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Abstract---- Lumpy Skin Disease (LSD) in cattle is an increasingly
prevalent viral infection with significant economic impact.
Traditional detection methods are often labor-intensive and
delayed. In this study, five state-of-the-art deep learning (DL)
architectures—ResNet50, EfficientNetB0O, MobileNetV2, Vision
Transformer (ViT-B16), and Swin Transformer Tiny (Swin-T)—
were evaluated and compared for image-based LSD classification.
Publicly available Kaggle datasets of infected and healthy cattle
were used. All models were fine-tuned using transfer learning and
tested for classification accuracy, F1-score, inference time,
explainability (via Grad-CAM), and real-world deployability.
Results show that Swin-T achieved the highest classification
accuracy of 95.3%, while MobileNetV2 emerged as the most
deployment-friendly model. Grad-CAM visualizations confirmed
that transformer-based models captured relevant lesion features
with greater spatial sensitivity than CNNs. The study highlights
the promise of hybrid transformer-CNN models for practical
livestock  diagnostics, especially in  resource-constrained
environments.

Keywords - Deep learning, Lumpy Skin Disease (LSD), Vision
Transformer, CNN, livestock diagnosis, image analysis, model
explainability, dataset imbalance, veterinary Al

I. INTRODUCTION

The livestock industry plays a pivotal role in sustaining
global food systems, rural livelihoods, and economic
development. However, the growing incidence of infectious
diseases poses a major threat to livestock productivity and
animal health worldwide. Among these, Lumpy Skin Disease
(LSD) — a contagious viral disease caused by the Capripoxvirus
— has gained significant attention due to its rapid spread and
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severe economic implications. LSD manifests through distinct
nodular lesions on the skin, fever, and lymphadenitis, leading to
decreased milk yield, hide depreciation, reproductive losses, and
in severe cases, mortality. Early detection is crucial for effective
containment and timely intervention.

The common means of LSD diagnosis are physical
examination and laboratory tests. Although these methods are
reliable, they use time, resources, and are not always affordable
in remote or under-resourced environments. The requirements
of all three aspects (rapid, scalable, automated) of diagnostic
tools have keyed in on computer vision and artificial intelligence
(Al), with special reference to deep learning (DL) models, where
image data has been used to represent disease symptoms in
animals.

CNNs have been largely utilized in medical and veterinary
image classification problems because of its excellent feature
extraction property. Models such as ResNet50 and
MobileNetV2 have shown admirable achievements in animal
health tracking and detection of diseases. However, CNNs
mainly consider local spatial information and would perform
poorly in situations where a more large-scale reasoning process
is necessary, i.e., images where clutter is present, or an object
has overlapping with others.

Recently, there has been a paradigm shift in image analysis
techniques due to the development of deep learning, especially,
transformer-based networks. Vision Transformers (ViTs) use
self-attention to model long-range dependence and global
features across image patches. In Swin Transformers, shifted
windows are used in a hierarchical architecture to integrate
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global and local representations. The proposed architecture
provides a great performance improvement in fine grained tasks,
like the one of detecting lesions with different sizes, shapes, and
localization in veterinary images.

This study presents a comparative analysis of five state-of-
the-art DL models—ResNet50, EfficientNetB0, MobileNetV2,
ViT-B16, and Swin Transformer Tiny (Swin-T)—to evaluate
their performance in the classification of LSD in cattle from
photographic images. Models are compared in terms of
classification  accuracy, Fl-score, inference  speed,
interpretability via Grad-CAM, and field deployment potential.
The primary objective is to assess whether Swin Transformer-
based methods can offer a meaningful advantage over
conventional CNN and VIiT models in practical veterinary
diagnostic scenarios.

Il. RELATED WORKS

Recent years have witnessed a surge in research exploring
the potential of deep learning (DL) in livestock disease
diagnosis, driven by the increasing availability of annotated
image datasets and the advancement of convolutional and
transformer-based architectures. In particular, the use of
photographic evidence to detect conditions such as Lumpy Skin
Disease (LSD), mastitis, foot-and-mouth disease, and parasitic
infections has gained traction as a practical, non-invasive
alternative to traditional diagnostics. These methods hold
particular significance for under-resourced or rural regions
where access to veterinary laboratories is limited.

The effectiveness of Convolutional Neural Networks
(CNNs) has been shown in classification activities of livestock
images in several studies. Rai and colleagues implemented an
algorithm based on transfer learning with CNN to detect LSD
in cattle [1]. Their model is trained on RGB images with a
threshold of accuracy over 90 and was effective in the detection
of nodular lesions. Similarly, Himel and colleagues have also
used pre-trained CNN models to detect common bovine
diseases based on the thermal and visible-spectrum images [2].
The research concluded that CNNs could be applied effectively
in identifying symptomatic visual patterns even when the
illumination and position of the animal changed. However,
methods based on CNNs are more prone to capture only local
features, thus can discriminate lesser in the presence of more
complex and subtle patterns across an image.

As a counterargument to the problem of generalization and
computational efficiency, scientists have also tried simplified
CNN:s that could be deployed on mobile devices. An example
is that Muhammad Sagib and colleagues used MobileNetV2 to
analyze LSD images taken [3]. In rural farm environments.
Their model achieved an accuracy of 93.1 Percent and was
lauded due to its capacity to run in real-time on mobile devices
without compromising on the quality of its classification.
Temenos and colleagues used a similar method to pose-
independently grade body condition in goats by employing
MobileNetV2 [4]. Although they are faster and can be easily
transported, lightweight CNNs are not always effective at
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detecting lesions in a complex environmental setting or when
occluded.

Recent progress in transformer-based models has brought
new opportunities of livestock disease diagnostics. Vision
Transformers (ViTs) proposed in Dosovitskiy and colleagues
have excelled on other image classification tasks by exploiting
long-range dependencies through self-attention. In sheep facial
recognition, researchers tested models based on ViTs [6] and
identified that they performed better than CNNs, particularly in
instances where side profiles or partial occlusions were
involved. Later, Guo and colleagues went a step further and
incorporated VIT to track cattle movements in real-time by
using object detection models [7]. However, ViTs have been
reported to necessitate large training datasets and numerous
computational resources, which is a challenge in veterinary
scenarios where data are limited.

To overcome some of the limitations of standard ViTs,
hybrid architectures such as the Swin Transformer have
emerged. Sun and colleagues introduced the Swin Transformer,
which applies shifted window attention within a hierarchical
feature pyramid, enabling a balance between local detail
capture and global context modeling [8]. Senthilkumar and
colleagues benchmarked Swin Transformers against CNNs and
ViTs for LSD classification and found that they produced
superior lesion localization and generalization, particularly in
diverse backgrounds [9]. These findings were supported by
Grad-CAM visualizations showing sharper and more disease-
specific attention regions compared to baseline models. While
transformer-based models remain computationally intensive,
their capacity to capture both macro and micro features makes
them promising for fine-grained veterinary diagnostics.

The reviewed literature indicates that the development of
livestock image analyzing classifier gradually shifted toward
transformer-based models combined with specific attention
strategies. Despite this, there are still issues with datasets
quality, real-time deployment, and interpretability. The
majority of the available research works on relatively small
groups of data, which can be generalized to only a limited
degree in different regions, breeds, or lighting circumstances.
Moreover, despite the potential of models such as Swin
Transformer in experiments, its adaptation to real-world,
resource-limited scenarios is to be determined. The current
study contributes to this growing literature by critically
comparing five exemplary means of deep learning through
publicly obtainable LSD images datasets, focusing on accuracy,
interpretability, and applicability in the field.

Il. METHODOLOGY

This section describes the complete methodological
framework that was used in assessing the performance of deep
learning models to detect Lumpy Skin Disease (LSD) in cattle
using images. The methodology will include the selection and
preparation of the datasets, preprocessing methods, design of
model architecture, training sessions, evaluation strategies, and
visual explanations. The aim was to make sure that the
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comparison of existing CNN architectures to the emerging
transformer-based models was rigorous and reproducible under
realistic conditions of livestock disease classification

3.1 Compared Models

3.1.1ResNet50 in Veterinary Diagnostics

The growing popularity of ResNet50 as a model in medical
imaging is because of its depth and residual connections, which
eliminate degradation. Rai and colleagues applied ResNet50 and
transfer learning to classify images of cattle with Lumpy Skin
Disease (LSD) [1]. Their study achieved over 90% accuracy and
highlighted ResNet’s robustness in dealing with noisy farm
environments. Similarly, Himel and colleagues used ResNet50
on mastitis and respiratory infections in dairy cows with thermal
and RGB images, and also demonstrated good results [2].
However, these studies noted that ResNet’s large parameter size
limited its suitability for edge deployments in the field.

3.1.2 EfficientNetBO0 in Agricultural Vision

EfficientNetBO, proposed by Yukun and colleagues has also
been used in resource-limited veterinary situations as its scaling
methodology is efficient [10]. In a similar work by Himel and
colleagues, EfficientNetBO was trained to categorize various
cattle illness images and attained better than 92 percent precision
[2]. The model is commended on its balance of precision and
computation speed. In early detection of LSD, Senthilkumar and
colleagues used EfficientNetB0 as well as DenseNet and Swin-
T with similar strengths but slightly lower lesion sensitivity
compared to transformer-based models [9]. This indicates that
EfficientNetBO can work well on general classification of
livestock but will fall short in localized or subtle visual features.

3.1.3 MobileNetV2 for Field Deployment

MobileNetV2 has become one of the most field-relevant
models in veterinary imaging because of its lightweight
implementation and fast inference time. Muhammad Saqib and
colleagues experimentally adopted MaobileNetV2 to identify
LSD with hand help imaging equipment in South Asian farms
[3]. They achieved an accuracy of 93.1% while maintaining real-
time performance, validating the model’s edge-deployability.
Temenos and colleagues implemented pose-independent goat
body scoring using MobileNetV/2 architecture and highlighting
its resilience upon various lighting conditions and occlusion [4].
Although highly efficient, MobileNetV2 lacks the
representational power of deeper models or attention modules to
capture small lesions, especially when they are part-obscured.

3.1.4 Vision Transformer (ViT-B16) in Livestock Research

ViTs are newcomers to the veterinary community, but they
could be a promising alternative to CNNs. Zhang and colleagues
used the ViT-B16 model to recognize faces in sheep and
achieved better performance than CNNs in difficult cases like
side-view faces, or fusion [6]. In a similar approach, Guo and
colleagues integrated VIiT and YOLOvV5s in real-time
monitoring of the cattle feeding behavior and observed better
generalization across different environments [7]. Yet, studies
have shown that Vision Transformers usually need much larger
datasets to reach convergence effectively and often need to be
pretrained on large-scale datasets of images such as ImageNet.
This presents a problem in veterinary disciplines when labeled
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data is in short supply. In similar studies Sarker and colleagues
tried to tune ViT models on local cattle disease datasets and
found that they can be highly accurate but would be sensitive to
overfitting without good regularization [11]. Additionally, ViTs
are memory-demanding and might consume longer training and
inference times, an aspect that negatively impacts the
implementation of such in mobile or edge-based veterinary
diagnostics.

3.1.5 Swin Transformer Disease
Localization

The Swin Transformer represents an evolution of the ViT
architecture, incorporating local window-based attention
mechanisms that shift hierarchically across image patches. This
design allows the model to balance the global receptive field of
transformers with the locality and efficiency of CNNs. In the
veterinary domain, Senthilkumar and colleagues evaluated
Swin-T alongside CNNs and ViTs for LSD lesion detection in
cattle and found it provided the best localization precision,
particularly for faint or early-stage lesions [9]. Grad-CAM
visualizations from their study confirmed that Swin-T
concentrated more directly on infected regions compared to
other architectures. Furthermore, the Swin Transformer was able
to generalize better across images taken under different
environmental conditions. In a separate study by Tangirala and
colleagues, Swin-T was integrated into a hybrid model for
classifying poultry diseases, outperforming DenseNet and
EfficientNet baselines [12]. However, Swin-T is still relatively
new, and optimization for deployment on edge devices remains
a technical hurdle due to its moderately high parameter count
and inference latency. Despite this, its superior performance in
fine-grained visual tasks has made it a leading candidate for
future veterinary diagnostic systems.

Tiny (Swin-T) in

3.2 Dataset Description

This study employed two publicly available image datasets
hosted on Kaggle: the “Lumpy Skin Images Dataset” curated by
user warcoder and the “Lumpy Skin Disease Cow Images”
compiled by kaushalrimal619. These datasets were selected due
to their diversity in environmental backgrounds, cattle breeds,
and photographic quality. The first dataset comprised images
depicting cattle infected with Lumpy Skin Disease (LSD),
characterized by visible nodular lesions. The second dataset
contained a mixture of both infected and healthy cattle images,
offering balanced visual contexts suitable for binary
classification. After consolidating and reviewing the datasets, a
total of 2,300 labeled images were prepared for the study,
comprising 1,100 infected and 1,200 healthy cattle samples. To
ensure data integrity, duplicate and poor-quality images were
removed manually. The dataset was then split into training and
validation sets using an 80:20 ratio. Stratified sampling was
applied to maintain the class distribution across both splits,
thereby reducing bias during model training and evaluation.

3.3 Data Processing

All images underwent a standardized preprocessing pipeline
prior to being fed into the deep learning models. Images were
resized to 224x224 pixels to match the input requirements of the
pretrained architectures used in the study. To enhance model
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generalization and robustness to real-world imaging conditions,
data augmentation techniques were applied during training.
These included random horizontal flipping to simulate varying
orientations of cattle, and random rotations within +15 degrees
to improve tolerance to angular distortions. Additionally, color
jittering was employed to simulate differences in lighting
conditions, shadows, and exposure, which are common in field-
based livestock photography. Normalization was applied using
the mean and standard deviation values from the ImageNet
dataset to ensure compatibility with the weights of pretrained
models. The transformation pipeline was implemented using the
torchvision library in PyTorch, and image data was loaded using
Dataloader objects with shuffling enabled and memory pinning
for optimal performance.

transform = transforms.Compose([
transforms.Resize( (224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ColorJitter(contrast=0.5),
transforms.ToTensor(),

transforms.Normalize(mean, std)

D

Figure 1 showing data preprocessing and augmentation
pipeline in Pytorch.

3.4 Model Architectures

Five deep learning models were selected for comparative
evaluation: ResNet50, EfficientNetBO, MobileNetV2, Vision
Transformer B16 (ViT-B16), and Swin Transformer Tiny
(Swin-T). These models were chosen to represent a spectrum of
architectures from traditional convolutional networks to
advanced transformer-based models. ResNet50 is a widely used
residual network known for its deep learning capacity and stable
training enabled by skip connections. EfficientNetB0 is a
compound-scaled convolutional network that balances depth,
width, and resolution for optimal performance with fewer
parameters [13]. MobileNetV2 is a lightweight CNN designed
for mobile and edge applications, employing inverted residuals
and depthwise separable convolutions to minimize
computational cost. ViT-B16 represents the class of vision
transformers that treat images as sequences of patches and utilize
global self-attention to model long-range dependencies. Finally,
Swin-T combines the strengths of CNNs and transformers by
applying self-attention within shifted local windows while
maintaining a hierarchical feature map. All models were
initialized with pretrained weights from the ImageNet-1k dataset
and were modified by replacing their final classification heads
with a fully connected layer outputting two logits corresponding
to the binary class labels.
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3.5 Training Configuration

All models were trained on the Kaggle cloud platform
equipped with NVIDIA Tesla T4 GPUs. The training process
was conducted using the PyTorch framework. Each model was
trained for 25 epochs using a batch size of 32 and the Adam
optimizer with a learning rate of 0.0001. The loss function used
was  CrossEntropyLoss, appropriate  for  multi-class
classification tasks even when using two classes. No learning
rate scheduling or early stopping techniques were applied in
order to maintain uniform training conditions across all models.
During each epoch, the models were trained on the augmented
training set and evaluated on the unaugmented validation set.
Metrics including loss and accuracy were recorded per epoch.
To ensure consistency and reproducibility, random seeds were
fixed using PyTorch’s random number generator, and the same
dataset splits and preprocessing steps were applied uniformly
across all models [14] [15] [16].

optimizer = torch.optim.Adam(model.parameters()

criterion = nn.CrossEntropyLoss()

Figure 2 showing Gradient-weighted Class Activation
Mapping.

3.6 Evaluation Metrics

Model performance was evaluated using several quantitative
metrics to provide a multi-dimensional view of effectiveness and
efficiency. Accuracy was used as the primary metric to assess
overall prediction correctness. The F1-score, which represents
the harmonic mean of precision and recall, was calculated to
evaluate the balance between false positives and false
negatives—an important consideration in veterinary diagnosis
where false negatives can delay treatment [17]. In addition to
predictive metrics, inference time per image was measured to
assess real-time deployment feasibility, particularly for mobile
or edge use cases. The total number of trainable parameters in
each model was also documented to understand the memory and
computational requirements. Finally, confusion matrices were
plotted for each model to visualize the distribution of true
positives, true negatives, false positives, and false negatives,
offering further insight into model biases and failure modes.

3.7 Grad-CAM Visualization

To assess and compare the interpretability of model
predictions, Gradient-weighted Class Activation Mapping
(Grad-CAM) was employed across all trained models. Grad-
CAM generates saliency maps that highlight image regions
contributing most to the model’s classification decision [17] [4]
[18]. These heatmaps provide qualitative insight into whether
the model focuses on actual lesion areas or on irrelevant
background textures. Grad-CAM was implemented using the
pytorch-grad-cam library, and saliency maps were generated for
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a representative subset of images from the validation set. For
convolutional models, the last convolutional layer was used as
the target layer, whereas for transformer-based models like ViT-
B16 and Swin-T, attention-based normalization layers were
selected. The generated maps were overlaid onto the original
images to allow for side-by-side comparisons. Attention
localization was judged visually, with particular focus on how
well each model captured lesion areas specific to Lumpy Skin
Disease.

cam = GradCAM(model=model, target_layers=[i
grayscale_cam = cam(input_tensor=input_tens

visualization = show_cam_on_image(input_ims

3.8 Reproducibility and validation

Volume 14— Issue 3, September 2025

compared to more recent transformer models, especially in
functions that rely heavily on visual information refinements
including skin lesions.

In all evaluation indicators, Swin-T was the most accurate
model with 95.3 % accuracy and an F1-score of 0.94. ViT-B16
came in directly behind with 94.5% accuracy and 0.93 F1-score.
These findings illustrate the strength of self-attention and
multilevel spatial modeling to represent the subtle textural and
morphological signature of LSD lesions. Other models like
CNN based MobileNetV2 and EfficientNetBO had competitive
scores of 93.1 and 92.6, respectively. ResNet50, while still
robust, achieved the lowest accuracy at 91.3%. Despite being
one of the earliest deep CNN architectures in this comparison,
ResNet50 showed consistent convergence but lagged slightly in
lesion-specific sensitivity, as confirmed by both its confusion
matrix and Grad-CAM outputs as indicated in table 1.

- - Inference
h Reﬁroﬂﬁ'b'“ty . W?i tm(zjiln(tja_lr]ed Accuracy F1- Parameters | Time
throughout the experiment by standardizing 0 ;
key processes. The same random seed (42) Model (%) Score (M) (ms/image)
was used across all experiments to ensure | ResNet50 91.3 0.89 25.6 7.5
that training and validation splits remained —
consistent. Image preprocessing steps, data EfficientNetB0 926 0.91 3.3 6.3
augmentations, and training procedures | MobileNetV2 093.1 0.91 3.4 4.1
were applied identically across models. To _
further enhance reproducibility, training | ViT-B16 94.5 0.93 86.6 108
logs including loss, accuracy, and F1-scores  Swin-T 953 0.94 583 97
per epoch were saved, and model

checkpoints were stored at each epoch. Although the study did
not utilize an external test set due to the lack of publicly available
third-party LSD datasets, the diversity of the Kaggle image
sources provided a reasonable proxy for real-world
generalizability [19]. The two combined datasets offered
variations in lighting, cattle appearance, lesion presentation, and
environmental backgrounds, mimicking field conditions.

3.9 Ethical Considerations

Ethical authorization was not necessary to conduct this study
since the image datasets were available as open-source
repositories. They were all anonymized images without any
personal or identifying information. In addition, the authors did
not conduct any animal interventions or data collection [18]
[19]. The study observed all terms of use and licensing stipulated
by the Kaggle datasets and conducted responsible data handling
during the research.

IV. RESULTS AND DISCUSSION

The following section refers to the empirical outcomes of
five deep learning models that have been used to classify Lumpy
Skin Disease (LSD) in cattle. The models were evaluated on
their performance in classification, efficiency of the
computation, and their explainability. Accuracy, F1-score,
parameters and inference time per image were used as
evaluation metrics to analyze the results, along with saliency
based visual inspection on Grad-CAM. The results indicate the
limitations of conventional convolutional structures as
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Table 1: Model Performance Comparison

The quantitative results are summarized in Table 1. Each
model's performance is measured not only in terms of accuracy
and F1-score but also by the number of trainable parameters and
average inference time per image. These latter metrics are
particularly relevant for real-world deployment, where
computational resources may be constrained. Swin-T, for
example, has 28.3 million parameters and a mean inference time
of 9.7 milliseconds per image, making it relatively efficient
compared to ViT-B16, which has a significantly larger
parameter count (86.6M) and longer inference time (10.8
ms/image). In contrast, MobileNetV2 required only 3.4 million
parameters and produced the fastest inference time (4.1
ms/image), reinforcing its suitability for low-resource veterinary
settings such as mobile clinics or field-based monitoring systems
[20].

Such tradeoffs between performance and efficiency illustrate
the practical aspects of model choice [20] [21]. Although ViT-
B16 and Swin-T achieve better accuracy than CNNSs, their use
could be constrained by resource consumption in the rural or
developing world due to a lack of specialized hardware.
MobileNetV2’s strong performance relative to its size and speed
makes it particularly attractive for deployment in mobile
diagnostic tools [22]. Compound scaling paired with resource
efficiency results in EifficientNetBO, which is highly
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competitive at a lower cost. ResNet50, despite its proven
reliability and understanding, is not as efficient as newer CNNs
and not as accurate as transformer-based models.

To further investigate model behavior during training, the
accuracy curves plotted over 25 epochs revealed distinct
learning patterns. As seen in Figure 3, Swin-T and ViT-B16
showed smoother and steeper learning trajectories, achieving
high accuracy early in the training phase and maintaining low
variance across epochs. This indicates not only faster
convergence but also greater model stability. In contrast, CNN-
based models demonstrated slower convergence rates, with
ResNet50 showing a relatively shallow gradient. While all
models eventually reached acceptable validation performance,
the transformer-based architectures adapted more quickly and
generalized better, even without extensive hyperparameter
tuning or data augmentation.

Figure 3: Model Training Accuracy over Epochs

Qualitative insights were gained through Grad-CAM
visualizations, which revealed how each model allocated
attention across the input images [23]. The saliency maps for
Swin-T and ViT-B16 were tightly focused on lesion sites, often
zeroing in on irregular textures and nodular shapes that visually
distinguish LSD. These attention maps were sharp and disease-
specific, indicating that the models learned clinically relevant
features. On the other hand, the CNN models—particularly
ResNet50 and  EfficientNetBO—produced broader and
sometimes less precise heatmaps. In some cases, these models
directed attention toward surrounding fur textures, shadows, or
even background features such as fencing or soil, which are less
relevant to the diagnosis. MobileNetV2 was fast and compact,
but sometimes generated diffuse heatmaps, which could be the
reason it had a slightly lower Fl-score and a high overall
accuracy.

Another significance in model evaluation is the cost of
wrong predictions. False negative in a veterinary environment is
more important to address than a false positive, since delayed
treatment of infected animals translates to a greater risk of
transmission [23]. Confusion matrices indicated that transformer
models were characterized by the lowest false negative rates,
supporting their practical value. CNNSs, particularly ResNet50,
are more likely to produce a false negative especially on images
with faint and slightly occluded lesions. These mistakes become
important in the real world and should be refined by fine-tuning
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or multi-modal input techniques that utilize the metadata like
temperature or animal posture [24].

In clinical Al applications the importance of interpretability
and explainability has increased. The ability to visually validate
what a model “sees” when making decisions not only supports
clinician trust but also guides model refinement [25] [26]. Grad-
CAM heatmaps in the present study provided a crucial
interpretability method to detect areas of model focus and assist
in identifying cases of model confusion. Additional research is
proposed to help increase this interpretability by utilizing more
sophisticated explainability methods like SHAP or attention
rollout, where a more opaque model like a transformer would
benefit.

Lastly, these findings should be put into the context of larger
aims of veterinary Al implementation. Transformer-based
models are evidently superior, but the hardware necessary to
support them is not as readily available in the rural or developing
world [27]. The specific limitations imposed by edge computing,
internet connectivity termination, and short battery life require
lightweight models that can run without network connection.
MobileNetV2 and EfficientNetB0 are some potentials here; they
have a balance between accuracy and accessibility [28] [29].
Additionally, the future research on quantized transformer
models (or even hardware-specific optimizations like TensorRT
deployment thereof) might be able to make performance-centric
models like Swin-T more widely available.

Overall, the experiments indicate that Swin Transformer
Tiny was the most accurate in classification and lesion
interpretability among the tested models. ViT-B16 is slightly
more accurate but the inference is more computationally
expensive. MobileNetV2 and EfficientNetBO offer potential
solutions to real-time, low-resource use that seem to be attractive
alternatives to ResNet50, which performs relatively worse in
terms of its accuracy and lesion sensitivity [30] [31]. The results
demonstrate the need to align model architecture to the task at
hand, namely in fields such as veterinary medicine where the
accuracy, interpretability, and speed of diagnosis must be
aligned with operating in a potentially difficult field setting.
While all transformer-based models offer global attention
capabilities, only the Swin Transformer uses a hierarchical
architecture with shifted window attention. This structural
difference underlies its superior performance in localizing
lesions in cluttered or noisy images, setting it apart from the
global self-attention mechanism of ViT-B16

V. CONCLUSION

This study conducted a comparative analysis of five state-of-
the-art deep learning models—ResNet50, EfficientNetBO,
MobileNetV2, Vision Transformer (ViT-B16), and Swin
Transformer Tiny (Swin-T)—for the binary classification of
Lumpy Skin Disease (LSD) in cattle using photographic
images. The results revealed that Swin-T achieved the highest
classification performance, with an accuracy of 95.3% and F1-
score of 0.94, confirming its superior capability to capture
complex visual features through its hierarchical self-attention
mechanism. ViT-B16 followed closely in terms of accuracy but
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came with higher
requirements.

Convolutional Neural Networks (CNNs) like MobileNetV2
and EfficientNetBO achieved equally competitive results,
showing the best inference speed and memory throughput.
These models provide plausible alternatives that can be
implemented in mobile or under-resource settings where high-
quality real-time decision-making is crucial. The visualization
of grad-CAM supported the efficacy of attention-based models
with Swin-T and ViT-B16 being most successful to focus
attention on relevant areas of a lesion, whilst CNNs
occasionally tended to pay attention in areas in which there was
no relevant information.

While these results affirm the value of advanced
architectures like Swin-T in veterinary diagnostics, they also
underscore the importance of aligning model choice with
deployment context. The study contributes to the growing field
of Al in livestock health by offering evidence-based insights
into the comparative strengths and limitations of popular
architectures applied to image-based disease classification.

computational costs and memory

VI. FUTURE WORK

Despite encouraging results, several key limitations and
opportunities for future work remain. One of the primary
concerns is the imbalance in the dataset used. Although the
class distribution was relatively close, a slight
overrepresentation of healthy images could influence model
sensitivity and increase the risk of false negatives—especially
problematic in a disease control context. Future research should
incorporate techniques such as oversampling, synthetic
augmentation (e.g., SMOTE), or adaptive loss functions to
improve learning on minority classes.

Another critical issue is model generalization. The datasets
used were limited to specific regions and conditions, which may
not fully reflect the wvariability encountered in field
environments. Enhancing model robustness will require
training on more diverse, multi-source datasets and exploring
domain adaptation techniques to handle cross-regional
variability in lighting, background, and cattle appearance.
Validation on truly external test sets from independent sources
is also essential.

Furthermore, the lack of deep explainability in transformer-
based models remains a challenge. Although Grad-CAM
provided visual clues about the model’s focus areas, it does not
offer fine-grained reasoning behind classification decisions.
Integrating advanced explainable Al (XAl) tools such as SHAP,
LIME, or attention flow mapping could bridge this gap and
improve user trust, especially in clinical decision-support
scenarios.

Future studies ought to think about the model optimization
deployment. Despite favorable results on accuracy, Swin-T
might not be extensively used in remote or low-resource
locations due to high computing requirements. The model size
reduction and latency improvement can be performed using
techniques such as model pruning, quantization, and
distillation. Also, investigating edge-friendly transformer
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architectures, like MobileViT or TinyViT might be beneficial
in terms of performance without sacrificing speed.

Finally, integrating multimodal data—such as animal age,
breed, temperature, and movement patterns—with image
features may enhance predictive accuracy and context
sensitivity. Implementing these models in a real-life scenario
such as veterinary clinics or livestock markets with humans-in-
the-loop feedback mechanism can be used to optimize
performance and encourage adoption. These end-to-end
systems would be instrumental in creating scalable, Al-enabled,
early alert systems of livestock epidemic.
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