
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 130

Comparative Evaluation for Effectiveness Analysis of

Policy Based Deep Reinforcement Learning

Approaches

Ziya Tan

Erzincan Binali Yıldırım University

Erzincan, Turkey

Email: ziyatan [AT] erzincan.edu.tr

Mehmet Karaköse

Fırat University

Elazığ, Turkey

Email: mkarakose [AT] firat.edu.tr

Abstract— Deep Reinforcement Learning (DRL) has proven to be

a very strong technique with results in various applications in

recent years. Especially the achievements in the studies in the field

of robotics show that much more progress will be made in this

field. Undoubtedly, policy choices and parameter settings play an

active role in the success of DRL. In this study, an analysis has

been made on the policies used by examining the DRL studies

conducted in recent years. Policies used in the literature are

grouped under three different headings: value-based, policy-based

and actor-critic. However, the problem of moving a common

target using Newton's law of motion of collaborative agents is

presented. Trainings are carried out in a frictionless environment

with two agents and one object using four different policies. Agents

try to force an object in the environment by colliding it and try to

move it out of the area it is in. Two-dimensional surface is used

during the training phase. As a result of the training, each policy

is reported separately and its success is observed. Test results are

discussed in section 5. Thus, policies are tested together with an

application by providing information about the policies used in

deep reinforcement learning approaches.

Keywords-Deep Reinforcement Learning; Deep Learning; Multi

Agent

I. INTRODUCTION

Artificial intelligence helps us in many areas of our lives. It
will be at the forefront in the future, especially with the
developments in industry and health. Reinforcement
learning(RL) is one of the popular algorithms in the field of
artificial intelligence. With the combination of RL and deep
learning(DL), a deep reinforcement learning approach has
emerged. Due to the unsuccessful results of reinforcement
learning in continuous environments, it has led researchers to a
deep reinforcement learning approach. The policies used
undoubtedly have an effect on the success of deep reinforcement
learning approaches. Training will be successful with the policy
used, taking into account factors such as the training
environment, the problem presented, the qualifications of the
agents, and the complexity of the target. We can group policies
into three main categories as shown Fig.1. These are value-
based, actor-critic and policy-based policies.

,

In Policy-Based RL, the policy is randomly selected at the
beginning and the value function of that policy is in the
evaluation step. Then the new policy is found from the value
function calculated in the optimization step. The process repeats
until you find the most suitable policy. In this method, the policy
is updated directly.

In value-based policies, the random value function is initially
selected and then the new value function is calculated. This
process is repeated until you find the optimum value function.
The aim here is that the policy that follows the optimal value
function is the optimal policy. This policy is updated indirectly
through the value function.

Actor-critic policies are the approach that combines iterative
learning methods used in value-based and policy-based
methods. Also, actor-critic is accepted as the intersection of
these two methods.

We present an application to compare the policies used in the
deep reinforcement learning approach. In this application, the
two agents try to get another object out of the circle it is in in a
frictionless environment. Agents strike the object and apply a
force. This force occurs according to Newton's laws of motion.
Using four different policy algorithms (PPO, AC, DQN, PG),
the training of two homogeneous agents was carried out in the
same environment.

Deep reinforcement learning is a synthesis of deep learning
and reinforcement learning methods. The policies chosen for use
in the DRL directly affect the success of the system. An
incorrectly chosen policy will cause the success rate to drop

Policy

-Based

Value-

Based

Actor

Critic

Fig. 1. Categories of policy in Deep Reinforcement Learning

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 131

significantly. From this point of view, the success of the policies
used in different studies has been examined and the artificial
neural networks used together are presented in a table. Fig. 2
shows the architecture of the DRL algorithm.

Some studies related to deep reinforcement learning; The

DRL approach presented for the autonomous driving problem
[1], the CNN-based data enhancement technique [2], the study
investigating biological swarm behavior techniques [3], and the
study that regulates the most accurate broadcast band to establish
communication between vehicles using DRL are presented [4].
An end-to-end policy has been developed for navigating in a
crowded environment using Proximal Policy Optimization
(PPO) [5]. The comparative training results of LSTM, RNN and
CNN algorithms with DQN in an environment with fixed
obstacles are presented [6]. One of the most impressive results
in reinforcement learning is DeepMind [7], where an agent
performs superhuman by observing only screen pixels. They
also developed an algorithm that succeeded in Go [8]
competition for the first time. more specifically, it has been used
to learn policies in problems such as object detection [9],
captioning [10] or activity recognition [11] and image
classification [12].

As a result of the articles examined, comparative results of
the methods preferred in the problems discussed in these articles
are presented. The policies used in different environments and
problems have been examined. In addition, it is discussed why
these policies are chosen. Whether the observation space is
continuous or discrete is an important factor in policy choices. It
is clear that it will contribute to DRL and policies, since there
are few similar studies in the literature.

In section 2 provides information on deep reinforcement
learning and policies. Section 3 discusses policy analysis and
results. In chapter 4, the application environment in which
collaborative agents are trained and the algorithms used are
presented. Finally, in section 5, the result is given. Here, we
summarize our major contributions as follows.

- To the best of our knowledge, this study examined recent
studies of deep reinforcement learning in the literature. In
addition, it offers a collaborative deep RL solution for the multi-
agent problem.

- For the proposed problem, 4 different policies were trained
separately and the results were reported.

-The use of deep reinforcement learning algorithms in which
problems was explained with the analysis made. Also, the
policies used with DRL are explained in detail.

II. DEEP REINFORCEMENT LEARNING ALGORITHMS

COUPLED WITH POLICIES

Neural networks play a major role in approximating the

optimal value functions of reinforcement learning algorithms.

For this reason, in many problems, especially in the field of

robotics, artificial neural networks are used with reinforcement

learning algorithms. In this section, DRL algorithms and

policies used are presented in detail. In this context, there is a

terminology used to describe the components of a DRL

environment:

Agent: The decision-maker to train.

Environment: The general setting where the agents learn and

decide what action to take.

Action (𝑎) : One among the set of possible actions the agent can

perform

State (𝑠): Condition that the agent is in

Reward (𝑟): The gain or loss the agent receives from the

environment because of its own action

Policy (𝜋): The strategy that the agent chooses to pursue. It

represents a mapping between the set of situations and the set

of possible actions.

Off-policy: Policy have an experience replay memory, so the

agent can learn from previous data.

On-policy: The agents only learn about new data or

observations.

Model free: It means that the agent receives data directly from

the environment rather than making its own guess about the

environment.

Machine learning is an area of artificial intelligence that has

been developed since the 1960s. In machine learning,

experience is gained from previous actions to increase success

in solving a problem. Machine learning is examined under three

main headings. These; supervised learning, unsupervised

learning and reinforcement learning. The main goal in

supervised learning is to make an inference from labeled data,

in unsupervised learning, results are obtained from techniques

such as prediction or clustering using unlabeled data.

Reinforcement learning learns to improve his performance by

interacting with his environment and using the reward-penalty

system [13]. The agent chooses an action for each possible

situation and completes its action. An agent maximizes the

rewards he receives by repeating highly rewarding actions. In

this process, it should not choose for new actions to discover

the right actions. One of the most basic examples of strategies

used to manage this decision is the ɛ-greedy [14] approach. The

main goal in this strategy is for the agent to investigate the

environment as much as possible in the first episodes, and

Fig. 2. Deep Reinforcement Learning architecture

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 132

prefer exploitation to more than gradual exploration in the next

steps. Q-function’ defined as:(1)

Q
π
(s,a)=Eπ{∑ γkH-1

k=0 rk+1|s0=s,a0=a} (1)

In the RL problems, an agent interacts with environment

represented as a series of sϵS states. The agent selects an action

(at) from the action space (A) at each step (st) and receives a

reward (rt) for this action, repeating this action continuously in

next states (st + 1). The agent's goal is to maximize future

cumulative rewards. Accordingly, the agent tries to improve its

policy (π (a | s)) in which he chooses his actions to find out the

most appropriate policy (π). One of the differential feature of

reinforcement learning is the use of the reward signal to

formulate a goal. With the reward it receives, the agent is not

informed about what its next action will be, the ultimate goal is

to maximize the total amount of reward in the long time. That

is, the reward represents the signal that will lead to the final

goal.

Formally, Markov Decision Processes (MDP) are sequential

decision-making processes in which actions affect not only the

next reward but also the next states. MDP is a discrete stochastic

control process. Each problem that the agent aims to solve can

be thought as a sequence of states (S1, S2, S3…) as shown

eq.(2). Current state means transition s for the next state, it can

occur only with a certain possibility.

ℙ[𝑆𝑡+1|𝑆𝑡] = ℙ[𝑆𝑡+1|𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑡] (2)

The actions of reinforcement learning algorithms are based

on probability distributions of Q values. Real world problems

have continuous or very large discrete state areas. In this case,

it seems that every possible state is not taken into account. In

DRL, neural networks are used as a nonlinear function

approximation to overcome this problem. Especially in recent

years, outstanding works have been achieved in studies in the

field of deep learning (language processing, image processing,

etc.). These developments have led to an increased interest in

combining RL with neural networks. In DRL, neural networks

take situations as input and output the possible action. Neural

network architecture in DRL consists of at least two

components. These; different number of hidden layers and

action layers (pooling layer, fully connected layer, etc.) as

shown Fig.3.

Model-free algorithms learn a policy or value function

without making a prediction for the next state or reward. In

model-based algorithms, the agent learns a model to select an

action. These algorithms have been particularly successful in

robotics.

Correct use of policies is very important for reinforcement

learning. Therefore, it is necessary to pay attention to the nature

of the problem in policy selection. Choosing the right neural

network with policy will increase the success of training. In this

section, information is given about the policies used in

reinforcement learning. Table 1 shows the main characteristics

of the policy types used in the DRL.

TABLE 1. MAIN CHARACTERISTIC OF THE POLICY IN DRL

Policy Method Type Action Space
Q-Learning Off-policy Value-Based Discrete

DQN Off-policy Value-Based Discrete

Sarsa On-policy Value-Based Discrete

PG(Monte

Carlo)

On-policy Policy-Based Discrete or Continuous

AC On-policy Actor-Critic Discrete or Continuous

PPO On-policy Policy-Based Discrete or Continuous

DDPG Off-policy Policy-Based Continuous

TD3 Off-policy Policy-Based Continuous

Soft AC Off-policy Actor-Critic Continuous

We can examine the policy algorithms used in

reinforcement learning studies in the literature in three different

methods. The training algorithms of the policies presented in

this article are presented in the appendix.

A. Value-Based Methods

In this method, the value function is used to show the success
of the state and by learning the optimal value function, the
optimal policy is learned. Deep-Q learning, Q-learning and
Sarsa algorithms can be given as examples of value-based
method.

1) The Q-Learning algorithm
Q-Learning [13] is a model free and off policy RL algorithm.

Also, the observation space can be continuous or discrete. The
action space is discrete. During the training phase, the agent
explores the field of action using ϵ -greedy exploration. At each
step it chooses a random action based on the ϵ value, otherwise
it performs a greedy action according to the 1-ϵ function. To
predict the value function, a Q-learning agent uses neural
network Q (S, A), which is a table or function approximation.
This network takes S (observation) and A (action) as input and
returns long-term expectation of rewards as output. Once the
training is complete, the trained value-function approximation Q
(S, A) is also stored.

2) Deep Q-Network (DQN)

DQN is a model free and off policy DRL algorithm. The

observation space can be discrete or continuous, while the

action space is discrete. DQN trains a network to predict future

rewards. During the training, neural network parameters are

updated at each step, the training area is explored using ϵ-

greedy, this action is repeated according to the determined

Fig. 3. The interaction of the environment with the Deep Reinforcement
Learning

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 133

discount factor ratio, previous experiences are stored in the

experience buffer, the neural network is updated according to

the mini-batch experience randomly sampled from the buffer.

Calculates the two function approximations to estimate the

DQN value function.

Q (S, A): Observation (S) and action (A) are taken as input, and

the value corresponding to long-term reward is output.

Target Q '(S, A): The neural network is periodically updated

according to the parameter settings to stabilize the best result.

Both functions have the same structure and parameters.

3) SARSA

Sarsa is a model free and on policy RL algorithm [15]. The

Sarsa can be trained as an observation space in discrete or

continuous environments. It can be trained in discrete

environments as an action space. During the training, the agent

does the explore process using ϵ-greedy. To estimate the value

function, a Q- table or function approximation Q (S, A) is

calculated. After the training is completed, the trained value

function is save in the network approximation Q (S, A).

B. Policy-based Methods

One of the main differences between value-based and policy-

based methods is the methods they use during decision-making

[11]. However, while value-based methods evaluate the best

overall reward, policy-based methods focus on finding the most

appropriate policy for training. Algorithms that implement a

policy that decides which action to choose in each training step

are called policy-based algorithms. Policy-based algorithms are

more appropriate to be applied in stochastic environments or

environments with high-dimensional actions, as they can

represent continuous actions.

1) Policy Gradient (PG)

PG is a on policy and model free RL algorithm. It is also a

policy-based algorithm that directly calculates the optimal

policy that maximizes long-term reward. Agents trained with

the PG algorithm can be trained in environments with discrete

or continuous observations and actions space. During the

training, it predicts the probabilities of realization of each action

in the action environment and randomly chooses the actions

according to the possibility distribution. It completes the first

training episode without gaining any experience and updating

policy parameters.

2) Proximal Policy Optimization (PPO)
PPO [5] is a model free and on policy RL algorithm. This

algorithm is a type of PG training that uses stochastic gradient
descent to sample data through environmental interaction.
Agents trained with the PPO algorithm can be trained in
environments with a discrete or continuous observation space
and action space. During the training of the PPO agent, the
possibilities of each action in the action space are estimated and
randomly selects actions based on their possibility distribution.
Also, many episode interact with the environment using the
current policy before using mini-batch to update the parameters

of neural networks. It uses two function approximations to
predict the policy and value function:

Actor μ(S): The first network (actor) takes the S
(observation) and returns the rates at which each action is
performed in the action field.

Critic V(S): The second network(critic) takes, the S
(observation), and returns its expectation corresponding to
discounted long-term reward.

After the training is completed, the optimal policy
parameters trained are stored in μ (S).

3) Deep Deterministic PG (DDPG)

The DDPG [16] is a model free and off policy RL algorithm.

A DDPG algorithm uses an actor-critic framework that

calculates the optimal policy, making the long-term reward the

greatest. DDPG can be trained in continuous or discrete

observation space. It can also be trained in the continuous action

space. During the training phase, the actor-critic properties are

updated in each learning step.

Past experiences are stored by the experience buffer. The

algorithm updates the actor-critic, using experience as much as

the mini-batch that it randomly selects from the buffer. DDPG

uses 4 different function approximations to calculate the policy

and value function [17].

Actor μ(S): The actor takes the S (observation) and performs an

action to maximize the long-term reward.

Target Actor μ'(S): Periodically updates the target actor to

improve the optimization stability of the agent.

Critic Q(S, A): Critic takes the S (observation) and A (action)

as input and returns its value corresponding to the long-term

reward.

Target Critic Q'(S, A): The agent updates target critic

periodically to optimize its stability.

At the end of the training, the trained optimum policy actor is

stored as μ (S).

4) Twin-Delayed DDPG (TD3)
TD3 is a model free and off policy RL algorithm. This

learning algorithm adopts a method for reduce the
overestimation in function approximation. This method is
similar to the one implemented in the DDPG algorithm. It learns
two different Q-value functions. Also TD3 prefer the minimum
value function guess during policy updates [18].

The TD3 algorithm can be trained in environments with
continuous or discrete observation space and continuous action
space. A TD3 algorithm during the training, Updates the actor
and critic parameters at each time step during learning. The
agent use mini-batch of experience for updates the actor-critic.

C. Actor-Critic Based Methods

This methods are mixed methods that combine the benefits

of policy based and value based approaches. The actor is

responsible for choosing actions [19]. This evaluation

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 134

determines whether the expected situation is worse or better than

the chosen action. Makes gradient-based learning in both

networks. If J(θ):=Eπθ[r] equation represents a policy then θ is

a DNN parameter. Since improvement can be costly and slow in

continuous action environments, the DPG (Deterministic Policy

Gradient) algorithm represents actions by parameterizing them

as in the equation μ(s|θ
μ) [17].

1) Actor-Critic (AC)
AC is a model free and on policy RL algorithm [20]. The

purpose of agents using the AC algorithm is to train the actor to
directly optimize and calculate critic future rewards. In addition,
AC agents can be trained in environments that have an
observation and action space that are continuous and discrete.

During training, an AC agent predicts their probability of
performing every action in the action area. It then randomly
chooses actions based on their probability distribution. The AC
agents interact with the environment for multiple steps using the
existing policy before updating the actor and critic parameters.

To prediction the policy function and value function, an AC
agent uses two function approximators:

Actor μ(S): First one is actor algorithm. It takes S
(observation) and returns the probabilities of taking each action
in the action space when in state S.

Critic V(S): Second one is critic algorithm. It takes S
(observation) and returns the corresponding anticipation of the
discounted long-term reward.

The trained optimal policy is stored in μ(S) after the training.

III. POLICY ANALYSIS STUDY

In the previous section, the policies frequently used in the
literature are explained. In this section, methods used in articles
on deep reinforcement learning published in recent years are
analyzed. In these article, artificial neural networks and policies
used especially in the applications are examined. Table 2 shows
the types of problems of the studied article, which policy they
prefer and which neural network they use.

When Table 2 is examined, it is seen that policy-based
algorithms are generally preferred for image processing-based
problems, and value-based algorithms are preferred for signal
processing-based problems. Actor-Critic based policies are
preferred in more complex continues environments.

Furthermore, preferred policies differ in problems where
discrete and continuous environments are used. It has been
observed that more value-based policies are used in discrete
environments and actor-critic based policies are used in
continuous environments.

In summary, LSTM has been successful as an artificial
neural network in areas such as trading, speech recognition and
autonomous driving. The memory usage strategy of the LSTM
architecture has increased its success in these areas. In addition,
the use of Q-learning algorithms with LSTM is preferred in such
problems. The success of the DDPG policy algorithm in multi-
agent environments is clear.

TABLE 2. TYPE OF PROBLEMS IN ARTICLES

Type of Problem Used Policy Used NN

Autonomous Driving [1] [21]

[6] [22]

Sarsa, Q-Learning,

DDPG

CNN,

LSTM, RNN

Data Augmentation. [2] [23] AC,PPO CNN

Chip Placement [5] PPO CNN

Action Controller for

Multiplayer Games [24]

Dual PPO LSTM

Learning for Trading [25] [26] DQN,PG,AC LSTM, CNN

Energy Consumption
Forecasting [27]

A3C,DDPG,RDPG LSTM

Wind Speed Short Term

Forecasting [28]

Q-Learning LSTM

İmage Segmentation [29] [30] Q-Learning, DDPG CNN

Policies for Multi-Agent
Control [31] [32] [33] [34] [35]

PG,DDPG,DQN CNN

Intelligent System [36] [37] Q-Learning, DDPG LSTM,CNN

Minimalistic Attacks [38] [39]

[40]

DQN,PPO,AC,

DDPG,PG

CNN

New Policy Method [41] [42] PPO CNN

Learning of Speech [43] [44]

[45]

Q-Learning, PPO CNN,LSTM

Moving Obstacle Avoidance
[46], [3]

PG, AC, PPO CNN

Learning with Robust and

Smooth Policy [47]

TRPO, DDPG CNN

Object Detection in Large
Images [48] [49] [50] [51] [52]

PG,DQN CNN

Automatic Landing Control

[53] [54] [55]

DDPG,AC,DQN CNN

Cooperative Internet of UAVs
[56]

AC CNN

IV. COLLABORATIVE MULTI-AGENT SIMULATION

A. Simulation Environment

By using deep reinforcement learning, successful studies

have been carried out in multi-agent problems as well as in

single agent problems. In this study, the interaction of two

collaborative agents with a common goal is presented. The

purpose of agents is to get an object out of its location as quickly

as possible. Accordingly, agents move by applying force to the

object in cooperation.

Fig. 4. Training and test environment

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 135

The results were observed by training the agents with 4

different algorithms. The 4 algorithms used (PPO, AC, DQN,

PG) are explained in detail in Chapter 2. Fig. 4 shows the

training area. The red circle represents agent A, the green circle

represents agent B, and the blue circle represents the target

object.
For this environment:

The 2-dimensional space is bounded from –12 m to 12 m in
both the X and Y directions.

The contact spring stiffness and damping values are 100 N/m
and 0.1 N/m/s, respectively.

The agents share the same observations for positions,
velocities of A, B, and C and the action values from the last time
step.

The simulation terminates when target object moves outside
the circular ring.

At each time step, the agents receive the following reward:

𝑟𝐴 = 𝑟𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑟𝑙𝑜𝑐𝑎𝑙,𝐴

𝑟𝐵 = 𝑟𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑟𝑙𝑜𝑐𝑎𝑙,𝐵

𝑟𝑔𝑙𝑜𝑏𝑎𝑙 = 0.001𝑑𝑐

𝑟𝑙𝑜𝑐𝑎𝑙,𝐴 = −0.005𝑑𝐴𝐶 − 0.008𝑢2𝐴

𝑟𝑙𝑜𝑐𝑎𝑙,𝐵 = −0.005𝑑𝐵𝐶 − 0.008𝑢2𝐵

Here:

𝑟𝐴 and 𝑟𝐵 are the rewards received by agents A and B,

respectively.

𝑟𝑔𝑙𝑜𝑏𝑎𝑙 is a team reward that is received by both agents as object

C moves closer towards the boundary of the ring.

𝑟𝑙𝑜𝑐𝑎𝑙,𝐴 and 𝑟𝑙𝑜𝑐𝑎𝑙,𝐵 are local penalties received by agents A and

B based on their distances from object C and the magnitude of

the action from the last time step.

 𝑑𝐶 is the distance of object C from the center of the ring.

 𝑑𝐴𝐶 and 𝑑𝐵𝐶are the distances between agent A and object C

and agent B and object C, respectively.

𝑢𝐴 and 𝑢𝐵 are the action values of agents A and B from the
last time step.

Fig. 5 shows the working principle of the training simulation.
Simulations were run on an Intel(R) Core(TM) i5-7200U CPU
with 2.70 GHz clock rate and 8 GB of RAM.

B. Experiment Results

The parameters used in the experiments are determined the

same. The training options specified in Table 3 are set to train

the agents. The training is ran a maximum of 800 episodes with

a maximum of 5000 time steps for each segment. Training is

stopped when the average reward for 100 consecutive episodes

is -10 or more. These experiments uses different policy agents

with discrete action spaces.

TABLE 3. PARAMETERS OF TRAINING ENVIRONMENT

Parameter Value

Max Episodes 800

Time Steps Per Episode 5000

Score Averaging Window Length 100

Stop Training Value -10

1) Experiment I
The PPO algorithm is used in the first experiment. PPO

algorithms support actor and critic that use recurrent DNN as
functions approximators. The training results of the two
different agents are given in Fig.6 and 7.

Fig.5. The working principle of training simulation

Fig. 6. Episode reward for PPO with agent A

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 136

Examining the training results, it is seen that the agents
reached the ideal success point during the 800-episode training.
The training lasted approximately 4 hours and 50 minutes. At
the end of the training, agent A's average reward was -10.68, and
agent B's average reward was -11.18.

2) Experiment II

The PG algorithm is used in the second experiment. PG

algorithms use the REINFORCE algorithm either with or

without a baseline. The training results of the two different

agents are given in Fig.8 and 9. When the figures in Experiment

2 were examined, it is seen that PG agents could not learn

regularly. One of the reasons for this may be that the maximum

training episode is not sufficient. Experiments can be done to

solve this problem in the next study. The training lasted

approximately 9 hours . At the end of the training, agent A's

average reward was -228.57, and agent B's average reward was

-193.47.

3) Experiment III

The DQN algorithm is used in the third experiment. DQN

algorithms support critic that use recurrent DNN as functions

approximators. In the DQN algorithm, unlike the others, the

average reward value was changed from -10 to +10 in order to

terminate the training. This is because DQN trains a single

network and the reward average may be higher in the first

episodes than others. The training results of the two different

agents are given in Fig.10 and 11. When the figures were

examined, it is seen that the DQN algorithm has successfully

completed the 800-part training. Continues as soon as possible

and with maximum reward, especially after the 400th episode.

The training lasted approximately 2 hours. At the end of the

training, agent A's average reward was -3.65, and agent B's

average reward was -1.7.

4) Experiment IV
The AC algorithm is used in the third experiment. Agents

trained with AC soon reached the ideal average reward line. The
training lasted 2 hours and 20 minutes in total. In the AC
algorithm, unlike the others, the average reward value was
changed from -10 to +10 in order to terminate the training. The
reason for this is to ensure that the training lasts 800 episodes.
At the end of the training, agent A's average reward was -7.2,
and agent B's average reward was -7.3. The training results of
the two different agents are given in Fig.12 and 13.

Fig. 7. Episode reward for PPO with agent B

Fig.8. Episode reward for PG with agent A

Fig.9. Episode reward for PG with agent B

Fig. 11. Episode reward for DQN with agent B

Fig. 10. Episode reward for DQN with agent A

Fig.12. Episode reward for AC with agent A

Fig.13. Episode reward for AC with agent B

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 137

C. Test Results of Collaborative Task problem

According to the test results indicated in the Fig.14 the DQN

agent was able to remove the blue object from the circle it was

in as quickly as possible. In addition, DQN completed its

training in a shorter time compared to other algorithms during

the training phase. PG algorithm was not successful at the end

of 800 episodes of training and could not complete its task in

50 seconds test period. PPO and AC algorithms have completed

their tasks in about a period of time. The biggest feature that

distinguishes DQN algorithm from others is that it is value

based.

All DRL algorithms proposed in Table 4 include model-free.
So, none of the above are trying to estimate the objective
function. Alternatively, these algorithms update their knowledge
based on heuristic approach. The difference of DQN algorithm
from other algorithms is that it is off-policy. Due to this
difference, it has been more successful than other algorithms.
PPO has improved its performance by changing the target
function to reduce the complexity of implementation and
computing. PPO agents get rid of the computation created by
forced optimization as it suggests a clipped surrogate objective
function.

TABLE 4.COMPARATIVE PROPERTIES OF THE ALGORITHMS USED IN THE

EXPERIMENTS

V. CONCLUSION

Artificial intelligence is a field of study that aims to

understand intelligence and create intelligent entities. The fastest
progress in this area has been provided by the studies in the field
of machine learning. In the studies conducted in the field of
machine learning, reinforcement learning has been maintaining
its popularity in recent years. With the technological
developments in robotic and industry, artificial intelligence will
be in our lives for many years.

Two different studies are presented in this article. Both
studies emphasize the importance of policy choices in deep
reinforced learning problems. First, DRL studies published in
recent years have been examined. In these studies, what kind of
problems are used and which policies are preferred for these
problems have been investigated. According to researches,
policy choices are directly related to the training environment
and the problem. The importance of choosing the right policy
for a successful outcome has emerged. It is seen that DDPG
algorithms are used and successful, especially in the robotic
field. Although policy choice is important, the choice of artificial
neural networks used in deep reinforced learning is also
important. It has been determined that LSTM architecture is
used in language processing problems and CNN architecture is
used in image processing problems. In future studies, especially
the development of hybrid systems will increase the success in
solving many problems.

In the second study, two different agents acting with a
collaborative approach were trained with four different policy
algorithms and their results were compared. As seen in the test
results, the agent trained with the DQN algorithm successfully
completed its task in 39 seconds, the agent trained with the ppo
algorithm in 915 seconds, and the agent trained with the Ac
algorithm in 111 seconds. However, the agent trained with the
PG algorithm could not complete the task in the specified time.
The fact that this problem is in discrete action space has been
effective in the chosen policies. Accordingly, the DQN
algorithm has been more successful than the others. Since he
only needed to train one network, the training time was shorter
than the others.

Policy Method Type Model Action

Space

Observation

Space

DQN Off-
policy

Value-
Based

Model-
free

Discrete Continuous

PG(Monte

Carlo)

On-

policy

Policy-

Based

Model-

free

Discrete or

Continuous

Continuous

AC On-
policy

Actor-
Critic

Model-
free

Discrete or
Continuous

Continuous

PPO On-

policy

Policy-

Based

Model-

free

Discrete or

Continuous

Continuous

(a)

 (c)

(b)

(d)

Fig.14. Test result of algorithms after training

 (a- PPO, b- PG, c- AC, d-DQN)

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 138

REFERENCES

[1] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S.
Yogamani and P. Pérez, "Deep Reinforcement Learning for Autonomous
Driving: A Survey," arXiv:2002.00444, 2020.

[2] I. Kostrikov, D. Yarats and R. Fergus, "Image Augmentation Is All You
Need: Regularizing Deep Reinforcement Learning from Pixels,"
arXiv:2004.13649, 2020.

[3] T. Fan, P. Long, W. Liu and J. Pan, "Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios," The International Journal of Robotics Research, vol. 39, no. 7,
pp. 856-892, 2020.

[4] Z. Cao, H. Guo, W. Song, K. Gao, Z. Chen, L. Zhang ve X. Zhang, «Using
Reinforcement Learning to Minimize the Probability of Delay Occurrence
in Transportation,» IEEE Transactions on Vehicular Technology, cilt 69,
no. 3, pp. 2424-2436, 2020.

[5] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-
J. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K.
Srinivasa, W. Hang, E. Tuncer, A. Babu, Q. V. Le and J. La, "Chip
Placement with Deep Reinforcement Learning," arXiv:2004.10746, 2020.

[6] Z. Tan and M. Karaköse, "Comparative Study for Deep Reinforcement
Learning with CNN, RNN, and LSTM in Autonomous Navigation," 2020
International Conference on Data Analytics for Business and Industry:
Way Towards a Sustainable Economy (ICDABI), 2020.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg and D. Hassabis, "Human-level control through deep
reinforcement learning," nature, pp. 529-533, 2015.

[8] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre and V. Den,
"Mastering the game of Go with deep neural networks and tree search,"
nature, vol. 529, p. 484, 2016.

[9] J. C. Caicedo and S. Lazebnik, "Active Object Localization With Deep
Reinforcement Learning," Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 2488-2496, 2015.

[10] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel
and Y. Bengio, "Show, attend and tell: Neural image caption generation
with visual attention.," In International Conference on Machine Learning,
pp. 2048-2057, 2015.

[11] S. Yeung, O. Russakovsky, G. Mori and L. Fei-Fei, "End-to-end learning
of action detection from frame glimpses in videos," In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2678-
2687, 2015.

[12] A. Maldonado-Ramirez, R. Rios-Cabrera and I. Lopez-Juarez, "A visual
path-following learning approach for industrial robots using DRL,"
Robotics and Computer-Integrated Manufacturing, vol. 71, 2021.

[13] C. J. Watkins and P. Dayan, "Q-Learning," Machine Learning, vol. 3, no.
8, pp. 279-292, 1992.

[14] Z. Tan and M. Karaköse, "Optimized Deep Reinforcement Learning
Approach for Dynamic System," 2020 IEEE International Symposium on
Systems Engineering (ISSE), pp. 1-4, 2020.

[15] D. Zhao, H. Wang, K. Shao and Y. Zhu, "Deep reinforcement learning with
experience replay based on SARSA," 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1-6, 2016.

[16] S. Fujimoto, H. v. Hoof and D. Meger, "Addressing Function
Approximation Error in Actor-Critic Methods," arXiv:1802.09477, 2018.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra, "Continuous control with deep reinforcement learning.,"
arXiv preprint arXiv:1509.02971, 2015.

[18] Q. Shi, H.-K. Lam, C. Xuan and M. Chen, "Adaptive neuro-fuzzy PID
controller based on twin delayed deep deterministic policy gradient
algorithm," Neurocomputing, vol. 402, pp. 183-194, 2020.

[19] R. J. Williams, "Simple statistical gradient-following algorithms for
connectionist reinforcement learning," Machine Learning, pp. 229-256,
1992.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P, Lillicrap, T. Harley, D.
Silver and K. Kavukcuoglu, "Asynchronous Methods for Deep
Reinforcement Learning," In International conference on machine learning
, pp. 1928-1937, 2016.

[21] S. Aradi, "Survey of Deep Reinforcement Learning for Motion Planning of
Autonomous Vehicles," IEEE Transactions on Intelligent Transportation
Systems, pp. 1-20, 2020.

[22] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu and Z. Li,
"Toward A Thousand Lights: Decentralized Deep Reinforcement Learning
for Large-Scale Traffic Signal Control," Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 4, pp. 3414-3421, 2020.

[23] R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov and R. Fergus,
"Automatic Data Augmentation for Generalization in Deep Reinforcement
Learning," arXiv:2006.12862, 2020.

[24] W. Liang, W. Huang, J. Long, K. Zhang, K.-C. Li ve D. Zhang, «Deep
Reinforcement Learning for Resource Protection and Real-Time Detection
in IoT Environment,» IEEE Internet of Things Journal, cilt 7, no. 7, pp.
6392 - 6401, 2020.

[25] Z. Zhang, S. Zohren and S. Roberts, "Deep Reinforcement Learning for
Trading," The journal of dinancial data science, vol. 2, no. 2, pp. 25-40,
2020.

[26] X. Wu, H. Chen, J. Wang, L. Troiano, V. Loi and H. Fujita, "Adaptive
stock trading strategies with deep reinforcement learning methods,"
Information Sciences, vol. 538, pp. 142-158, 2020.

[27] T. Liu, Z. Tan, C. Xu, H. Chen and Z. Li, "Study on deep reinforcement
learning techniques for building energy consumption forecasting," Energy
and Buildings, vol. 208, 2020.

[28] H. Liu, C. Yu, H. Wu, Z. Duan and G. Yan, "A new hybrid ensemble deep
reinforcement learning model for wind speed short term forecasting,"
Energy, vol. 202, 2020.

[29] N. Zeng, H. Li, Z. Wang, W. Liu, S. Liu, F. E. Alsaadi and X. Liu, "Deep-
reinforcement-learning-based images segmentation for quantitative
analysis of gold immunochromatographic strip," Neurocomputing, 2020.

[30] Z. Tian, X. Si, Y. Zheng, Z. Chen and X. Li, "Multi-Step Medical Image
Segmentation Based on Reinforcement Learning," Journal of Ambient
Intelligence and Humanized Computing, vol. 543, pp. 1-12, 2020.

[31] C. D. Hsu, H. Jeong, G. J. Pappas and P. Chaudhari, "Scalable
Reinforcement Learning Policies for Multi-Agent Control,"
arXiv:2011.08055, 2020.

[32] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang and S. Russell, "Robust Multi-
Agent Reinforcement Learning via Minimax Deep Deterministic Policy
Gradient," Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, pp. 4213-4220, 2019.

[33] Z. Yan and Y. Xu, "A Multi-Agent Deep Reinforcement Learning Method
for Cooperative Load Frequency Control of a Multi-Area Power System,"
Transactions on Power Systems, vol. 35, no. 6, pp. 4599-4608, 2020.

[34] H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen and C. Fan, "Deep Multi-Agent
Reinforcement Learning with Discrete-Continuous Hybrid Action
Spaces," arXiv preprint arXiv:1903.04959, 2019.

[35] W. Ding, S. Li, H. Qian and Y. Chen, "Hierarchical Reinforcement
Learning Framework Towards Multi-Agent Navigation," in International
Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur,
Malaysia, 2019.

[36] M. Ausin, "Leveraging Deep Reinforcement Learning for Pedagogical
Policy Induction in an Intelligent Tutoring System," Proceedings of the
12th International Conference on Educational Data Mining, pp. 168-177,
2019.

[37] A. Haydari and Y. Yilmaz, "Deep Reinforcement Learning for Intelligent
Transportation Systems: A Survey," IEEE Transactions on Intelligent
Transportation Systems, pp. 1-22, 2020.

[38] X. Qu, Z. Sun, Y. S. Ong, A. Gupta and P. Wei, "Minimalistic Attacks:
How Little it Takes to Fool Deep Reinforcement Learning Policies," IEEE
Transactions on Cognitive and Developmental Systems, 2020.

[39] A. Russo and A. Proutiere, "Optimal Attacks on Reinforcement Learning
Policies," arXiv:1907.13548, 2019.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 139

[40] M. Lopez-Martin, B. Carro and A. Sanchez-Esguevillas, "Application of
deep reinforcement learning to intrusion detection for supervised
problems," Expert Systems with Applications, vol. 141, 2020.

[41] J. H. Tianpei Yang, Z. Meng, Z. Zhang, Y. Hu, Y. Cheng, C. Fan, W.
Wang, Z. W. Wulong Liu and J. Peng, "Efficient Deep Reinforcement
Learning via Adaptive Policy Transfer," arXiv preprint arXiv:2002.08037,
2020.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov,
"Proximal Policy Optimization Algorithms," arXiv:1707.06347 [cs.LG],
2017.

[43] H. Cuayahuitl and S. Yu, "Deep reinforcement learning of dialogue
policies with less weight updates," International Conference of the Speech
Communication Association (INTERSPEECH),, 2017.

[44] V. S. Dorbala, A. Srinivasan and A. Bera, "Can a Robot Trust You? A
DRL-Based Approach to Trust-Driven Human-Guided Navigation,"
arXiv:2011.00554, 2020.

[45] T. Rajapakshe, R. Rana, S. Latif, S. Khalifa and B. W. Schuller, "Pre-
training in Deep Reinforcement Learning for Automatic Speech
Recognition," arXiv:1910.11256, 2019.

[46] A. Garg, H.-T. L. Chiang, S. Sugaya, A. Faust and L. Tapia, "Comparison
of Deep Reinforcement Learning Policies to Formal Methods for Moving
Obstacle Avoidance," International Conference on Intelligent Robots and
Systems (IROS), pp. 3534-3541, 2019.

[47] Q. Shen, Y. Li, H. Jiang, Z. Wang and T. Zhao, "Deep Reinforcement
Learning with Robust and Smooth Policy," proceedings of the 37th
International Conference on Machine Learning, vol. 119, pp. 8707-8718,
2020.

[48] B. Uzkent, C. Yeh and S. Ermon, "Efficient Object Detection in Large
Images Using Deep Reinforcement Learning," Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pp. 1824-1833, 2020.

[49] A. Pirinen and C. Sminchisescu, "Deep Reinforcement Learning of Region
Proposal Networks for Object Detection," Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6945-6954,
2018.

[50] M. B. Bueno, X. Giró-i-Nieto, F. Marqués and J. Torres, "Hierarchical
Object Detection with Deep Reinforcement Learning," Deep Learning for
Image Processing Applications, vol. 164, no. 3, p. 31, 2017.

[51] X. Kong, B. Xin, Y. Wang and G. Hua, "Collaborative Deep
Reinforcement Learning for Joint Object Search," Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1695-1704,
2017.

[52] X. L. Zequn Jie, J. Feng, X. Jin, W. F. Lu and S. Yan, "Tree-Structured
Reinforcement Learning for Sequential Object Localization," arXiv
preprint arXiv:1703.02710, 2017.

[53] C. Tang and Y.-C. Lai, "Deep Reinforcement Learning Automatic Landing
Control of Fixed-Wing Aircraft Using Deep Deterministic Policy
Gradient," 2020 International Conference on Unmanned Aircraft Systems
(ICUAS), 2020.

[54] L. Cheng, F. Jiang and Z. Wang, "Real-time control for fuel-optimal
Moon Landing Based on an Interactive Deep Reinforcement Learning
Algorithm," Astrodynamics , vol. 3, pp. 375-386, 2019.

[55] Y. Xu, Z. Liu and X. Wang, "Monocular Vision based Autonomous
Landing of Quadrotor through Deep Reinforcement Learning," in 37th
Chinese Control Conference (CCC), Wuhan, 2018.

[56] J. Hu, H. Zhang, L. Song, R. Schober and H. V. Poor, "Cooperative Internet
of UAVs: Distributed Trajectory Design by Multi-Agent Deep
Reinforcement Learning," IEEE Transactions On Communications, vol.
68, no. 11, pp. 6807-6821, 2020.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 135

APPENDIX

The training algorithms of the policies presented in this

article are given in this section.

Fig. 15. Training algorithm of Q-Learning

Fig. 16. Training algorithm of Deep Q- Learning

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 136

Fig.17. Training algorithm of SARSA

Fig.18. Training algorithm of PG

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 137

Fig.19. Training algorithm of PPO

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 138

Fig. 20. Training algorithm of DDPG

Fig.21. Training algorithm of TD3

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 3, May 2021

www.ijcit.com 139

Fig. 22. Training algorithm of AC

http://www.ijcit.com/

