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Abstract---- Lumpy Skin Disease (LSD) in cattle is an increasingly 

prevalent viral infection with significant economic impact. 

Traditional detection methods are often labor-intensive and 

delayed. In this study, five state-of-the-art deep learning (DL) 

architectures—ResNet50, EfficientNetB0, MobileNetV2, Vision 

Transformer (ViT-B16), and Swin Transformer Tiny (Swin-T)—

were evaluated and compared for image-based LSD classification. 

Publicly available Kaggle datasets of infected and healthy cattle 

were used. All models were fine-tuned using transfer learning and 

tested for classification accuracy, F1-score, inference time, 

explainability (via Grad-CAM), and real-world deployability. 

Results show that Swin-T achieved the highest classification 

accuracy of 95.3%, while MobileNetV2 emerged as the most 

deployment-friendly model. Grad-CAM visualizations confirmed 

that transformer-based models captured relevant lesion features 

with greater spatial sensitivity than CNNs. The study highlights 

the promise of hybrid transformer-CNN models for practical 

livestock diagnostics, especially in resource-constrained 

environments. 

Keywords - Deep learning, Lumpy Skin Disease (LSD), Vision 

Transformer, CNN, livestock diagnosis, image analysis, model 

explainability, dataset imbalance, veterinary AI 

I. INTRODUCTION  

The livestock industry plays a pivotal role in sustaining 
global food systems, rural livelihoods, and economic 
development. However, the growing incidence of infectious 
diseases poses a major threat to livestock productivity and 
animal health worldwide. Among these, Lumpy Skin Disease 
(LSD) — a contagious viral disease caused by the Capripoxvirus 
— has gained significant attention due to its rapid spread and 

severe economic implications. LSD manifests through distinct 
nodular lesions on the skin, fever, and lymphadenitis, leading to 
decreased milk yield, hide depreciation, reproductive losses, and 
in severe cases, mortality. Early detection is crucial for effective 
containment and timely intervention. 

The common means of LSD diagnosis are physical 
examination and laboratory tests. Although these methods are 
reliable, they use time, resources, and are not always affordable 
in remote or under-resourced environments. The requirements 
of all three aspects (rapid, scalable, automated) of diagnostic 
tools have keyed in on computer vision and artificial intelligence 
(AI), with special reference to deep learning (DL) models, where 
image data has been used to represent disease symptoms in 
animals. 

CNNs have been largely utilized in medical and veterinary 
image classification problems because of its excellent feature 
extraction property. Models such as ResNet50 and 
MobileNetV2 have shown admirable achievements in animal 
health tracking and detection of diseases. However, CNNs 
mainly consider local spatial information and would perform 
poorly in situations where a more large-scale reasoning process 
is necessary, i.e., images where clutter is present, or an object 
has overlapping with others. 

Recently, there has been a paradigm shift in image analysis 
techniques due to the development of deep learning, especially, 
transformer-based networks. Vision Transformers (ViTs) use 
self-attention to model long-range dependence and global 
features across image patches. In Swin Transformers, shifted 
windows are used in a hierarchical architecture to integrate 
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global and local representations. The proposed architecture 
provides a great performance improvement in fine grained tasks, 
like the one of detecting lesions with different sizes, shapes, and 
localization in veterinary images. 

This study presents a comparative analysis of five state-of-
the-art DL models—ResNet50, EfficientNetB0, MobileNetV2, 
ViT-B16, and Swin Transformer Tiny (Swin-T)—to evaluate 
their performance in the classification of LSD in cattle from 
photographic images. Models are compared in terms of 
classification accuracy, F1-score, inference speed, 
interpretability via Grad-CAM, and field deployment potential. 
The primary objective is to assess whether Swin Transformer-
based methods can offer a meaningful advantage over 
conventional CNN and ViT models in practical veterinary 
diagnostic scenarios.  

II. RELATED WORKS 

Recent years have witnessed a surge in research exploring 

the potential of deep learning (DL) in livestock disease 

diagnosis, driven by the increasing availability of annotated 

image datasets and the advancement of convolutional and 

transformer-based architectures. In particular, the use of 

photographic evidence to detect conditions such as Lumpy Skin 

Disease (LSD), mastitis, foot-and-mouth disease, and parasitic 

infections has gained traction as a practical, non-invasive 

alternative to traditional diagnostics. These methods hold 

particular significance for under-resourced or rural regions 

where access to veterinary laboratories is limited. 

The effectiveness of Convolutional Neural Networks 

(CNNs) has been shown in classification activities of livestock 

images in several studies. Rai and colleagues implemented an 

algorithm based on transfer learning with CNN to detect LSD 

in cattle [1]. Their model is trained on RGB images with a 

threshold of accuracy over 90 and was effective in the detection 

of nodular lesions. Similarly, Himel and colleagues have also 

used pre-trained CNN models to detect common bovine 

diseases based on the thermal and visible-spectrum images [2]. 

The research concluded that CNNs could be applied effectively 

in identifying symptomatic visual patterns even when the 

illumination and position of the animal changed. However, 

methods based on CNNs are more prone to capture only local 

features, thus can discriminate lesser in the presence of more 

complex and subtle patterns across an image. 

As a counterargument to the problem of generalization and 

computational efficiency, scientists have also tried simplified 

CNNs that could be deployed on mobile devices. An example 

is that Muhammad Saqib and colleagues used MobileNetV2 to 

analyze LSD images taken [3]. In rural farm environments. 

Their model achieved an accuracy of 93.1 Percent and was 

lauded due to its capacity to run in real-time on mobile devices 

without compromising on the quality of its classification. 

Temenos and colleagues used a similar method to pose-

independently grade body condition in goats by employing 

MobileNetV2 [4]. Although they are faster and can be easily 

transported, lightweight CNNs are not always effective at 

detecting lesions in a complex environmental setting or when 

occluded. 

Recent progress in transformer-based models has brought 

new opportunities of livestock disease diagnostics. Vision 

Transformers (ViTs) proposed in Dosovitskiy and colleagues 

have excelled on other image classification tasks by exploiting 

long-range dependencies through self-attention. In sheep facial 

recognition, researchers tested models based on ViTs [6] and 

identified that they performed better than CNNs, particularly in 

instances where side profiles or partial occlusions were 

involved. Later, Guo and colleagues went a step further and 

incorporated ViT to track cattle movements in real-time by 

using object detection models [7]. However, ViTs have been 

reported to necessitate large training datasets and numerous 

computational resources, which is a challenge in veterinary 

scenarios where data are limited. 

To overcome some of the limitations of standard ViTs, 

hybrid architectures such as the Swin Transformer have 

emerged. Sun and colleagues introduced the Swin Transformer, 

which applies shifted window attention within a hierarchical 

feature pyramid, enabling a balance between local detail 

capture and global context modeling [8]. Senthilkumar and 

colleagues benchmarked Swin Transformers against CNNs and 

ViTs for LSD classification and found that they produced 

superior lesion localization and generalization, particularly in 

diverse backgrounds [9]. These findings were supported by 

Grad-CAM visualizations showing sharper and more disease-

specific attention regions compared to baseline models. While 

transformer-based models remain computationally intensive, 

their capacity to capture both macro and micro features makes 

them promising for fine-grained veterinary diagnostics. 

The reviewed literature indicates that the development of 

livestock image analyzing classifier gradually shifted toward 

transformer-based models combined with specific attention 

strategies. Despite this, there are still issues with datasets 

quality, real-time deployment, and interpretability. The 

majority of the available research works on relatively small 

groups of data, which can be generalized to only a limited 

degree in different regions, breeds, or lighting circumstances. 

Moreover, despite the potential of models such as Swin 

Transformer in experiments, its adaptation to real-world, 

resource-limited scenarios is to be determined. The current 

study contributes to this growing literature by critically 

comparing five exemplary means of deep learning through 

publicly obtainable LSD images datasets, focusing on accuracy, 

interpretability, and applicability in the field.  

 

III. METHODOLOGY 

This section describes the complete methodological 

framework that was used in assessing the performance of deep 

learning models to detect Lumpy Skin Disease (LSD) in cattle 

using images. The methodology will include the selection and 

preparation of the datasets, preprocessing methods, design of 

model architecture, training sessions, evaluation strategies, and 

visual explanations. The aim was to make sure that the 
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comparison of existing CNN architectures to the emerging 

transformer-based models was rigorous and reproducible under 

realistic conditions of livestock disease classification 
3.1 Compared Models   

3.1.1ResNet50 in Veterinary Diagnostics  
The growing popularity of ResNet50 as a model in medical 

imaging is because of its depth and residual connections, which 
eliminate degradation. Rai and colleagues applied ResNet50 and 
transfer learning to classify images of cattle with Lumpy Skin 
Disease (LSD) [1]. Their study achieved over 90% accuracy and 
highlighted ResNet’s robustness in dealing with noisy farm 
environments. Similarly, Himel and colleagues used ResNet50 
on mastitis and respiratory infections in dairy cows with thermal 
and RGB images, and also demonstrated good results [2]. 
However, these studies noted that ResNet’s large parameter size 
limited its suitability for edge deployments in the field. 

3.1.2 EfficientNetB0 in Agricultural Vision 
EfficientNetB0, proposed by Yukun and colleagues has also 

been used in resource-limited veterinary situations as its scaling 
methodology is efficient [10]. In a similar work by Himel and 
colleagues, EfficientNetB0 was trained to categorize various 
cattle illness images and attained better than 92 percent precision 
[2]. The model is commended on its balance of precision and 
computation speed. In early detection of LSD, Senthilkumar and 
colleagues used EfficientNetB0 as well as DenseNet and Swin-
T with similar strengths but slightly lower lesion sensitivity 
compared to transformer-based models [9]. This indicates that 
EfficientNetB0 can work well on general classification of 
livestock but will fall short in localized or subtle visual features.  

3.1.3 MobileNetV2 for Field Deployment 
MobileNetV2 has become one of the most field-relevant 

models in veterinary imaging because of its lightweight 
implementation and fast inference time. Muhammad Saqib and 
colleagues experimentally adopted MobileNetV2 to identify 
LSD with hand help imaging equipment in South Asian farms 
[3]. They achieved an accuracy of 93.1% while maintaining real-
time performance, validating the model’s edge-deployability. 
Temenos and colleagues implemented pose-independent goat 
body scoring using MobileNetV2 architecture and highlighting 
its resilience upon various lighting conditions and occlusion [4]. 
Although highly efficient, MobileNetV2 lacks the 
representational power of deeper models or attention modules to 
capture small lesions, especially when they are part-obscured. 

3.1.4 Vision Transformer (ViT-B16) in Livestock Research 
ViTs are newcomers to the veterinary community, but they 

could be a promising alternative to CNNs. Zhang and colleagues 
used the ViT-B16 model to recognize faces in sheep and 
achieved better performance than CNNs in difficult cases like 
side-view faces, or fusion [6]. In a similar approach, Guo and 
colleagues integrated ViT and YOLOv5s in real-time 
monitoring of the cattle feeding behavior and observed better 
generalization across different environments [7]. Yet, studies 
have shown that Vision Transformers usually need much larger 
datasets to reach convergence effectively and often need to be 
pretrained on large-scale datasets of images such as ImageNet. 
This presents a problem in veterinary disciplines when labeled 

data is in short supply. In similar studies Sarker and colleagues 
tried to tune ViT models on local cattle disease datasets and 
found that they can be highly accurate but would be sensitive to 
overfitting without good regularization [11]. Additionally, ViTs 
are memory-demanding and might consume longer training and 
inference times, an aspect that negatively impacts the 
implementation of such in mobile or edge-based veterinary 
diagnostics. 

3.1.5 Swin Transformer Tiny (Swin-T) in Disease 

Localization 
The Swin Transformer represents an evolution of the ViT 

architecture, incorporating local window-based attention 
mechanisms that shift hierarchically across image patches. This 
design allows the model to balance the global receptive field of 
transformers with the locality and efficiency of CNNs. In the 
veterinary domain, Senthilkumar and colleagues evaluated 
Swin-T alongside CNNs and ViTs for LSD lesion detection in 
cattle and found it provided the best localization precision, 
particularly for faint or early-stage lesions [9]. Grad-CAM 
visualizations from their study confirmed that Swin-T 
concentrated more directly on infected regions compared to 
other architectures. Furthermore, the Swin Transformer was able 
to generalize better across images taken under different 
environmental conditions. In a separate study by Tangirala and 
colleagues, Swin-T was integrated into a hybrid model for 
classifying poultry diseases, outperforming DenseNet and 
EfficientNet baselines [12]. However, Swin-T is still relatively 
new, and optimization for deployment on edge devices remains 
a technical hurdle due to its moderately high parameter count 
and inference latency. Despite this, its superior performance in 
fine-grained visual tasks has made it a leading candidate for 
future veterinary diagnostic systems.  

3.2 Dataset Description 

This study employed two publicly available image datasets 
hosted on Kaggle: the “Lumpy Skin Images Dataset” curated by 
user warcoder and the “Lumpy Skin Disease Cow Images” 
compiled by kaushalrimal619. These datasets were selected due 
to their diversity in environmental backgrounds, cattle breeds, 
and photographic quality. The first dataset comprised images 
depicting cattle infected with Lumpy Skin Disease (LSD), 
characterized by visible nodular lesions. The second dataset 
contained a mixture of both infected and healthy cattle images, 
offering balanced visual contexts suitable for binary 
classification. After consolidating and reviewing the datasets, a 
total of 2,300 labeled images were prepared for the study, 
comprising 1,100 infected and 1,200 healthy cattle samples. To 
ensure data integrity, duplicate and poor-quality images were 
removed manually. The dataset was then split into training and 
validation sets using an 80:20 ratio. Stratified sampling was 
applied to maintain the class distribution across both splits, 
thereby reducing bias during model training and evaluation. 

3.3 Data Processing 

All images underwent a standardized preprocessing pipeline 
prior to being fed into the deep learning models. Images were 
resized to 224×224 pixels to match the input requirements of the 
pretrained architectures used in the study. To enhance model 
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generalization and robustness to real-world imaging conditions, 
data augmentation techniques were applied during training. 
These included random horizontal flipping to simulate varying 
orientations of cattle, and random rotations within ±15 degrees 
to improve tolerance to angular distortions. Additionally, color 
jittering was employed to simulate differences in lighting 
conditions, shadows, and exposure, which are common in field-
based livestock photography. Normalization was applied using 
the mean and standard deviation values from the ImageNet 
dataset to ensure compatibility with the weights of pretrained 
models. The transformation pipeline was implemented using the 
torchvision library in PyTorch, and image data was loaded using 
DataLoader objects with shuffling enabled and memory pinning 
for optimal performance. 

 

Figure 1 showing  data preprocessing and augmentation 
pipeline in Pytorch.  

 

3.4 Model Architectures  

Five deep learning models were selected for comparative 
evaluation: ResNet50, EfficientNetB0, MobileNetV2, Vision 
Transformer B16 (ViT-B16), and Swin Transformer Tiny 
(Swin-T). These models were chosen to represent a spectrum of 
architectures from traditional convolutional networks to 
advanced transformer-based models. ResNet50 is a widely used 
residual network known for its deep learning capacity and stable 
training enabled by skip connections. EfficientNetB0 is a 
compound-scaled convolutional network that balances depth, 
width, and resolution for optimal performance with fewer 
parameters [13]. MobileNetV2 is a lightweight CNN designed 
for mobile and edge applications, employing inverted residuals 
and depthwise separable convolutions to minimize 
computational cost. ViT-B16 represents the class of vision 
transformers that treat images as sequences of patches and utilize 
global self-attention to model long-range dependencies. Finally, 
Swin-T combines the strengths of CNNs and transformers by 
applying self-attention within shifted local windows while 
maintaining a hierarchical feature map. All models were 
initialized with pretrained weights from the ImageNet-1k dataset 
and were modified by replacing their final classification heads 
with a fully connected layer outputting two logits corresponding 
to the binary class labels.  

3.5 Training Configuration  

All models were trained on the Kaggle cloud platform 
equipped with NVIDIA Tesla T4 GPUs. The training process 
was conducted using the PyTorch framework. Each model was 
trained for 25 epochs using a batch size of 32 and the Adam 
optimizer with a learning rate of 0.0001. The loss function used 
was CrossEntropyLoss, appropriate for multi-class 
classification tasks even when using two classes. No learning 
rate scheduling or early stopping techniques were applied in 
order to maintain uniform training conditions across all models. 
During each epoch, the models were trained on the augmented 
training set and evaluated on the unaugmented validation set. 
Metrics including loss and accuracy were recorded per epoch. 
To ensure consistency and reproducibility, random seeds were 
fixed using PyTorch’s random number generator, and the same 
dataset splits and preprocessing steps were applied uniformly 
across all models [14] [15] [16]. 

 

Figure 2 showing Gradient-weighted Class Activation 
Mapping.  

 

3.6 Evaluation Metrics  

 

Model performance was evaluated using several quantitative 
metrics to provide a multi-dimensional view of effectiveness and 
efficiency. Accuracy was used as the primary metric to assess 
overall prediction correctness. The F1-score, which represents 
the harmonic mean of precision and recall, was calculated to 
evaluate the balance between false positives and false 
negatives—an important consideration in veterinary diagnosis 
where false negatives can delay treatment [17]. In addition to 
predictive metrics, inference time per image was measured to 
assess real-time deployment feasibility, particularly for mobile 
or edge use cases. The total number of trainable parameters in 
each model was also documented to understand the memory and 
computational requirements. Finally, confusion matrices were 
plotted for each model to visualize the distribution of true 
positives, true negatives, false positives, and false negatives, 
offering further insight into model biases and failure modes.  

 

3.7 Grad-CAM Visualization   

To assess and compare the interpretability of model 
predictions, Gradient-weighted Class Activation Mapping 
(Grad-CAM) was employed across all trained models. Grad-
CAM generates saliency maps that highlight image regions 
contributing most to the model’s classification decision [17] [4] 
[18]. These heatmaps provide qualitative insight into whether 
the model focuses on actual lesion areas or on irrelevant 
background textures. Grad-CAM was implemented using the 
pytorch-grad-cam library, and saliency maps were generated for 
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a representative subset of images from the validation set. For 
convolutional models, the last convolutional layer was used as 
the target layer, whereas for transformer-based models like ViT-
B16 and Swin-T, attention-based normalization layers were 
selected. The generated maps were overlaid onto the original 
images to allow for side-by-side comparisons. Attention 
localization was judged visually, with particular focus on how 
well each model captured lesion areas specific to Lumpy Skin 
Disease. 

 

 

3.8 Reproducibility and validation 

Reproducibility was maintained 
throughout the experiment by standardizing 
key processes. The same random seed (42) 
was used across all experiments to ensure 
that training and validation splits remained 
consistent. Image preprocessing steps, data 
augmentations, and training procedures 
were applied identically across models. To 
further enhance reproducibility, training 
logs including loss, accuracy, and F1-scores 
per epoch were saved, and model 
checkpoints were stored at each epoch. Although the study did 
not utilize an external test set due to the lack of publicly available 
third-party LSD datasets, the diversity of the Kaggle image 
sources provided a reasonable proxy for real-world 
generalizability [19]. The two combined datasets offered 
variations in lighting, cattle appearance, lesion presentation, and 
environmental backgrounds, mimicking field conditions.  

 

3.9 Ethical Considerations  

Ethical authorization was not necessary to conduct this study 
since the image datasets were available as open-source 
repositories. They were all anonymized images without any 
personal or identifying information. In addition, the authors did 
not conduct any animal interventions or data collection [18] 
[19]. The study observed all terms of use and licensing stipulated 
by the Kaggle datasets and conducted responsible data handling 
during the research.  

IV. RESULTS AND DISCUSSION  

The following section refers to the empirical outcomes of 
five deep learning models that have been used to classify Lumpy 
Skin Disease (LSD) in cattle. The models were evaluated on 
their performance in classification, efficiency of the 
computation, and their explainability. Accuracy, F1-score, 
parameters and inference time per image were used as 
evaluation metrics to analyze the results, along with saliency 
based visual inspection on Grad-CAM. The results indicate the 
limitations of conventional convolutional structures as 

compared to more recent transformer models, especially in 
functions that rely heavily on visual information refinements 
including skin lesions. 

In all evaluation indicators, Swin-T was the most accurate 
model with 95.3 % accuracy and an F1-score of 0.94. ViT-B16 
came in directly behind with 94.5% accuracy and 0.93 F1-score. 
These findings illustrate the strength of self-attention and 
multilevel spatial modeling to represent the subtle textural and 
morphological signature of LSD lesions. Other models like 
CNN based MobileNetV2 and EfficientNetB0 had competitive 
scores of 93.1 and 92.6, respectively. ResNet50, while still 
robust, achieved the lowest accuracy at 91.3%. Despite being 
one of the earliest deep CNN architectures in this comparison, 
ResNet50 showed consistent convergence but lagged slightly in 
lesion-specific sensitivity, as confirmed by both its confusion 
matrix and Grad-CAM outputs as indicated in table 1. 

Table 1: Model Performance Comparison 

 

 

The quantitative results are summarized in Table 1. Each 
model's performance is measured not only in terms of accuracy 
and F1-score but also by the number of trainable parameters and 
average inference time per image. These latter metrics are 
particularly relevant for real-world deployment, where 
computational resources may be constrained. Swin-T, for 
example, has 28.3 million parameters and a mean inference time 
of 9.7 milliseconds per image, making it relatively efficient 
compared to ViT-B16, which has a significantly larger 
parameter count (86.6M) and longer inference time (10.8 
ms/image). In contrast, MobileNetV2 required only 3.4 million 
parameters and produced the fastest inference time (4.1 
ms/image), reinforcing its suitability for low-resource veterinary 
settings such as mobile clinics or field-based monitoring systems 
[20]. 

Such tradeoffs between performance and efficiency illustrate 
the practical aspects of model choice [20] [21]. Although ViT-
B16 and Swin-T achieve better accuracy than CNNs, their use 
could be constrained by resource consumption in the rural or 
developing world due to a lack of specialized hardware. 
MobileNetV2’s strong performance relative to its size and speed 
makes it particularly attractive for deployment in mobile 
diagnostic tools [22]. Compound scaling paired with resource 
efficiency results in EifficientNetB0, which is highly 

Model 
Accuracy 

(%) 
F1-

Score 
Parameters 

(M) 

Inference 
Time 
(ms/image) 

ResNet50 91.3 0.89 25.6 7.5 

EfficientNetB0 92.6 0.91 5.3 6.3 

MobileNetV2 93.1 0.91 3.4 4.1 

ViT-B16 94.5 0.93 86.6 10.8 

Swin-T 95.3 0.94 28.3 9.7 
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competitive at a lower cost. ResNet50, despite its proven 
reliability and understanding, is not as efficient as newer CNNs 
and not as accurate as transformer-based models. 

To further investigate model behavior during training, the 
accuracy curves plotted over 25 epochs revealed distinct 
learning patterns. As seen in Figure 3, Swin-T and ViT-B16 
showed smoother and steeper learning trajectories, achieving 
high accuracy early in the training phase and maintaining low 
variance across epochs. This indicates not only faster 
convergence but also greater model stability. In contrast, CNN-
based models demonstrated slower convergence rates, with 
ResNet50 showing a relatively shallow gradient. While all 
models eventually reached acceptable validation performance, 
the transformer-based architectures adapted more quickly and 
generalized better, even without extensive hyperparameter 
tuning or data augmentation. 

 

Figure 3: Model Training Accuracy over Epochs 

Qualitative insights were gained through Grad-CAM 
visualizations, which revealed how each model allocated 
attention across the input images [23]. The saliency maps for 
Swin-T and ViT-B16 were tightly focused on lesion sites, often 
zeroing in on irregular textures and nodular shapes that visually 
distinguish LSD. These attention maps were sharp and disease-
specific, indicating that the models learned clinically relevant 
features. On the other hand, the CNN models—particularly 
ResNet50 and EfficientNetB0—produced broader and 
sometimes less precise heatmaps. In some cases, these models 
directed attention toward surrounding fur textures, shadows, or 
even background features such as fencing or soil, which are less 
relevant to the diagnosis. MobileNetV2 was fast and compact, 
but sometimes generated diffuse heatmaps, which could be the 
reason it had a slightly lower F1-score and a high overall 
accuracy. 

Another significance in model evaluation is the cost of 
wrong predictions. False negative in a veterinary environment is 
more important to address than a false positive, since delayed 
treatment of infected animals translates to a greater risk of 
transmission [23]. Confusion matrices indicated that transformer 
models were characterized by the lowest false negative rates, 
supporting their practical value. CNNs, particularly ResNet50, 
are more likely to produce a false negative especially on images 
with faint and slightly occluded lesions. These mistakes become 
important in the real world and should be refined by fine-tuning 

or multi-modal input techniques that utilize the metadata like 
temperature or animal posture [24]. 

In clinical AI applications the importance of interpretability 
and explainability has increased. The ability to visually validate 
what a model “sees” when making decisions not only supports 
clinician trust but also guides model refinement [25] [26]. Grad-
CAM heatmaps in the present study provided a crucial 
interpretability method to detect areas of model focus and assist 
in identifying cases of model confusion. Additional research is 
proposed to help increase this interpretability by utilizing more 
sophisticated explainability methods like SHAP or attention 
rollout, where a more opaque model like a transformer would 
benefit. 

Lastly, these findings should be put into the context of larger 
aims of veterinary AI implementation. Transformer-based 
models are evidently superior, but the hardware necessary to 
support them is not as readily available in the rural or developing 
world [27]. The specific limitations imposed by edge computing, 
internet connectivity termination, and short battery life require 
lightweight models that can run without network connection. 
MobileNetV2 and EfficientNetB0 are some potentials here; they 
have a balance between accuracy and accessibility [28] [29]. 
Additionally, the future research on quantized transformer 
models (or even hardware-specific optimizations like TensorRT 
deployment thereof) might be able to make performance-centric 
models like Swin-T more widely available. 

Overall, the experiments indicate that Swin Transformer 
Tiny was the most accurate in classification and lesion 
interpretability among the tested models. ViT-B16 is slightly 
more accurate but the inference is more computationally 
expensive. MobileNetV2 and EfficientNetB0 offer potential 
solutions to real-time, low-resource use that seem to be attractive 
alternatives to ResNet50, which performs relatively worse in 
terms of its accuracy and lesion sensitivity [30] [31]. The results 
demonstrate the need to align model architecture to the task at 
hand, namely in fields such as veterinary medicine where the 
accuracy, interpretability, and speed of diagnosis must be 
aligned with operating in a potentially difficult field setting. 
While all transformer-based models offer global attention 
capabilities, only the Swin Transformer uses a hierarchical 
architecture with shifted window attention. This structural 
difference underlies its superior performance in localizing 
lesions in cluttered or noisy images, setting it apart from the 
global self-attention mechanism of ViT-B16 

V. CONCLUSION 

This study conducted a comparative analysis of five state-of-

the-art deep learning models—ResNet50, EfficientNetB0, 

MobileNetV2, Vision Transformer (ViT-B16), and Swin 

Transformer Tiny (Swin-T)—for the binary classification of 

Lumpy Skin Disease (LSD) in cattle using photographic 

images. The results revealed that Swin-T achieved the highest 

classification performance, with an accuracy of 95.3% and F1-

score of 0.94, confirming its superior capability to capture 

complex visual features through its hierarchical self-attention 

mechanism. ViT-B16 followed closely in terms of accuracy but 
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came with higher computational costs and memory 

requirements. 

Convolutional Neural Networks (CNNs) like MobileNetV2 

and EfficientNetB0 achieved equally competitive results, 

showing the best inference speed and memory throughput. 

These models provide plausible alternatives that can be 

implemented in mobile or under-resource settings where high-

quality real-time decision-making is crucial. The visualization 

of grad-CAM supported the efficacy of attention-based models 

with Swin-T and ViT-B16 being most successful to focus 

attention on relevant areas of a lesion, whilst CNNs 

occasionally tended to pay attention in areas in which there was 

no relevant information. 

While these results affirm the value of advanced 

architectures like Swin-T in veterinary diagnostics, they also 

underscore the importance of aligning model choice with 

deployment context. The study contributes to the growing field 

of AI in livestock health by offering evidence-based insights 

into the comparative strengths and limitations of popular 

architectures applied to image-based disease classification. 

VI. FUTURE WORK 

Despite encouraging results, several key limitations and 

opportunities for future work remain. One of the primary 

concerns is the imbalance in the dataset used. Although the 

class distribution was relatively close, a slight 

overrepresentation of healthy images could influence model 

sensitivity and increase the risk of false negatives—especially 

problematic in a disease control context. Future research should 

incorporate techniques such as oversampling, synthetic 

augmentation (e.g., SMOTE), or adaptive loss functions to 

improve learning on minority classes. 

Another critical issue is model generalization. The datasets 

used were limited to specific regions and conditions, which may 

not fully reflect the variability encountered in field 

environments. Enhancing model robustness will require 

training on more diverse, multi-source datasets and exploring 

domain adaptation techniques to handle cross-regional 

variability in lighting, background, and cattle appearance. 

Validation on truly external test sets from independent sources 

is also essential. 

Furthermore, the lack of deep explainability in transformer-

based models remains a challenge. Although Grad-CAM 

provided visual clues about the model’s focus areas, it does not 

offer fine-grained reasoning behind classification decisions. 

Integrating advanced explainable AI (XAI) tools such as SHAP, 

LIME, or attention flow mapping could bridge this gap and 

improve user trust, especially in clinical decision-support 

scenarios. 

Future studies ought to think about the model optimization 

deployment. Despite favorable results on accuracy, Swin-T 

might not be extensively used in remote or low-resource 

locations due to high computing requirements. The model size 

reduction and latency improvement can be performed using 

techniques such as model pruning, quantization, and 

distillation. Also, investigating edge-friendly transformer 

architectures, like MobileViT or TinyViT might be beneficial 

in terms of performance without sacrificing speed. 

Finally, integrating multimodal data—such as animal age, 

breed, temperature, and movement patterns—with image 

features may enhance predictive accuracy and context 

sensitivity. Implementing these models in a real-life scenario 

such as veterinary clinics or livestock markets with humans-in-

the-loop feedback mechanism can be used to optimize 

performance and encourage adoption. These end-to-end 

systems would be instrumental in creating scalable, AI-enabled, 

early alert systems of livestock epidemic.  

ACKNOWLEDGMENT 

The authors gratefully acknowledge the contributions of the 
research supervisors, veterinary institutions, and data scientists 
whose insights and feedback greatly enriched this review. 
Special thanks are extended to those who provided access to 
datasets and technical resources critical to the study. 

REFERENCES 

[1] G. Rai, Naveen, A. Hussain, A. Kumar, A. Ansari, and N. Khanduja, “A 
deep learning approach to detect lumpy skin disease in cows,” in 
Computer Networks, Big Data and IoT, Springer, pp. 369–377, 2021. 
DOI:10.1007/978-981-16-0965-7_30  

[2] G. M. S. Himel, M. M. Islam, and M. Rahaman, “Vision intelligence for 
smart sheep farming: Applying ensemble learning to detect sheep breeds,” 
Artificial Intelligence in Agriculture, vol. 11, pp. 1–12, 2024. 
DOI:10.1007/s43995-024-00089-7  

[3] S. Muhammad Saqib, M. Iqbal, M. T. Ben Othman, T. Shahazad, Y. Y. 
Ghadi, S. Al-Amro, and T. Mazhar, “Lumpy skin disease diagnosis in 
cattle: A deep learning approach optimized with RMSProp and 
MobileNetV2,” PLOS ONE, vol. 19, no. 8, p. e0302862, 2024. DOI: 
10.1371/journal.pone.0302862 

[4] A. Temenos, A. Voulodimos, V. Korelidou, A. Gelasakis, D. Kalogeras, 
A. Doulamis, and N. Doulamis, “Goat-CNN: A lightweight convolutional 
neural network for pose-independent body condition score estimation in 
goats,” J. Agric. Food Res., vol. 16, p. 101174, 2024. 
DOI:10.1016/j.jafr.2024.101174  

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. 
Unterthiner, and N. Houlsby, “An image is worth 16×16 words: 
Transformers for image recognition at scale,” arXiv preprint arXiv: 2020. 
[Online]. Available: https://arxiv.org/abs/2010.11929  

[6] X. Zhang, C. Xuan, Y. Ma, and H. Su, “A high-precision facial 
recognition method for small-tailed Han sheep based on an optimised 
Vision Transformer,” Animal, vol. 17, no. 8, p. 100886, 2023. 
https://doi.org/10.1016/j.animal.2023.100886  

[7] Y. Guo, W. Hong, J. Wu, X. Huang, Y. Qiao, and H. Kong, “Vision-based 
cow tracking and feeding monitoring for autonomous livestock farming: 
The YOLOv5s-CA+ DeepSORT-vision transformer,” IEEE Robotics & 
Automation Magazine, vol. 30, no. 4, pp. 68–76, 2023. 
DOI:10.1109/MRA.2023.3310857  

[8] L. Sun, G. Liu, H. Yang, X. Jiang, J. Liu, X. Wang, et al., “LAD-RCNN: 
a powerful tool for livestock face detection and normalization,” Animals, 
vol. 13, no. 9, p. 1446, 2023. https://doi.org/10.3390/ani13091446  

[9] C. Senthilkumar, S. C, G. Vadivu, and S. Neethirajan, “Early detection of 
lumpy skin disease in cattle using deep learning—a comparative analysis 
of pretrained models,” Vet. Sci., vol. 11, no. 10, p. 510, 2024. 
https://doi.org/10.3390/vetsci11100510   

[10] S. Yukun, H. Pengju, W. Yujie, C. Ziqi, L. Yang, D. Baisheng, et al., 
“Automatic monitoring system for individual dairy cows based on a deep 
learning framework that provides identification via body parts and 
estimation of body condition score,” J. Dairy Sci., vol. 102, no. 11, pp. 
10140–10151, 2019. DOI: 10.3168/jds.2018-16164  

http://www.ijcit.com/
http://dx.doi.org/10.1007/978-981-16-0965-7_30
http://dx.doi.org/10.1007/s43995-024-00089-7
https://doi.org/10.1371/journal.pone.0302862
http://dx.doi.org/10.1016/j.jafr.2024.101174
https://arxiv.org/abs/2010.11929
https://doi.org/10.1016/j.animal.2023.100886
http://dx.doi.org/10.1109/MRA.2023.3310857
https://doi.org/10.3390/ani13091446
https://doi.org/10.3390/vetsci11100510
https://doi.org/10.3168/jds.2018-16164


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

  Volume 14– Issue 3, September 2025  

  

www.ijcit.com    179 
 

[11] T. T. Sarker, M. G. Embaby, K. R. Ahmed, and A. AbuGhazaleh, 
“Gasformer: A transformer-based architecture for segmenting methane 
emissions from livestock in optical gas imaging,” in Proc. IEEE/CVF 
Conf. Comput. Vis. Pattern Recognit., pp. 5489–5497, 2024. 
DOI:10.1109/CVPRW63382.2024.00558  

[12] B. Tangirala, I. Bhandari, D. Laszlo, D. K. Gupta, R. M. Thomas, and D. 
Arya, “Livestock monitoring with transformer,” arXiv preprint 
arXiv:2111.00801, 2021. https://doi.org/10.48550/arXiv.2111.00801   

[13] M. Genemo, “Detecting high-risk area for lumpy skin disease in cattle 
using deep learning feature,” Advances in Artificial Intelligence Research, 
vol. 3, no. 1, pp. 27–35, 2023. DOI:10.54569/aair.1164731   

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, 
et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 30, 
2017. DOI:10.48550/arXiv.1706.03762  

[15] G. Taiwo, S. Vadera, and A. Alameer, “Vision transformers for automated 
detection of pig interactions in groups,” Smart Agric. Technol., vol. 10, p. 
100774, 2025. DOI:10.1016/j.atech.2025.100774  

[16] N. Siachos, M. Lennox, A. Anagnostopoulos, B. E. Griffiths, J. M. Neary, 
R. F. Smith, and G. Oikonomou, “Development and validation of a fully 
automated 2-dimensional imaging system generating body condition 
scores for dairy cows using machine learning,” J. Dairy Sci., vol. 107, no. 
4, pp. 2499–2511, 2024. DOI: 10.3168/jds.2023-23894  

[17] D. K. Saha, “An extensive investigation of convolutional neural network 
designs for the diagnosis of lumpy skin disease in dairy cows,” Heliyon, 
vol. 10, no. 14, p. e26049, 2024. DOI: 10.1016/j.heliyon.2024.e34242  

[18] J. S. Souza, E. Bedin, G. T. H. Higa, N. Loebens, and H. Pistori, “Pig 
aggression classification using CNN, transformers and recurrent 
networks,” arXiv preprint arXiv:2403.08528, 2024. 
DOI:10.5753/wvc.2024.34004  

[19] Y. Pan, Y. Zhang, X. Wang, X. X. Gao, and Z. Hou, “Low-cost livestock 
sorting information management system based on deep learning,” Artif. 
Intell. Agric., vol. 9, pp. 110–126, 2023. DOI:10.1016/j.aiia.2023.08.007 

[20] A. Qazi, T. Razzaq, and A. Iqbal, “AnimalFormer: Multimodal vision 
framework for behavior-based precision livestock farming,” in Proc. 
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 7973–7982, 2024. 
DOI:10.48550/arXiv.2406.09711 

[21] Y. Pang, W. Yu, Y. Zhang, C. Xuan, and P. Wu, “An attentional residual 
feature fusion mechanism for sheep face recognition,” Sci. Rep., vol. 13, 
p. 17128, 2023. DOI:10.1038/s41598-023-43580-2 

[22] X. Li, J. Du, J. Yang, and S. Li, “When MobileNetV2 meets transformer: 
A balanced sheep face recognition model,” Agriculture, vol. 12, no. 8, p. 
1126, 2022. https://doi.org/10.3390/agriculture12081126  

[23] J. M. Sargeant and A. M. O'Connor, “Scoping reviews, systematic 
reviews, and meta-analysis: Applications in veterinary medicine,” Front. 
Vet. Sci., vol. 7, p. 11, 2020. DOI: 10.3389/fvets.2020.00011  

[24] L. C. Toews, “Compliance of systematic reviews in veterinary journals 
with Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) literature search reporting guidelines,” J. Med. Libr. 
Assoc., vol. 105, no. 3, p. 233, 2017. DOI: 10.5195/jmla.2017.246  

[25] D. A. Neu, J. Lahann, and P. Fettke, “A systematic literature review on 
state-of-the-art deep learning methods for process prediction,” Artif. 
Intell. Rev., vol. 55, no. 2, pp. 801–827, 2022. DOI:10.1007/s10462-021-
09960-8 

[26] T. Miller, G. Mikiciuk, I. Durlik, M. Mikiciuk, A. Łobodzińska, and M. 
Śnieg, “The IoT and AI in agriculture: The time is now—A systematic 
review of smart sensing technologies,” Sensors, vol. 25, no. 12, p. 3583, 
2025. DOI: 10.3390/s25123583 

[27] L. Sun, G. Liu, H. Yang, X. Jiang, J. Liu, X. Wang, et al., “LAD-RCNN: 
a powerful tool for livestock face detection and normalization,” Animals, 
vol. 13, no. 9, p. 1446, 2023. https://doi.org/10.3390/ani13091446  

[28] X. Li and Y. Liu, “Cow face recognition based on transformer group,” in 
Proc. 4th Int. Conf. Comput. Vision Pattern Anal. (ICCPA 2024), vol. 
13256, pp. 203–209, Sept. 2024. DOI: 10.1117/12.3038051 

[29] C. Xie, Y. Cang, X. Lou, H. Xiao, X. Xu, X. Li, and W. Zhou, “A novel 
approach based on a modified mask R-CNN for the weight prediction of 
live pigs,” Artif. Intell. Agric., vol. 12, pp. 19–28, 2024. 
https://doi.org/10.1016/j.aiia.2024.03.001  

[30] R. Khanal, Y. Choi, and J. Lee, “Transforming poultry farming: A 
pyramid vision transformer approach for accurate chicken counting in 
smart farm environments,” Sensors, vol. 24, no. 10, p. 2977, 2024. 
DOI:10.3390/s24102977 

[31] Y. Zhang, Y. Zhang, H. Jiang, H. Du, A. Xue, and W. Shen, “New method 
for modeling digital twin behavior perception of cows: Cow daily 
behavior recognition based on multimodal data,” Comput. Electron. 
Agric., vol. 226, p. 109426, 2024. 
https://doi.org/10.1016/j.compag.2024.109426  

 

http://www.ijcit.com/
http://dx.doi.org/10.1109/CVPRW63382.2024.00558
https://doi.org/10.48550/arXiv.2111.00801
http://dx.doi.org/10.54569/aair.1164731
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.1016/j.atech.2025.100774
https://doi.org/10.3168/jds.2023-23894
https://doi.org/10.1016/j.heliyon.2024.e34242
http://dx.doi.org/10.5753/wvc.2024.34004
http://dx.doi.org/10.1016/j.aiia.2023.08.007
http://dx.doi.org/10.48550/arXiv.2406.09711
http://dx.doi.org/10.1038/s41598-023-43580-2
https://doi.org/10.3390/agriculture12081126
https://doi.org/10.3389/fvets.2020.00011
https://doi.org/10.5195/jmla.2017.246
https://link.springer.com/article/10.1007/s10462-021-09960-8
https://link.springer.com/article/10.1007/s10462-021-09960-8
https://doi.org/10.3390/s25123583
https://doi.org/10.3390/ani13091446
https://ui.adsabs.harvard.edu/link_gateway/2024SPIE13256E..0TL/doi:10.1117/12.3038051
https://doi.org/10.1016/j.aiia.2024.03.001
http://dx.doi.org/10.3390/s24102977
https://doi.org/10.1016/j.compag.2024.109426

