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Abstract—In social networks, the goal of link recommendation is 

to recommend links for nodes and add them to the network, 

thereby satisfying the potential link interests of the nodes. The 

centrality of nodes in social networks typically quantifies the 

importance of nodes in the network. Some nodes may desire to 

increase their centrality by adding links. First, a multi-

community centrality measurement method is proposed, and 

based on harmonic centrality, a hybrid centrality measurement 

method is introduced. Next, the link recommendation problem is 

regarded as a problem of maximizing node hybrid centrality, 

which can be formally modeled as a submodular function 

maximization problem. A greedy algorithm with performance 

guarantees can be directly applied to select the best links. 

Compared to existing link prediction and link recommendation 

algorithms, our algorithm recommends links that better improve 

the hybrid centrality of users. 

Keywords-social networks; link recommendation; node 

centrality; submodular function maximization 

I.  INTRODUCTION  

Link recommendation is one of the many recommendation 
tasks in social networks, primarily targeting users' potential 
connection interests. For users, effective link recommendation 
can significantly enhance their influence or engagement within 
the social network. For the entire social network, adding 
appropriate links can improve the network's integrity and 
scalability, forming a more robust and scalable network. Link 
prediction is a widely used technique for recommending 
connections in social networks. At the same time, link 
prediction is also a hot topic in social network research, aiming 
to accurately predict the likelihood of a connection between 
two nodes in a given network. Currently, link prediction 
algorithms are mainly based on the network's topological 
structure [1,2], node attributes [3,4], or interactions between 
nodes [5,6]. 

Different link interests of nodes can provide diversified 
perspectives for link recommendation. In this paper, it is 
assumed that each node may have two different link interests. 
The first is to add more links to the node, making the shortest 
path between it and other nodes as short as possible, thus 
increasing its harmonic centrality [7]. The second is to add 

more links to the node, enabling it to connect to more 
communities in the network. These two link interests reflect the 
node's desire to integrate into the network more quickly and 
effectively and enhance its participation in the network. A user 
can either be an existing node in the network or a node that has 
not yet been established. 

The link interests of users mentioned above give rise to a 
link recommendation problem, which is to increase the 
centrality measure of a node by adding links to it. For any 
given node in the network, the main reasons it seeks to enhance 
its centrality in the network may include the following three 
aspects: 

(i) Node centrality measures the importance of a node in a 
social network, reflecting its role in information dissemination 
or connectivity. Central nodes are typically key participants in 
the network, influencing its overall functionality. For example, 
nodes with high degree centrality (connected to many other 
nodes) play a crucial role in information diffusion, while nodes 
with high betweenness centrality serve as bridges between 
different parts of the network. 

(ii) Network integrity refers to the robustness of a network 
against failures or attacks. Studies show that the removal of 
central nodes can significantly disrupt network structure, 
especially in scale-free networks, which are resilient to random 
failures but vulnerable to targeted attacks on central nodes. For 
instance, removing nodes with high betweenness centrality 
may fragment the network into isolated components, reducing 
its overall connectivity. 

(iii) Network scalability refers to a network’s ability to 
maintain performance as it grows. Central nodes help sustain a 
small network diameter by connecting newly added nodes, 
ensuring efficient information flow. However, if a central node 
becomes overloaded with connections, it may turn into a 
bottleneck, limiting network expansion. In scale-free networks, 
central hubs are particularly important for maintaining small-
world properties, supporting network scalability. 

For example, consider a case where edges are added to 
maximize a node’s degree centrality. In Figure 1(a), suppose 
we add two edges, C-A and C-E, to node C, directly connecting 
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it to A, B, D, and E. As a result, node C’s degree increases 
from 2 to 4. In a five-node graph, this is the maximum possible 

degree n －1, where n is the total number of nodes).   

                  

(a) A simple undirected graph                      (b) Adding two edges to node C 

Fig. 1  An example of increasing a node's degree centrality by adding 

edges 

This directly maximizes its degree centrality since degree 
centrality is simply determined by the number of edges a node 
has. The optimization strategy for degree centrality is intuitive 

and straightforward — adding more edges always increases 

degree centrality. In social networks, this corresponds to 
making a node a more directly connected "hub," such as 
gaining more followers or friends on social media platforms. 

For example, consider a case where edges are added to 
maximize a node’s betweenness centrality. In Figure 2(a), 
suppose we add edges E-B (connecting E to B in group 1) and 
E-C (connecting E to C in group 2), making E a bridge 
between the two groups.  In the updated graph, any path from 
group 1 to group 2 (such as S-A-B-E-C-T or A-B-E-C-D) must 
pass through E. Since E lies on all shortest paths between the 
two groups, its betweenness centrality increases significantly. 
For instance, in the shortest path from S to T, E becomes an 
essential intermediary node.   

      

(a) A simple undirected graph                      (b) Adding two edges to node E 

Fig. 2  An example of increasing a node's betweenness centrality by 

adding edges 

Optimizing betweenness centrality involves positioning a 
node as a key connector between different parts of the network. 
In social networks, this corresponds to making a node an 
“information bridge,” such as an opinion leader linking two 
communities. 

Existing methods for adding links to a graph to improve 
node centrality have shortcomings in mathematical analysis [8-
11]. In this paper, by considering more structural information 
of the graph and recommending the links that should be added 
to the node, the process of adding nodes can be formalized as 
an increasing function, and the maximum value of the function 
can provide performance guarantees. 

The aim of this study is to propose a method for 
maximizing centrality for link recommendation. The main 
contributions are as follows:  

(i)  propose a multi-community centrality measure for 
nodes to capture their potential interest in linking to multiple 
network communities;  

(ii) integrate multi-community centrality and harmonic 
centrality to propose a hybrid centrality measure for nodes to 
comprehensively capture users’ link interests; 

(iii) model the link recommendation problem as a 
submodular function maximization problem based on the 
node's hybrid centrality measure and use a greedy algorithm to 
achieve an optimal link selection with an approximation ratio 

of 1- 1 e . 

II. RELATED WORK 

Suppose U is a nonempty ground set. A real set function  

f:2U→R is submodular [12] if for any A，B ⊆ U, 

( ) ( ) ( ) ( )    f A f B f A B f A B
 

The marginal value of an element u∈U with respect to A ⊆ 

U  is defined by 

( ) ( { }) ( )   u f A f A u f A
 

Equivalently, f is submodular if it satisfies the law of 

diminishing marginal returns: for all A ⊆ B ⊆ U  and x∉B, 

( ) ( )  u uf A f B
 

In words, the marginal value of  x diminishes as the context 
in which it is considered grows from  A  to B. 

The submodular maximization problem with cardinality 
constraint is a critical submodular optimization problem. Given 
a nonempty ground set U and a monotone nonnegative 
submodular function f:2U→R, maximization of submodular 
function f(S) with cardinality constraint is requires finding a 
subset S ⊆ U with |S|=k. More formally, 

max { ( ) : } S U f S S k
 

The submodular maximization problem with cardinality 
constraint has proven to be highly effective in addressing 
practical issues like text abstract extraction [13], influence 
maximization [14], and welfare maximization [15], among 
others. In the domain of link recommendations, the submodular 
function maximization problem with cardinality constraint has 
also emerged as a highly effective modeling technique. 
Specifically, submodular function maximization problem with 
cardinality constraint has been employed to recommend links 
for nodes in order to enhance their centrality [10][16]. These 
existing works are aimed solely at increasing the centrality of 
nodes, without considering the potential interest of nodes to 
connect with more communities in the graph. 

Submodular function maximization problem with 
cardinality constraint is NP-hard, which means that it is 
unlikely to be solved precisely in polynomial time unless P = 
NP. The classical greedy algorithm (as showed in Algorithm 1) 
is commonly employed for solving submodular function 
maximization problem with cardinality constraint. Moreover, 
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Algorithm 1 has been proven to be an (1- 1 e )-approximation 

algorithm [17]. 

Algorithm 1：CGASFM: Classical Greedy Algorithm for 

Submodular Function Maximization Problem 

REQUIRE: A nonempty ground set U and a monotone 

nonnegative submodular function : 2Uf R   

ENSURE: The function value ( )f S  with S ⊆ U and |S|=k.  

1. S     

2. While ( ) ( )f S f D do 

3.          select u U S   with maximum ( { } )f S u ; 

4.          { }S S u   

5. Output ( )f S  
To accelerate the solution of the submodular function 

maximization problem with cardinality constraint without 

sacrificing performance guarantee, the stochastic greedy 

algorithm (as showed in Algorithm 2) is also proposed to solve 

submodular function maximization problem with cardinality 

constraint. Similarly, Algorithm 2 has been proven to be an 

( 1- 1 -e  )-approximation algorithm[18], where  is a 

parameter employed for determining the size of the sampling 

set. 

 

Algorithm 2：SGASFM: Stochastic Greedy Algorithm for 

Submodular Function Maximization Problem 

REQUIRE: A nonempty ground set U,  a monotone 

nonnegative submodular function : 2Uf R   and a 

parameter   

ENSURE: The function value ( )f S  with S ⊆ U and |S|=k.  

1. S     

2. While ( ) ( )f S f D do 

3.        sample a set D U S   with cardinality 
1

log


U

k
       

randomly 

4.         select u D  with maximum ( { } )f S u $; 

5.          { }S S u   

6. Output ( )f S  

III. PROBLEM FORMULATION  

Given a simple undirected graph (denoted as graph) G=<V

，E>, where V  is the set of nodes and E is the set of edges. 

The order of the graph G is n=|V|, and the size is m=|E|. 
Without loss of generality, consider recommending links for 

any node v∈V, and let d(G, u) represent the shortest path 

length between v and u in graph G. Specifically, the following 
two cases need to be explained: (i) if there is no path 

connecting v and u, then d(G, u)=∞ and 1/d(G, u)=0; (ii) d(G, 

v)=0 and 1/d(G，v)=0 represent the shortest path length from 

any node to itself being 0. Let N(G)={u|(u, v)∈E} be the set of 

all neighbor nodes of v in graph G, and let T(G)={(u, v)|u ∉ 
N(G)} be the set of candidate links that can be added to graph 
G. 

A. Multi-community centrality 

Assume C={C1，C2，…，Cp} is the community set of a 

given graph G. Generally, the community information of any 
graph can be obtained through existing algorithms [19-22]. 

Then, N(G)∩Ci represents the set of neighbor nodes of node v 

that belong to the i-th community Ci, where 1≤ i ≤ p. To 

formalize the multi-community reward of all links of node v in 
graph G, we use g(u) to denote the relationship strength 
between node v and node u in graph G. This relationship 
strength can be measured using indicators such as their distance, 
similarity, etc. The multi-community centrality of node v in 
graph G can be defined as follows 

1 ( )

( ) ( )
  

 
i

p

i j N G C

l G g u .  (1) 

To maximize the multi-community centrality of node v 

by adding links in graph G, it can be modeled as the 

maximization of a potential function l(G), that is, 

( ),| |max ( ) S T G S k Sl G ,  (2) 

where GS=<V，E∪S>. 

B. Harmonic Centrality 

Harmonic centrality [7] is a measure used in graph theory to 

assess node centrality. It is calculated by summing the 

reciprocal of the shortest path distances between a node and all 

other nodes in the network. For any node v∈V, the harmonic 

centrality h(G) of node v in graph G is defined as 

1
( )

( , )


u V

h G
d G u

.     (3) 

To maximize the harmonic centrality of node v by adding 

links in graph G, it can be modeled as the maximization of a 

potential function h(G), that is, 

( ),| |max ( ) S T G S k Sh G ,  (4) 

where GS=<V，E∪S>. 

C. Hybrid Centrality 

To comprehensively consider the two potential functions 

l(G) and h(G) mentioned above, we propose a node centrality 

measurement method called hybrid centrality for any node v∈
V. Its calculation is as  

( ) ( ) (1 ) ( )     f G l G h G ,       (5) 

where (0,1)   is a parameter used to balance the 
computed values of l(G) and h(G). This is because two 
different situations need to be considered: (1) in different 
graphs, the magnitudes of l(G) and h(G)  may differ, and 
ideally, they should be unified to the same scale; (2) different 
nodes may have different link preferences, meaning that some 
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nodes may prefer to enhance their harmonic centrality, while 
others may prefer to improve their multi-community centrality. 

In summary, the centrality maximization method proposed 
in this paper for link recommendation (A Centrality 
Maximization Approach for Link Recommendation, CMALR 
for short) can be described as follows: recommend k links for 
any node v such that the hybrid centrality of node v is 
maximized. This can be formally expressed as 

( ),| |max ( ) S T G S k Sf G ,  (6) 

where GS=<V，E∪S>. 

IV. GREEDY APPROXIMATION ALGORITHM AND 

COMPLEXITY ANALYSIS 

We consider using a greedy approximation algorithm to 

identify the most suitable edges for node recommendations, 

aiming to enhance the node ’ s mixed centrality. This 

approach intuitively reflects changes in the node’s mixed 

centrality. In particular, the greedy approximation algorithm 

provides an edge set with performance guarantees, ensuring a 

lower bound on the increase in the node’s mixed centrality. 

This is the motivation behind our proposed method. 

Based on the potential function f(G) defined for any node v 

above, this paper considers using Algorithm 1 and Algorithm 

2 to solve CMALR. To prove that Algorithms 1 and 2 are 

approximation algorithms, we need to show that the potential 

function f(G) satisfies normalized and non-decreasing, as well 

as submodularity. This can be done by proving that both l(G) 

and h(G) satisfy normalized, non-decreasing and 

submodularity. 

Lemma 1   For any subset ( )S T G ，potential function 

l(GS) satisfies： 

(i) l(GS)≥0； 

(ii)  l(GB)≥l(GA) for any subset ( ) A B T G  

(iii) ( , ) ( , )( ) ( )  v u A v u Bl G l G  for any subset ( ) A B T G  

and any ( , ) ( ) v u T G B . 

Proof . (i) By definition, g(u)  represents the relationship 

strength between node v  and node u in graph G. Typically, 

this measure ensures that g(u)≥0, and it is evident that l(GS)

≥0. 

(ii) For any set ( ) A B T G  and any 1≤ i ≤ p, it can 

be seen that ( ) ( )  A i B iN G C N G C , and thus l(GB)≥l(GA) 

holds. 

(iii)Assume that node u belongs to the i-th community Ci, 

then 

( , ) ( , )

( ) { } ( )

( ) { } ( )

( ) { } ( )

( ) { } ( )

( ) ( )

( ( ) ( ))

( ) ( )

( )

( ) ( )

( )

( ) ( )

    

    

    

    

  

 

 







 

 

 

 

A i A i

B i B i

A i A i

B i B i

v u A v u B

j N G u C j N G C

j N G u C j N G C

j N G u C j N G C

j N G u C j N G C

l G l G

g j g j

g j g j

g u

g j g j

g u

g j g j

,          (7) 

Due to  

( ) { } ( ) { }

( ) ( )
     

 
A i B ij N G u C j N G u C

g j g j   (8) 

and 

( ) ( )

( ) ( )
   

 
A i B ij N G C j N G C

g j g j   (9) 

Then, it is easy to deduce that for any ( ) A B T G  and 

( , ) ( ) v u T G B , the condition ( , ) ( , )( ) ( )  v u A v u Bl G l G  

holds. 

□ 

Lemma 2   For any subset ( )S T G ，potential function 

h(GS) satisfies： 

(i) h(GS)≥0； 

(ii)  h(GB)≥h(GA) for any subset ( ) A B T G  

(iii) ( , ) ( , )( ) ( )  v t A v t Bh G h G  for any subset ( ) A B T G  

and any ( , ) ( ) v u T G B . 

Proof . (i)Since for any u∈V, 1/ d(GS，u)≥0, it is evident 

that h(GS)≥0. 

(ii) For any set ( ) A B T G  and any u∈V, it can be 

seen that d(GA，u)≥d(GB，u), and thus h(GB)≥h(GA) holds. 

(iii)For any two nodes t and u, let dis(t,u) represent the 

shortest path length between them in graph G. Then 
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( )

1 1
( )

( , ) 1 min ( , )  

 


 
u V u V w N G

h G
d G u dis w u

        (10) 

Then 

( , )

( )

( )

( )

1
=

1 min{min ( , ), ( , )}

1

1 min ( , )

 

 












A

A

v t A

u V w N G

u V w N G

h G

dis w u dis t u

dis w u

  (11) 

and 

( , )

( )

( )

( )

1
=

1 min{min ( , ), ( , )}

1

1 min ( , )

 

 












B

B

v t B

u V w N G

u V w N G

h G

dis w u dis t u

dis w u

  (12) 

Next, we will discuss the following three cases: 

(1) ( )( , ) min ( , )
Aw N Gdis t u dis w u , in which case ( , ) ( , )( ) ( ) 0   v t A v t Bh G h G . 

(2) ( )( , ) min ( , )
Aw N Gdis t u dis w u and ( )( , ) min ( , )

Bw N Gdis t u dis w u , 

in which case ( , ) ( , )( ) 0 ( )   v t A v t Bh G h G . 

(3) ( )( , ) min ( , )
Aw N Gdis t u dis w u and 

( )( , ) min ( , )
Bw N Gdis t u dis w u , in which case it is easy to see that 

( , ) ( , )( ) ( )  v t A v t Bh G h G because 

( ) ( )min ( , ) min ( , ) 
A Bw N G w N Gdis w u dis w u . 

In summary, we can conclude that for any ( ) A B T G and 

( , ) ( ) v t T G B , ( , ) ( , )( ) ( )  v t A v t Bh G h G holds. 

□ 

From Lemma 1 and Lemma 2, it can be inferred that the 

potential function f is normalized and non-decreasing, as well 

as submodular because it is the summation of the potential 

functions l and h. Therefore, Algorithms 1 or 2 can be used to 

find an approximate solution to the maximum of the potential 

function f, with performance guarantees. That is, Algorithm 1 

achieves an approximation ratio of 1- 1 e  for solving 

CMALR, while Algorithm 2 achieves an approximation ratio 

of 1- 1 -e  . 

As shown in Algorithm 1, let n and m be the number of 

nodes and edges in the input graph G. For any node v∈V, h(G) 

can be computed in polynomial time 2O( )n . Additionally, the 

calculation of l(G) for node v can be completed in O( )n  time. 

Therefore, the calculation of ( , ) ( ) v t Sf G  for node v can be 

done in 2O( log ) n n m m  time. The time complexity of 

Algorithm 1 is 2O( log )kn n , since the number of iterations is k. 

Assuming the sample size of Algorithm 2 is 
1

log



n

t
k

, the 

time complexity of Algorithm 2 is 2O( log )kt t . 

V. EXPERIMENT 

This section aims to experimentally evaluate the actual 

performance of typical social network instances in terms of 

solution quality. All algorithms used for comparison are 

implemented in Python and run on a computer with a 2.10GHz 

Intel Core i7-12700 processor and 16 GB RAM. 

A. Datasets 

These datasets contains 8 real social network instances 

from the Stanford network dataset collection. For SCHOLAT 

Social Network, we consider extracting a subgraph with the 

highest degree consisting of 150 nodes from graph. These real 

network instances have been widely used to validate various 

algorithms. Table 1 shows the detailed information of these 

real social networks. 

 
Table 1  Typical Social Networks Graphs Used in Experiment 

Networks Nodes Edges Average degree 

Adjnoun[23] 112 425 7.59 

Dolphin[24] 62 159 5.13 

Football[25] 115 613 10.66 

Karate[26] 34 78 4.59 

Lesmis[27] 77 254 6.60 

Polbooks[28] 105 441 8.40 

Celegansneural[29] 297 2148 14.46 

SCHOLAT[30] 150 7808 104.11 

B. Experimental Results and Analysis 

This section presents the main results of Algorithm 1 

(Greedy), eight link prediction algorithms (Resource [31], 

Jaccard [32], Adamic [32], Preference [32], Hopcroft [33], 

Soundarajan [33], Within [34], Common [35]), and one link 

recommendation algorithm (Crescenzi [10]) for solving 

CMALR. The experimental results are shown in Tables 2 and 

3. Based on all the algorithms mentioned above, we 

recommend 5 links for all nodes in V, and then compare the 

average values of all potential functions f. 
Table 2  Recommended Results of All Algorithms on Four Datasets 

 Adjnoun Dolphin Football Karate 

Adamic 149.53 83.06 101.71 48.53 

Soundarajan 117.22 77.48 96.45 45.04 

Jaccard 136.23 80.22 109.27 57.75 

Preference 171.82 98.79 109.27 57.72 

Hopcroft 134.51 76.24 94.20 44.01 

Resource 148.39 83.14 101.71 48.48 

Within 116.27 76.59 94.28 43.97 

Common 151.51 82.57 102.21 49.53 

Crescenzi 266.79 151.21 235.29 82.98 

Greedy 343.42 202.25 265.23 97.67 

 

Table 3 Recommended Results of All Algorithms on Other Four Datasets 

 Lesmis Polbooks Celegansneural SCHOLAT 

Adamic 113.64 111.09 149.51 288.59 
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Soundarajan 102.87 109.85 149.97 269.69 

Jaccard 99.22 106.82 149.59 268.35 

Preference 148.10 134.02 148.98 317.19 

Hopcroft 93.21 107.01 146.22 263.59 

Resource 113.36 111.96 149.65 288.03 

Within 93.19 108.43 145.22 263.51 

Common 115.73 112.24 149.54 263.51 

Crescenzi 204.09 235.59 287.79 589.70 

Greedy 272.91 296.43 293.23 700.48 

The results in Tables 2 and 3 support our proposed 

algorithm, which not only theoretically guarantees 

performance, but also achieves better solutions on typical real-

world social network instances. 

In the second experiment, we consider recommending K 

=5, 10, 15, 20, 25 links for each node v∈V. We compared the 

approximate results of the maximum value of the potential 

energy function f for Greedy and Crescenzi, as shown in 

Figure 3. 

 
(a) Test on Adjnoun                (b) Test on Dolphin 

 
(c) Test on Football   (d) Test on Karate 

 
(e) Test on Lesmis    (f) Test on Polbooks 

 
(g) Test on Celegansneural  (h) Test on SCHOLAT 

 
Fig. 3  The experimental results for K=5,10,15,20 and 25 links are 

recommended on different datasets. 

The results in Figure 3 support our proof of Lemma 1 and 

Lemma 2, which states that the potential function f is 

normalized and non-decreasing relative to the set S. 

Meanwhile, the results in Figure 3 also indicate that Greedy 

can obtain better solutions by recommending different 

numbers of links on typical real-world social network 

instances. 

In the final set of experiments, we consider 

recommending K=5 links for each node v ∈ V based on 

Algorithm 1 (Greedy) and Algorithm 2 (S-Greedy-  ). Set   

to 0.1, 0.2, 0.3, 0.4, and 0.5, and the corresponding 

experimental results are shown in Figure 4. 

 
(a) Experimental results on four datasets 

 
(b) Experimental results on the other four datasets 

Fig. 4  The experimental results for K=5 links are recommended on 

different datasets based on algorithm 1 and algorithm 2. 

The results in Figure 4 indicate that the performance 

guarantee of Algorithm 2 decreases as   increases. This is 

mainly because the random sampling range in Algorithm 2 

decreases as   increases. However, compared to Algorithm 1, 

Algorithm 2 has lower time complexity, so Algorithm 2 can 

also be prioritized for use considering time consumption 

conditions. 

VI. CONCLUSION 

In real-world social networks, centrality analysis is 

widely used to identify key nodes. For example, in epidemic 

spread studies, identifying high-centrality "superspreader" 

nodes helps control disease transmission. On social media 

platforms, central nodes (such as opinion leaders) play a 

crucial role in information dissemination, but their removal 
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may impact network connectivity and scalability. Node 

centrality is crucial in social networks, as its impact on 

network integrity and scalability reflects the complexity of 

network structures. Future research could further explore how 

the dynamic changes in centrality distribution affect the long-

term robustness and scalability of networks, especially in 

large-scale dynamic networks. 

This paper comprehensively considers adding links to 

nodes in order to increase both multi-community centrality 

and harmonic centrality, and proposes a centrality 

maximization approach for link recommendation. We model 

the link recommendation problem as a submodular function 

maximization problem by designing a submodular potential 

function. Then, we directly present classical greedy algorithms 

and random greedy algorithms with performance guarantees to 

select the optimal links. Compared with 8 link prediction 

algorithms and 1 link recommendation algorithm, Algorithm 1 

can better improve the centrality of users, enabling them to 

connect to more communities within the social network. 

In future work, we aim to consider more link interests 

within the submodular potential function. This way, we can 

recommend links to nodes through greedy algorithms while 

ensuring performance guarantees. 
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