
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 147

 A Lightweight 3D Convolutional Network for
Hyperspectral–LiDAR Patch Classification

1,2Junhua Ku

1School of Information Science and Technology,
2Institute of Educational Big Data and Artificial

Intelligence, Qiongtai Normal University,

Haikou, China

Email: junhuacoge [AT] mail.qtnu.edu.cn

3Jie Zhao
School of Science,

Qiongtai Normal University,

Haikou, China

Email: cogemm [AT] gmail.com

Abstract—We propose a simple yet effective three-

dimensional convolutional neural network (3D-CNN) for urban
land-cover classification using co-registered hyperspectral
imagery (HSI) and LiDAR data. The network treats the entire
spectral-LiDAR stack as a three-dimensional volume and uses a
series of 3×3×3 convolutions to capture both spectral and spatial
context simultaneously. LiDAR elevation data is added as an
extra channel in the input. During preprocessing, each
hyperspectral band and LiDAR DSM are normalized to zero
mean and unit variance. Training uses small local patches (P×P)
centered on labeled pixels, with random flips and 90-degree
rotations, called dihedral augmentation, applied across all
channels. To address class imbalance, inverse-frequency class
weighting and label smoothing are included in the cross-entropy
loss. Evaluation on the Houston2013 dataset shows that the
model achieves high accuracy, a single model reaches an Overall
Accuracy (OA) of about 0.90 and an Average Accuracy (AA) of
about 0.92 over five runs. An ensemble of five runs improves

these results to OA ≈ 0.912, AA ≈ 0.928, and a kappa coefficient

(κ) of approximately 0.904. Classes with distinctive spectral and
spatial signatures, like water, synthetic grass, and tennis courts,
reach nearly 100% recall. Meanwhile, classes with similar
appearances, such as highway and road, show higher confusion,
with highway recall around 46.9%. These results confirm that
combining spectral and three-dimensional structural information
significantly enhances accuracy in urban classification.

Keywords-hyperspectral imagery, LiDAR, 3D-CNN, data
fusion, patch classification, class imbalance, remote sensing

I. INTRODUCTION

Remote sensing image classification is crucial for many
applications, including urban planning, land use monitoring,
and environmental management. Traditional methods mainly
use pixel-based classification techniques, which often fail to
properly represent complex spatial relationships and feature
dependencies. The introduction of multisource data, such as
HSI and LiDAR, offers opportunities to improve classification
accuracy by combining more comprehensive feature sets[1-3].
The integration of HSI and LiDAR data has attracted
significant interest over the past five years because each
provides complementary information. HSI offers extensive
spectral data across multiple bands, aiding in material

identification and land cover classification. In contrast, LiDAR
provides detailed three-dimensional structural information,
including elevation and surface features. Combining these two
data types has consistently shown substantial improvements in
classification accuracy across various remote sensing
applications, such as urban planning, environmental
monitoring, and vegetation mapping[4-6].

Intermediate fusion methods, also known as feature-level
fusion, aim to combine the advantages of both early and late
fusion. In this approach, feature extraction from HSI and
LiDAR data is performed separately, and the resulting feature
representations are then fused. For instance, Principal
Component Analysis (PCA) can be applied to reduce the
dimensionality of HSI data, while LiDAR features such as
elevation or point density can be extracted and integrated. This
fused feature set is then used as input to a classifier[7-9].
Although intermediate fusion can improve classification
accuracy by better capturing the interaction between spectral
and spatial information, it still struggles with preserving
complex spatial relationships, which is critical for accurate
classification in heterogeneous environments. The
effectiveness of this approach depends on how well the
features are fused, and often, important spatial correlations may
still be missed[10].

Deep learning architectures are often used in HSI and
LiDAR fusion, typically with complex modules or attention
mechanisms[11,12]. In contrast, our goal is to create a simple,
lightweight 3D-CNN that is easy to implement and interpret.
By treating the spectral axis as an additional spatial dimension,
the 3D-CNN directly learns combined spectral-spatial
features[13]. We prioritize clarity and reproducibility; the
entire process, including normalization, patch extraction,
augmentation, network design, optimization, and metrics, is
thoroughly outlined to match the released implementation. The
rest of the paper is organized as follows: In Methods (Section
2), we describe the dataset, preprocessing, network
architecture, and training process. Experiments (Section 3)
detail the setup using Houston 2013 data. Results (Section 4)
include both quantitative and qualitative outcomes. Discussion
(Section 5) interprets the results and addresses limitations.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 148

Finally, the Conclusion (Section 6) summarizes the
contributions and outlines future directions.

II. METHODS

A. Data and Preprocessing

The multimodal remote sensing dataset comprises co-
registered HSI and LiDAR-derived digital surface model
data. We consider the Houston 2013 datasets, which provide
hyperspectral imagery and LiDAR-derived elevation data.
Let H W B H be the hyperspectral image, where H and W
denote the spatial height and width, and B is the number of
spectral bands per pixel. Each spatial location (i, j) corresponds

to a vector , ,:

B

i j H . The corresponding LiDAR elevation

data is represented as a single-channel matrix H WL ,

where ,i jL indicates the elevation at spatial position (i,j). The

label map {0,1, , }Y K  with K=15 foreground classes and 0

as background.

To harmonize the input features, we apply per-band z-score
normalization independently for both the hyperspectral and

LiDAR modalities. Let    1, , 1, ,H W denote the

set of valid pixel locations. For each spectral band

  1, ,b B  , we compute the mean and standard deviation

over all valid pixels:

, ,

(,)

1
b

i

i j b

j






 H   

(

,

2

,)

,

1
i j bb b

i j

 


 

 H 

The standardized hyperspectral tensor is then computed
element-wise as

, ,

, , , (,)
i j b b

i j b

b

i j





  

H
H 

For the LiDAR data,we define the mean and standard
deviation of the elevation values across valid pixels as

,

,

()

1
L

i

i j

j






 L   

2

(

,

,)

1
L

j

j

i

i L 


 

 L 

We apply a similar normalization:


,

, (,),
i j

j

L

i

L

i j



 




L
L 

Following normalization, to formulate the multimodal input
representation, the normalized LiDAR data are reshaped to
conform to the hyperspectral tensor’s dimensions and

subsequently concatenated along the spectral axis. The
resulting per-pixel fused feature vector is

1

, ,1 , ,2 , , ,(, [, ,]) , , B

i j i j i j B i ji j  H H H LZ 

where valid pixel (,)i j  . This produces a unified

feature tensor
(1)H W B  Z over all valid pixels, which serves

as the input to the subsequent 3D convolutional layers.

B. Patch Extraction and Augmentation

We perform local patch classification. For each labeled
pixel at location (𝑖,𝑗) , we extract a square window of side 𝑃
(an odd number) centered at (𝑖,𝑗) from each channel. In our
implementation 𝑃=15 (spatial radius 7 pixels). For border
pixels, we apply zero-padding (i.e. assume 0 outside the

image). The result is a 3D cube of size 𝑃×𝑃 in space and 145

in channel dimension, which we reshape to shape (𝐶,𝑃,𝑃) with
C=145. Let the patch size be P=15 and radius r=⌊P/2⌋=8. Using

zero padding, for each (i,j)∈Ω we extract a cube

(1) , (, ,) (,)[]B P P

ij ij c u v i u r j v r c       Z Z Z

(6)

The dataset is
(,){(,)}ij ij i jy  ZD with labels

{1, , }ij ijy Y K   .

During training we augment each P×P spatial patch by
randomly applying a geometric transform T chosen from the
dihedral group of the square (all 90° rotations and mirror flips).
The same transform is applied to every channel (all HSI bands
and the LiDAR channel) so spectral alignment is preserved.
We sample a random transformation T from the dihedral group
of the square through independent flips and a random rotation:

90
flip flip() ()b a

k y xT R 
 (7)

where , ~ Bernoulli(1/ 2)a b are independent. a=1 means

“apply horizontal (left–right) flip,” a=0 means “skip it.” b=1
means “apply vertical (up–down) flip,” b=0 means “skip

it.” ~ Unif{1,2,3}k selects a rotation by 90∘,180∘, or 270∘

with equal probability. ∘ is function composition: A∘B means

“apply B first, then A.” The exponent “(⋅)0” means “do

nothing,” and “(⋅)1” means “apply the operation once.” So,

right to left, we (i) maybe flip horizontally, (ii) maybe flip
vertically, then (iii) rotate by a random quarter-turn.

Let a patch be C P P Z with channels 1, ,c C  and

pixel coordinates (u,v) where , {0, , 1}u v P   (row,

column).

Horizontal flip (flipx): (,) (, 1)u v u P v  . (8)

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 149

Vertical flip (flipy): (,) (1 ,)u v P u v  . (9)

Clockwise rotations:

90

180

270

: (,) (, 1),

: (,) (1 , 1),

: (,) (1 ,).

R u v v P u

R u v P u P v

R u v P v u







 

   

 

 (10)

To apply T to the whole tensor without collisions, we map
destination pixels (u,v)(u,v)(u,v) to their source via the inverse
transform:

1

(aug)

, , , (,)
for all , , .c u v c T u v

c u vZ Z (11)

Applying identically to all P×P spatial slices means that the

same (,) (,)u v T u v is used for every channel c. We never

permute the spectral/LiDAR axis, so band alignment is
preserved.

III. EXPERIMENTS

A. Input tensorization

For each labeled pixel, we extract a zero-padded P×P

neighborhood from hyperspectral and LiDAR data, concatenate
along channels, and transpose to channel-first. With P=9 and
C=B+1=145, each sample is a torch.FloatTensor of shape
(C,P,P); the label is a zero-based torch.LongTensor matching
nn.CrossEntropyLoss. When DataLoader collates a mini-batch
of size N, the batch shape is (N,C,P,P). During forward, we add
a singleton channel with x = x.unsqueeze(1), resulting in
(N,1,C,P,P). The spectral-LiDAR stack is treated as depth
D=C, so nn.Conv3d(1,16,kernel_size=3,stride=1) processes 3D
neighborhoods across wavelengths and pixels. Valid 3×3×3
kernels contract each dimension by two per layer; three blocks
map (1,C,P,P) to (64,C−6,P−6,P−6) before flattening.
Augmentations (flips and rotations) operate identically across
all channels, keeping spectral-LiDAR alignment. The

unsqueeze aligns the dataset’s (N,C,P,P) batch with Conv3d’s

NCDHW signature, avoiding extra reorders beyond the initial
transpose. During training, tensors are moved to the active
device, labels squeezed from (N,1) to (N), and the forward pass
runs on contiguous float32 inputs.

B. Residual 3D blocks

The backbone consists of three identical 3D convolutional
blocks arranged sequentially, each employing valid padding
(without zero padding), a kernel size of 3, and a stride of 1.
This configuration is followed by Batch Normalization and a
ReLU activation function. This minimalist architecture was
selected to integrate spectral and spatial context effectively
while maintaining a modest parameter count and a predictable
receptive field. Concretely,

1 1 1 16

2 2 16 32 1

3 3 32 64 2

ReLU BN (Conv3D ()) ,

ReLU BN (Conv3D ()) ,

ReLU BN (Conv3D ()

=

=)

()

()

()









h x

h h

h h

 (12)

Because no padding is used, every block contracts each
dimension by two voxels. Formally, the size update per
dimension is

in

out in1 2
D k

D D
s

 
    
 

 (13)

Hence after three layers
64 (6) (6) (6)

3

N C P P      h . For

C=145, P=15, this is N×64×139×9×9, which is then flattened
for the classifier. The effective receptive field grows linearly
with depth; for stride 1 and k=3, the receptive field after L

layers is 32 1 7Lr L r    along the spectral and both

spatial axes. In practice, this design strikes a balance: it is deep
enough to integrate a 7×7×7 spectral-spatial neighborhood, yet
shallow enough to avoid over-parameterization. Batch
normalization stabilizes optimization across batches with
varying class composition, and ReLU preserves sparsity while
preventing vanishing gradients, producing compact features
amenable to the final linear classifier.

C. Normalization, activation, and dropout

This stage standardizes intermediate feature statistics,
injects nonlinearity, and regularizes the representation before
the classifier. Batch normalization operates independently on
each output channel of every 3D convolution, stabilizing the
distribution of activations across mini-batches and accelerating
optimization. Concretely, for channel c with pre-activation

tensor
cz , we compute the batch mean

c and variance 2

c ,

normalize, and then apply a learned affine transform:

2
ˆ ˆ, BN ()c c

c c c c c

c

z
z z z


 

 


  


 (14)

where c and c are trainable scalars and ε\varepsilonε is a

small constant for numerical stability. During training, c and

variance
2

c are computed from the current batch; at inference,

the running estimates accumulated during training are used,
ensuring deterministic behavior. This mechanism reduces
internal covariate shift and permits higher learning rates
without divergence.

Nonlinearity is introduced with the rectified linear unit

ReLU() max(0,)t t . which zeroes negative responses while

leaving positive values unchanged. ReLU’s piecewise-linear
form preserves gradient flow for active units, combats
vanishing gradients, and promotes sparse activations-useful
when discriminative structures occupy a small fraction of the
spectral-spatial volume. In our setting, ReLU is applied
immediately after every batch-normalized convolutional
output, yielding well-conditioned, non-saturated feature maps
for subsequent layers.

Finally, dropout regularizes the final convolutional
representation before flattening. We adopt inverted dropout
with keep probability q=0.7 (drop p=0.3), so the expected
activation magnitude is preserved between training and
inference:

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 150

3 3

1
, ~ Bernoulli()q

q
h m h m (15)

Here m is a binary mask sampled independently per

element, and ⊙ denotes Hadamard product. At test time,

dropout is disabled and no rescaling occurs. Placing dropout
after the final normalized, rectified features encourages the
network to rely on redundant, complementary cues across
spectral and spatial neighborhoods rather than memorizing
idiosyncratic high-variance filters. Together, batch
normalization, ReLU, and inverted dropout form a compact,
robust stack: normalization tames dynamics, activation
supplies expressive capacity, and dropout hedges against co-
adaptation-yielding features that are both stable and
discriminative for the downstream linear classifier.

D. Classification head

After the final convolutional block and dropout, the
network converts the compact 3D feature volume into a 1D
representation suitable for linear discrimination. Concretely,

we first flatten the normalized, rectified tensor
3h along its

depth and spatial axes:

2

3vec , 64(6)(6)() fN D

fD C P


    v h (16)

For the canonical configuration C=145 and P=15, this

evaluates to 264 139 9 720,576fD     . This vectorization

preserves sample order and leaves batch size N untouched,
yielding a dense feature for each patch.

The classifier is a single fully connected layer that maps
these features to class logits. Let the number of classes be K

(here K=15). With weights fK D
W


 and bias Kb , the

logits are computed as N KW b   z v . These logits are

subsequently consumed by the cross-entropy loss with class
weights, without any additional nonlinearity.

E. Class-balanced cross-entropy

Imbalanced supervision is a defining trait of urban HIS-
LiDAR scenes: large, homogeneous surfaces (e.g., roads)
dominate, while small structures (e.g., tennis courts) are rare.
To prevent the classifier from collapsing onto majority classes,
we weight the cross-entropy by the inverse class frequency

computed on the training split. Let T be the training
index set after a stratified 50/50 split of labeled pixels. Let

cn be the number of training samples in class c and
1

K

c

c

N n


 .

Following the widely used “balanced” heuristic, the per-class

weights are c

c

N
w

K n
 . These weights enter a standard

softmax cross-entropy. Denote by Kz the logits produced

for one patch and by

1

()
c

j

z

zK

j

e
p y c

e




 


x∣ the induced class

probabilities. Over a mini-batch B , the loss is

(,)

1
() log

| |
()

ijy ij ij

i j

w p y


   Z∣
B

L
B

 (17)

Operationally, this choice raises the penalty for misclassifying
minority classes and lowers it for majority ones, equalizing
their effective contribution to the gradient. Because the weights
are computed on the current training labels and then transferred
to the active device, the implementation remains simple and
efficient. Importantly, weighting leaves the decision surface
unchanged at optimum for separable data but improves
convergence under finite-sample noise, yielding higher per-
class recall and a more meaningful Average Accuracy without
introducing architectural complexity.

F. Adam with step decay

We optimize network parameters with Adam, chosen for its
robust behavior across heterogeneous batches and
nonstationary gradients typical of augmented spectral-spatial

data. Using standard notation, for parameter
t and gradient

tg ,

2

1 1 1 2 1 2

1

1 2

(1) , (1) ,

ˆ
ˆ ˆ, ,

1 1 ˆ

t t t t t t

t t t

t t t t tt t

t

m m g v v g

m v m
m v

v

   

  
 

 



     

   
  ò

 (18)

Adam’s bias-corrected moments adapt the step size per-
parameter, dampening noisy filters while allowing confidently
estimated directions to progress faster. To complement this
adaptivity with a simple curriculum, we apply a piecewise-
constant decay to the global learning rate via PyTorch’s

StepLR
/ 3

0 0, 10
e s

e        . With step s=30 epochs and

factor γ=0.5, the schedule halves
e at epochs 30 and 60 for a

100-epoch run. Early training thus enjoys larger exploratory
updates that quickly shape discriminative spectral-spatial
filters; later, reduced steps stabilize fine-grained adjustments
near minima, curbing oscillations in the linear head. This
pairing-Adam for per-parameter adaptivity and StepLR for
coarse global annealing—has proven reliable for small, fully
supervised patch classifiers, offering predictable convergence
without elaborate tuning or warm-up heuristics.

G. Evaluation Metrics

Let K KC be the confusion matrix on the test set S

(the other half of Ω). With
abC the number of examples of true

class a predicted as b:

(1)Overall Accuracy (OA): 1

1 1

OA

K

cc

c

K K

ab

a b

C

C



 





 (19)

(2)Per-class accuracy (recall) and Average Accuracy (AA):

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 151

8 1

1

1
Acc ,AA Acc

10

K
cc

c cK
c

cb

b

C

K
C  



 





 (20)

(3)Cohen’s κ:

1

, ,

OA, ,
1

 ()()
cb acK

b a o e

o e

c ab ab e

a b a b

C C
p p

p p
C C p





  



 


 
 (21)

The script reports the (degenerate) mean±std from
repeating deterministic evaluation R=3 times on the same
trained model, and similarly for AA, κ, and per-class
accuracies (the variance is usually zero since weights are
frozen). We perform 5 independent runs with different random
seeds to account for stochasticity. Each run involves training
the network for 200 epochs using the training mask. After
training, predictions are made for all nodes, and metrics are
computed on the test mask. We report the mean and standard
deviation across runs for OA, AA, and per-class accuracies.
The learning rate is scheduled by cosine annealing over the 200
epochs (ending at 1e-5). During each epoch, we iterate over
mini-batches of 32 samples (handled by DataLoader),
computing gradients and updating weights. The training lasts
for 200 epochs, with the best model selected based on
validation performance (see Experiments).

IV. RESULTS

A. Dataset background

The Houston 2013 dataset was captured by the ITRES
CASI-1500 airborne sensor over the University of Houston
campus and adjacent rural areas in Texas in the year 2013.
After excluding noisy bands, the dataset comprises 144 valid
spectral bands. The entire scene encompasses 349 × 1905
pixels with a spatial resolution of 2.5 m per pixel. It includes 15
land-cover classes, namely: healthy grass, stressed grass,
synthetic grass, tree, soil, water, residential, commercial, road,
highway, railway, two parking lot categories, tennis court, and
running track. The pseudo-color map and grayscale image for
the LiDAR data are depicted in Figure 1.

We use a compact pipeline for faithful reproduction. Data
from HSI.mat, LiDAR.mat, and gt.mat are loaded, with
auxiliary TRLabel.mat / TSLabel.mat not used for splitting.
The hyperspectral cube is band-wise standardized; the LiDAR
raster is concatenated as an extra channel. For each labeled
pixel, a zero-padded P×P patch (default P=15) forms tensors
of shape (C, P, P) with C=145. Data augmentation includes
random flips and 90° rotations across all channels. A stratified
50/50 train-test split over labeled coordinates is created with
seed 42. Mini-batches of 32 are used; data are moved to
CUDA. Optimization employs Adam with LR=10-3, halved
every 30 epochs over 100 epochs. The class-balanced cross-
entropy loss is based on training frequencies. Model evaluation
reports confusion matrix, Overall Accuracy, per-class recalls,
Average Accuracy, and Cohen’s κ, with results visualized as

color maps. Deterministic inference is repeated three times for
sanity checks on scores.

(a)

(b)

Figure 1. Visualization of Houston 2013. (a) Pseudo-color image
for HSI data. (b) Grayscale image for the LiDAR data.

1) Quantitative results

Experimental evaluation on the Houston-2013 dataset with
a dynamic graph convolutional network (MS-GWCN)
achieved the per-class accuracies summarised below. Each
value is shown with its standard deviation. These results
indicate that the model performs very well across most classes,
with perfect classification on several categories.

TABLE I. ACCURACY (%) OF THE MS-GWCN ON THE HOUSTON 2013

DATASET

Classes Classes-names Accuracy (%) Classes Classes-names Accuracy (%)

1 Healthy grass 80.08 ± 0.70 9 Road 86.18 ± 1.33

2 Stressed grass 93.95 ± 2.15 10 Highway 81.16 ± 6.84

3 Synthetic grass 99.72 ± 0.27 11 Railway 91.04 ± 6.05

4 Tree 93.39 ± 1.50 12 Parking lot 1 84.17 ± 3.42

5 Soil 92.73 ± 0.63 13 Parking lot 2 92.07 ± 0.79

6 Water 99.44 ± 0.82 14 Tennis court 100.00 ± 0.00

7 Residential 95.50 ± 2.05 15 Running track 99.58 ± 0.23

8 Commercial 84.06 ± 1.89

OA (%) 89.63 ± 0.60

AA (%) 91.54 ± 0.47

Kappa(×100) 88.75 ± 0.66

Table 1 summarizes the quantitative results of our model
on Houston2013. Over five runs, the performance of the single

model is approximately OA=89.6%± 0.6%, AA=91.5%±
0.5%, and κ= 88.8%±0.7%. The optimal run achieves OA≈
90.5%, AA ≈ 92.3%, and κ ≈ 89.7%. By ensembling

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 152

(averaging logits) the five best models, the performance is

improved to OA≈ 91.2%, AA≈ 92.8%, and κ≈ 90.4%.

Several patterns emerge in the per-class accuracy analysis.
Classes with highly distinctive spectral or geometric
signatures attain near-perfect recall; for example, Tennis Court
and Water each achieve approximately 100% accuracy, while
Synthetic Grass exceeds 99%. Conversely, the class most
challenging is Highway, with an accuracy of approximately
46.9%, frequently confused with Road or Parking Lots; these
classes share similar spectral properties and appear in
heterogeneous contexts. The model also demonstrates slightly
lower performance on classes such as Commercial, Parking
Lot 2, and Residential, with accuracy in the mid-80% range,
likely due to finer-grained variability and mixed pixels.
Overall, the confusion matrix indicates that most
misclassifications occur between classes with similar spectral
characteristics.

2) Qualitative results

Figure 2 shows that the classification maps are relatively
smooth, with few isolated errors. The dihedral test-time
augmentation produces stable predictions. Our 3D approach
yields crisp boundaries and corrects many errors in shadows
and edges, thanks to the extra spectral and elevation cues.

(a) The Classification maps of Round 1.

(b) The Classification maps of Round 5.

Figure 2. Classification maps on the Houston 2013 dataset across
five independent runs (Only 2 figures).

V. DISCUSSION

The results show that even a relatively simple 3D-CNN can
effectively combine hyperspectral and LiDAR data. The high
accuracy on water, synthetic grass, tennis courts, and similar
classes indicates that the model learned strong spectral–spatial–
structural features for these categories. The lower performance
on highway and similar classes highlights a limitation: our
receptive field (15×15×15 volume) might be too small to
capture the larger contextual cues needed to distinguish thin
linear roads from highways. These errors suggest that adding
larger spatial context or higher-level reasoning could help; for
example, exploring graph-based models or larger CNNs in
future work.

Our approach avoids using pretraining or complex fusion
modules, yet still achieves competitive accuracy. Notably, the
kappa score closely follows OA, suggesting low chance
agreement—likely because we employed the official train/test
split rather than a random mask that includes background. The
class-weighted loss and balanced sampling effectively reduce
class imbalance: even rare classes like Tennis Court (with few
samples) are learned well, and the model doesn't collapse on
dominant classes.

Compared to more complex architectures in the literature,
our model’s strength is in transparency and reproducibility. All
operations (patch extraction, augmentation, normalization, etc.)
are explicitly defined, and the code is released. The downside
is that the model’s capacity is limited: deeper or multi-path
networks (such as those with attention or Transformers) may
outperform this baseline on challenging classes. Additionally,
we only considered pixelwise patch classification; methods that
utilize image-wide context (like segmentation networks or
post-aggregation) might improve smoothness.

VI. CONCLUSION

We have introduced a lightweight 3D-CNN baseline for
hyperspectral-LiDAR fusion in urban land-cover classification.
By treating LiDAR as an additional spectral band and applying
3D convolutions, our model jointly captures spectral, spatial,
and elevation features. The pipeline, from per-band
standardization to patch-based training with dihedral
augmentation and class-balanced loss, is thoroughly detailed to
ensure full reproducibility. On the Houston2013 dataset, the

model achieves OA ≈ 0.90 and AA ≈ 0.92, even without

advanced fusion techniques. Our analysis indicates that the
model performs well on spectrally distinct classes but struggles
with spectrally mixed classes, due to the limited local context
of the network.

This compact model provides a solid baseline for multi-
modal classification. Future work could explore deeper
networks, multi-scale context, or self-supervised pretraining to
further enhance performance, particularly on difficult urban
classes. Our implementation and experimental protocol support
the development of more advanced fusion algorithms in the
remote sensing community.

ACKNOWLEDGEMENTS

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 14– Issue 3, September 2025

www.ijcit.com 153

This work was supported by the Hainan Provincial Natural
Science Foundation of China under Grant No. 621RC599.

REFERENCES.

[1] Xu, Y., et al. Multi-level interactive fusion network based on adversarial
learning for fusion classification of hyperspectral and LiDAR data.
Expert Systems with Applications, 238(Part A), 121802.

[2] Chen, Z., et al. Spectral-spatial feature calibration via attention-driven
networks for hyperspectral image classification. IEEE Transactions on
Geoscience and Remote Sensing, 61, 5502214.

[3] Li, Q., et al. Structural-aware feature learning for LiDAR data in
complex urban environments. ISPRS Journal of Photogrammetry and
Remote Sensing, 210, 123–136.

[4] Rasti, B., et al. Elevation-guided feature alignment for cross-modal
fusion of HSI and LiDAR data. Remote Sensing of Environment, 295,
113716.

[5] Feng, L., et al. Multi-attentive hierarchical dense fusion net for fusion
classification of hyperspectral and LiDAR data. Information Fusion,
102, 102045.

[6] Yang, J., Wang, J., Sui, C. H., Long, Z., & Zhou, J. (2024). HSLiNets:
Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual
Non-Linear Feature Learning Networks. arXiv Preprint.

[7] Zhao, B., & Wu, T. (2019). Early and late fusion methods for
hyperspectral and LiDAR data classification: A comparative study.
Remote Sensing of Environment, 231, 111305.

[8] Wang, F., Du, X., Zhang, W., Nie, L., Wang, H., Zhou, S., & Ma, J.
(2024). Remote Sensing LiDAR and Hyperspectral Classification with
Multi-Scale Graph Encoder–Decoder Network. Remote Sensing, 16(20),
3912.

[9] Chang, Y., & Liu, Y. (2018). Dimensionality reduction and feature
fusion for hyperspectral and LiDAR data classification. International
Journal of Applied Earth Observation and Geoinformation, 70, 111-121.

[10] Zhang, L., & Shi, W. (2021). Graph convolutional networks for remote
sensing image classification: A survey. Remote Sensing, 13(4), 1-21.

[11] Wang, L., & Li, J. (2022). Dynamic graph convolutional network for
hyperspectral and LiDAR data fusion. Sensors, 22(9), 3245.

[12] hao, B., & Wu, T. (2024). Classification of Hyperspectral and LiDAR
Data by Transformer-Based Cross-Modal Self-Attentive Feature Fusion.
Remote Sensing, 16(1), 94.

[13] Zhang, Z., Cai, Y., Liu, X., Zhang, M., & Meng, Y. (2024). An Efficient
Graph Convolutional RVFL Network for Hyperspectral Image
Classification. Remote Sensing, 16(1), 37.

http://www.ijcit.com/

