Big Data Analytics in Healthcare: Predictive Modeling, Privacy Challenges, and Global Regulatory Compliance

Authors

  • rachael ndung'u Department of Information Technology, Murang’a University of Technology, Murang’a, Kenya

DOI:

https://doi.org/10.24203/x6x84826

Keywords:

Big Data, Healthcare, Data Privacy, Regulatory

Abstract

Big Data Analytics (BDA) is increasingly central to modern healthcare, promising transformative improvements in patient care, operational efficiency, and predictive disease modeling. However, the sensitive nature of health data also introduces significant challenges, particularly regarding privacy, confidentiality, and global regulatory compliance. This article synthesizes key insights from contemporary research, highlighting methods, existing gaps, proposed solutions, and the critical need for stronger global data privacy harmonization.

References

[1] Batko, K., & Ślęzak, A. (2022). The use of big data analytics in healthcare. International Journal of Healthcare Analytics, 15(3), 45–67.

[2] Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123–1131. https://doi.org/10.1377/hlthaff.2014.0041

[3] Bates, D. W., Cohen, M., Leape, L. L., Overhage, J. M., Shabot, M. M., & Sheridan, T. (2018). Reducing the risks of health care: Safety as a systems issue. Academic Medicine, 73(11), 51–58.

[4] Chen, J. H., Asch, S. M., & Asch, D. A. (2017). Predictive analytics in healthcare: A review. Journal of Biomedical Informatics, 65, 267–278. https://doi.org/10.1016/j.jbi.2016.10.007

[5] Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism. Advances in Neural Information Processing Systems, 29. https://papers.nips.cc/paper_files/paper/2016/file/2e3474fe63e6a90f639c8d5c0f1b29b3-Paper.pdf

[6] Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101

[7] Kankanhalli, A., Hahn, J., Tan, S. S. L., & Gao, G. (2016). Predictive analytics in healthcare: An overview. MIS Quarterly Executive, 15(4), 141–154.

[8] Kaur, H., & Rani, R. (2015). Big Data and 5Vs characteristics. International Journal of Engineering Research and Applications, 5(12), 84–89.

[9] Khoury, M. J., & Ioannidis, J. P. A. (2014). Big data meets public health. Science, 346(6213), 1054–1055. https://doi.org/10.1126/science.aaa2709

[10] Kumar, S., Jacob, S., & Ng, H. C. (2019). Genomic medicine and big data analytics: A new paradigm in personalized healthcare. Nature Genetics, 51(1), 1–7. https://doi.org/10.1038/s41588-018-0343-8

[11] Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. Health Informatics Journal, 24(2), 182–195. https://doi.org/10.1177/1460458216641007

[12] Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep Patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6, 26094. https://doi.org/10.1038/srep26094

[13] Mittelstadt, B. D., & Floridi, L. (2016). The ethics of big data: Current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22(2), 303–341. https://doi.org/10.1007/s11948-015-9652-2

[14] Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. The Lancet Digital Health, 2(2), e90–e92. https://doi.org/10.1016/S2589-7500(20)30013-1

[15] Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future — Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181

[16] Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10.1056/NEJMra1814259

[17] Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2(1), 3. https://doi.org/10.1186/2047-2501-2-3

[18] Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. npj Digital Medicine, 3(1), 119. https://doi.org/10.1038/s41746-020-00323-1

[19] Ristevski, B., & Chen, M. (2018). Big data analytics in medicine and healthcare. Journal of Integrative Bioinformatics, 15(3), 1–12. https://doi.org/10.1515/jib-2017-0030

[20] Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

[21] Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063

[22] Shilo, S., Rossman, H., & Segal, E. (2020). Axes of a revolution: Challenges and promises of big data in healthcare. Nature Medicine, 26(1), 29–38. https://doi.org/10.1038/s41591-019-0727-5

[23] Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

[24] Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR): A Practical Guide. Springer. https://doi.org/10.1007/978-3-319-57959-7

[25] Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., ... & Liu, H. (2020). Clinical information extraction applications: A literature review. Journal of the American Medical Informatics Association, 27(1), 7–15. https://doi.org/10.1093/jamia/ocz185

[26] Wang, Y., & Krishnan, E. (2014). Big data and healthcare: A new frontier. Big Data, 2(3), 113–119. https://doi.org/10.1089/big.2014.0029

[27] Westra, D., Angeli, F., & Carree, M. (2017). Health technology and patient safety in low-income countries: The role of organizational and social factors. Technology in Society, 51, 122–127. https://doi.org/10.1016/j.techsoc.2017.09.001

Downloads

Published

2025-07-11

Issue

Section

Articles

How to Cite

Big Data Analytics in Healthcare: Predictive Modeling, Privacy Challenges, and Global Regulatory Compliance. (2025). International Journal of Computer and Information Technology(2279-0764), 14(2). https://doi.org/10.24203/x6x84826

Similar Articles

11-20 of 63

You may also start an advanced similarity search for this article.