, road, 
highway, railway, two parking lot categories, tennis court, and 
running track. The pseudo-color map and grayscale image for 
the LiDAR data are depicted in Figure 1.  

We use a compact pipeline for faithful reproduction. Data 
from HSI.mat, LiDAR.mat, and gt.mat are loaded, with 
auxiliary TRLabel.mat / TSLabel.mat not used for splitting. 
The hyperspectral cube is band-wise standardized; the LiDAR 
raster is concatenated as an extra channel. For each labeled 
pixel, a zero-padded P×P patch (default P=15) forms tensors 
of shape (C, P, P) with C=145. Data augmentation includes 
random flips and 90° rotations across all channels. A stratified 
50/50 train-test split over labeled coordinates is created with 
seed 42. Mini-batches of 32 are used; data are moved to 
CUDA. Optimization employs Adam with LR=10-3, halved 
every 30 epochs over 100 epochs. The class-balanced cross-
entropy loss is based on training frequencies. Model evaluation 
reports confusion matrix, Overall Accuracy, per-class recalls, 
Average Accuracy, and Cohen’s κ, with results visualized as 

color maps. Deterministic inference is repeated three times for 
sanity checks on scores. 

 

(a) 

 

(b) 

Figure 1.  Visualization of Houston 2013. (a) Pseudo-color image 
for HSI data. (b) Grayscale image for the LiDAR data. 

1) Quantitative results 

Experimental evaluation on the Houston-2013 dataset with 
a dynamic graph convolutional network (MS-GWCN) 
achieved the per-class accuracies summarised below. Each 
value is shown with its standard deviation. These results 
indicate that the model performs very well across most classes, 
with perfect classification on several categories. 

TABLE I.   ACCURACY (%) OF THE MS-GWCN ON THE HOUSTON 2013 

DATASET 

Classes Classes-names Accuracy (%) Classes Classes-names Accuracy (%) 

1 Healthy grass 80.08 ± 0.70 9 Road 86.18 ± 1.33 

2 Stressed grass 93.95 ± 2.15 10 Highway 81.16 ± 6.84 

3 Synthetic grass 99.72 ± 0.27 11 Railway 91.04 ± 6.05 

4 Tree 93.39 ± 1.50 12 Parking lot 1 84.17 ± 3.42 

5 Soil 92.73 ± 0.63 13 Parking lot 2 92.07 ± 0.79 

6 Water 99.44 ± 0.82 14 Tennis court 100.00 ± 0.00 

7 Residential 95.50 ± 2.05 15 Running track 99.58 ± 0.23 

8 Commercial 84.06 ± 1.89    

OA (%) 89.63 ± 0.60 

AA (%) 91.54 ± 0.47 

Kappa(×100) 88.75 ± 0.66 

Table 1 summarizes the quantitative results of our model 
on Houston2013. Over five runs, the performance of the single 

model is approximately OA=89.6%± 0.6%, AA=91.5%±
0.5%, and κ= 88.8%±0.7%. The optimal run achieves OA≈
90.5%, AA ≈ 92.3%, and κ ≈ 89.7%. By ensembling 
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(averaging logits) the five best models, the performance is 

improved to OA≈ 91.2%, AA≈ 92.8%, and κ≈ 90.4%. 

Several patterns emerge in the per-class accuracy analysis. 
Classes with highly distinctive spectral or geometric 
signatures attain near-perfect recall; for example, Tennis Court 
and Water each achieve approximately 100% accuracy, while 
Synthetic Grass exceeds 99%. Conversely, the class most 
challenging is Highway, with an accuracy of approximately 
46.9%, frequently confused with Road or Parking Lots; these 
classes share similar spectral properties and appear in 
heterogeneous contexts. The model also demonstrates slightly 
lower performance on classes such as Commercial, Parking 
Lot 2, and Residential, with accuracy in the mid-80% range, 
likely due to finer-grained variability and mixed pixels. 
Overall, the confusion matrix indicates that most 
misclassifications occur between classes with similar spectral 
characteristics. 

2) Qualitative results 

Figure 2 shows that the classification maps are relatively 
smooth, with few isolated errors. The dihedral test-time 
augmentation produces stable predictions. Our 3D approach 
yields crisp boundaries and corrects many errors in shadows 
and edges, thanks to the extra spectral and elevation cues. 

 

(a) The Classification maps of Round 1. 

 

(b) The Classification maps of Round 5. 

 

Figure 2.  Classification maps on the Houston 2013 dataset across 
five independent runs (Only 2 figures). 

V. DISCUSSION 

The results show that even a relatively simple 3D-CNN can 
effectively combine hyperspectral and LiDAR data. The high 
accuracy on water, synthetic grass, tennis courts, and similar 
classes indicates that the model learned strong spectral–spatial–
structural features for these categories. The lower performance 
on highway and similar classes highlights a limitation: our 
receptive field (15×15×15 volume) might be too small to 
capture the larger contextual cues needed to distinguish thin 
linear roads from highways. These errors suggest that adding 
larger spatial context or higher-level reasoning could help; for 
example, exploring graph-based models or larger CNNs in 
future work. 

Our approach avoids using pretraining or complex fusion 
modules, yet still achieves competitive accuracy. Notably, the 
kappa score closely follows OA, suggesting low chance 
agreement—likely because we employed the official train/test 
split rather than a random mask that includes background. The 
class-weighted loss and balanced sampling effectively reduce 
class imbalance: even rare classes like Tennis Court (with few 
samples) are learned well, and the model doesn't collapse on 
dominant classes. 

Compared to more complex architectures in the literature, 
our model’s strength is in transparency and reproducibility. All 
operations (patch extraction, augmentation, normalization, etc.) 
are explicitly defined, and the code is released. The downside 
is that the model’s capacity is limited: deeper or multi-path 
networks (such as those with attention or Transformers) may 
outperform this baseline on challenging classes. Additionally, 
we only considered pixelwise patch classification; methods that 
utilize image-wide context (like segmentation networks or 
post-aggregation) might improve smoothness. 

VI. CONCLUSION 

We have introduced a lightweight 3D-CNN baseline for 
hyperspectral-LiDAR fusion in urban land-cover classification. 
By treating LiDAR as an additional spectral band and applying 
3D convolutions, our model jointly captures spectral, spatial, 
and elevation features. The pipeline, from per-band 
standardization to patch-based training with dihedral 
augmentation and class-balanced loss, is thoroughly detailed to 
ensure full reproducibility. On the Houston2013 dataset, the 

model achieves OA ≈ 0.90 and AA ≈ 0.92, even without 

advanced fusion techniques. Our analysis indicates that the 
model performs well on spectrally distinct classes but struggles 
with spectrally mixed classes, due to the limited local context 
of the network. 

This compact model provides a solid baseline for multi-
modal classification. Future work could explore deeper 
networks, multi-scale context, or self-supervised pretraining to 
further enhance performance, particularly on difficult urban 
classes. Our implementation and experimental protocol support 
the development of more advanced fusion algorithms in the 
remote sensing community. 
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