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Abstract— Most existing synthesis approaches in reversible logic 

result in circuits that may not be optimal in terms of cost metrics 

such as the gate count, the number of garbage lines or the quantum 

cost. Hence post synthesis optimization approaches are used to 

generate simplified circuits. This paper proposes ten templates for 

optimizing SWAP and Fredkin gates based reversible circuits. We 

have also proposed the moving rule which can be used in SWAP-

Fredkin based circuits. We have applied these templates with 

moving rule in SWAP and Fredkin gates-based circuits, and 

achieved (on average) a 16% reduction in quantum cost. 

Keywords-reversible logic; synthesis; post synthesis 

optimization; template matching; moving rule; logic gates 

I.  INTRODUCTION AND MOTIVATION 

In recent years, reversible computing has established itself as a 

promising research area and emerging technology. This is 

motivated by a widely supported prediction that conventional 

computer hardware technologies will reach their limits in the 

near future. Limitations of traditional computing, such as heat 

dissipation, can become an obstacle for the further development 

of current technology [1]. Reversible computing [2] offers a 

solution to this potential deadlock of further development in 

traditional computing. The concept of synthesis is very 

important in designing reversible logic circuits. Synthesis refers 

to the transformation of a logic function into a corresponding 

logic circuit. There can be more than one reversible circuit for 

implementing a single function. The relationship between the 

inputs and the outputs of a logic function determines the 

number of the logic gates, type of logic gates used, and the order 

in which the logic gates appear in the circuit. If a logic function 

is already reversible, the synthesis process can take place 

immediately. However, if a logic function is not reversible, the 

first step in most synthesis algorithms is to transform the 

irreversible function into a reversible one. One or more garbage 

outputs and/or constant inputs are added to an irreversible 

function in order to transform the irreversible logic function 

into a reversible logic function [3]. 
The minimum number of garbage outputs which are required 

in order to transform an irreversible function into a reversible 
function is log2K, where K is the maximum number of a repeated 
pattern in the output of an irreversible function [3]. A reversible 
circuit generated by a synthesis method may not be optimal from 
the perspective of the number of garbage lines, quantum cost 

and/or gate count. A circuit design that offers fewer garbage 
lines and/or lower GC and QC is desirable.  

 

 

 

 

 

 

 

(a) NOT gate                  (b) n-bit Toffoli gate 

 

 

 

 

 

(c) SWAP gate                 (d) 3-bit Fredkin gate 

Figure 1: Commonly used reversible logic gates 

After synthesis takes place, several strategies can be used in 
order to simplify reversible circuits, including template 
matching optimization [4-7] and rule based optimization [8, 9]. 
In this paper, we have considered template matching as post 
synthesis optimization technique in order to simpify reversible 
circuits. 

The rest of the paper is organized as follows: Section II 
provides the fundamentals of reversible computing; Section III 
describes the basis of template matching; our proposed 
templates are introduced in Section IV; Section V describes our 
proposed moving rule, this section also introduces our proposed 
template matching algorithm followed by the experimental 
results; Section VI draws the conclusion of this paper and 
provides future research direction.    
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II. BACKGROUND 

A. Reversible Logic 

A reversible logic function has the form 𝑓: 𝐵𝑛 → 𝐵𝑛 , 

where n is a non-negative integer and the domain 𝐵 = 
{0,1} , with the key feature being that the function is 

bijective. More specifically, the number of inputs and the 

number of outputs of a reversible function are exactly the same. 
In particular, there is always a distinct output state for each of 
the possible input states [1, 2]. 

B. Revesible Logic Gates 

Let 𝑋 ≔ {𝑥1, 𝑥2, …… , 𝑥𝑛} be the set of Boolean variables. 

Then a reversible gate has the form 𝑔(𝐶, 𝑇) , where 𝐶 =
{𝑥𝑖1, … . . , 𝑥𝑖𝑘} ∈ 𝑋  is the set of control lines and T =

{𝑥𝑗1, … . . , 𝑥𝑗𝑙} ∈ 𝑋 with 𝐶 ∩ 𝑇 = ∅ is the set of target lines [10].  
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Figure 2: Two templates presented in [11] 

 

Two commonly used reversible gates are Toffoli gates and 

Fredkin gates [10]. A Toffoli gate with no controls is a NOT 

gate i.e. 𝑔(0, 𝑥𝑗1). Similarly, a Toffoli gate 𝑔(𝑥𝑖1, 𝑥𝑗1) can be 

thought of as a controlled NOT (or CNOT) gate, and 

𝑔({𝑥𝑖1, … . , 𝑥𝑖𝑛}, 𝑥𝑗1)  is a 𝑛 -bit Toffoli gate. A Fredkin gate 

with no controls is a SWAP gate 𝑔(𝑥𝑗1, 𝑥𝑗2) , which 

interchanges the two target input bits at output. A n-bit positive 

control Fredkin gate 𝑔({𝑥𝑖1, …… , 𝑥𝑖𝑛}, 𝑥𝑗1, 𝑥𝑗2)  interchanges 

the two target bits at output when all the control inputs are equal 

to 1. A reversible gate may also have negative control. In this 

case the gate becomes active when negative control has a value 

of 0. Fig. 1 shows several commonly used reversible logic 

gates. 

C. CostMetrics 

Two important metrics used to compare reversible circuit 

implementations are gate count and quantum cost. The gate 

count (GC) is the number of gates in a circuit and the quantum 

cost (QC) is the number of basic quantum gates required to 

implement macro-level reversible gates such as the Toffoli and 

Fredkin gates [12, 13]. For example, the QC of a CNOT gate is 

1, and QC of a SWAP gate is 3. The QC of a (3 × 3) Toffoli 

and a (3 × 3) Fredkin gate is 5 [14]. 

III. TEMPLATE MATCHING 

A template consists of two patterns of gates which are 

equivalent to each other. Template matching is a process to find 

a pattern of gates that can be replaced by another equivalent 

pattern of gates in order to simplify a circuit design. Miller et 

al. introduce templates for 2 and 3 input reversible circuits as 

well as a template matching algorithm [11]. This algorithm 

searches for a pattern of gates in a reversible circuit and replaces 

the pattern by another simpler pattern of gates. An extension of 

this algorithm is presented in [38]. Fig. 2 shows two templates 

presented in [11]. The output functions of both circuits in Fig. 

2(a) are evaluated as 𝑥 = 𝑎, 𝑦 = 𝑎 ⊕ 𝑏 and 𝑧 = 𝑎 ⊕ 𝑐. Thus 

these two circuits perform the same reversible function. The left 

hand circuit has a GC of 3 and QC of 11. However, both the GC 

and QC of the right hand circuit are 2. Therefore, the right hand 

circuit design is more efficient in terms of GC and QC. Maslov 

et al. introduced some templates based on Toffoli and Fredkin 

gates in [15]. Templates based on both positive and negative 

controls are presented by Datta et al. [16] and Rahman et al. [7]. 

Iwama et al. also present rules which can be used to simplify 

reversible circuits [9]. Other rule based post synthesis 

optimization works include [8, 17]. 

 

The deletion rule for NCT-based circuits can also be used to 

optimize SF circuits. However, not all NCT-based rules are 

useful for optimizing SF based circuits. For example, the 

moving rule proposed for NCT gates is a useful approach for 

simplifying reversible circuits. The moving rule states that two 

adjacent gates 𝑔1(𝑐1, 𝑡1) and 𝑔2(𝑐2, 𝑡2) can be interchanged if 

the target of one gate is not a control of another gate, i.e. 𝑐1 ∩
𝑡2 = ∅ and 𝑐2 ∩ 𝑡1 = ∅.  

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3: A SF circuit where the moving rule does not work 

 

The moving rule is particularly useful in order to find a 

template in a circuit. However, this moving rule works only on 

NCT based reversible circuits. Fig. 3 shows an example of a SF 

based circuit where the moving rule cannot be applied. 

According to the moving rule, two gates can be interchanged if 

controls of one gate are not the target of other gate. Fig. 3(a) 

shows a circuit that consists of two 3-bit Fredkin gates. Since 

the control of one gate is not a target of another gate, the two 

gates are interchanged as shown in Fig. 3(b). However, these 

two circuits are not equivalent. In this paper, we have modified 

the moving rule for applications in SF based reversible circuits. 
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IV. PROPOSED TEMPLATES 

Most existing reversible circuit optimization techniques 

focus on NCT gates. This section presents templates for SF gate 

based reversible circuits. We consider both template matching 

and rule based simplification for circuit optimization. The basic 

difference between rule based simplification and template 

matching is that templates must match specific patterns of 

gates, while rules can be applied to a broad group of gates. For 

better understanding we refer to both templates and rules as 

templates in this dissertation. Note that G(C;T) represents a gate 

G from the SF gates family. C and T represent the sets of the 

control points and the targets of G, respectively. We are 

describing the operations of only two templates in detail due to 

the page limitation. 

 

Template 1: Two adjacent gates 𝐺1(𝐶1; 𝑇1) and 𝐺2(𝐶2; 𝑇2) can 

be removed from a circuit if 𝐶1 = 𝐶2 and 𝑇1 = 𝑇2. That is, if 

targets of a SWAP gate are on the same line as that of an 

adjacent SWAP gate, the two SWAP gates can be removed 

from the circuit. In case of a Fredkin gate, when the controls 

and targets of two adjacent gates are the same in polarity and 

operate on the same line, the two Fredkin gates have no effect 

on circuit operation.  

 

(i) 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝑆𝑊𝐴𝑃(𝑡1𝑡2) ≡ 𝐼 
(ii) 𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)𝐹𝐸𝐸𝐷(𝑐; 𝑡1𝑡2) ≡ 𝐼 
(iii) 𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2)𝐹𝐸𝐸𝐷(𝑐̅; 𝑡1𝑡2) ≡ 𝐼 
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(c) (d) 

Figure 4: Template 2 

 

Template 2: The next template can be applied when a cascade 

of a SWAP gate and a 3-bit positive control Fredkin gate appear 

in such a way that the targets of the SWAP and the Fredkin 

gates are on the same lines of a circuit. This sequence of two 

gates can be replaced by a 3-bit negative control Fredkin gate. 

The control and the targets of the negative control Fredkin gate 

appear on the corresponding lines where the control and the 

targets of the positive control Fredkin gate appear. That is, for 

two adjacent gates 𝐺1(𝑇1) and  𝐺2(𝐶; 𝑇2) if 𝑇1 = 𝑇2 , the two 

gates can be replaced by 𝐺1(𝐶̅; 𝑇1). 

 

(i) 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2) 

(ii) 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2) 
 

Suppose 𝑝 and 𝑞 are the two outputs of the SWAP gate in Fig. 

4(a). Here 𝑝 = 𝑏 and 𝑞 = 𝑎. The output of the Fredkin gate will 

be 𝑥 = 𝑐̅𝑝 ⊕ 𝑐𝑞 = 𝑐̅𝑏 ⊕ 𝑐𝑎, 𝑦 = 𝑐𝑝 ⊕ 𝑐̅𝑞 = 𝑐𝑏 ⊕ 𝑐̅𝑎, 𝑧 = 𝑐 . 

The outputs of the negative control Fredkin gate in this figure 

are 𝑥 = 𝑐̅𝑏 ⊕ 𝑐𝑎, 𝑦 = 𝑐𝑏 ⊕ 𝑐̅𝑎, 𝑧 = 𝑐 . Thus, the two circuits 

in this figure are equivalent to each other. Template 2 reduces 

both GC and QC by 1. 

 

Template 3: Two adjacent gates 𝐺1(𝐶1; 𝑇1) and 𝐺2(C̄2; 𝑇2) by 

𝐺(𝑇1)  if 𝐶1 = C̄2 and 𝑇1 = 𝑇2.  Template 3 reduces QC by 70% 

and GC by 1.  

 

𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2) ≡ 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2) 
 

Template 4: This template is applicable when a 3-bit Fredkin 

gate, 𝐹𝑅𝐸𝐷(𝐶1; 𝑇1)  and a 4-bit Fredkin gate, 𝐹𝑅𝐸𝐷(𝐶2; 𝑇2) 
appear in such a way that 𝐶1 ∩ 𝐶2 = 𝐶1  and 𝑇1 = 𝑇2. Template 

4 reduces QC from 18 to 13. The GC is also reduced to 1. 
 

𝐹𝑅𝐸𝐷(𝑐1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐1, c̄2; 𝑡1, 𝑡2) 
𝐹𝑅𝐸𝐷(c̄1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(c̄1, c2; 𝑡1, 𝑡2) 

 

Template 5: The next template is an example of a circuit 

optimization using template matching when a pattern of gates 

is replaced by another pattern of gates. The QC is reduced by 3 

after applying this template to a circuit. 

 

𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(t̄2; 𝑡1, 𝑐)𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(c̄; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(t̄2; 𝑡1, 𝑐) 

 

Template 6: Template 6 can be applied to simplify two n-bit 

Fredkin gates when 𝑛 ≥ 4. Two adjacent 𝑛-bit Fredkin gates 

𝐺1(𝐶1 ∪ 𝑐𝑖; 𝑇1) and 𝐺2(𝐶2 ∪ c̄𝑖; 𝑇2) can be replaced by a 𝑛 − 1-

bit Fredkin Gate 𝐺3(𝐶3; 𝑇3) , where 𝐶1 = 𝐶2 = 𝐶3 , and 𝑇1 =
𝑇2 = 𝑇3. 

 

𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐2; 𝑡1, 𝑡2) 
𝐹𝑅𝐸𝐷(c̄1, c̄2; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c1, c̄2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(c̄2; 𝑡1, 𝑡2) 

𝐹𝑅𝐸𝐷(𝑐1, 𝑐2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c1, 𝑐2, c̄3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2) 

𝐹𝑅𝐸𝐷(c̄1, c̄2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2, c̄3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(c̄1, c̄3; 𝑡1, 𝑡2) 

 

Template 7: Template 7 can be applied when two adjacent 4-bit 

Fredkin gates appear in such a way that the controls and the 

targets of both gates are on the same line. However, the 

polarities of control points on same line are different. The GC 

remains the same after applying this template, however, the QC 

reduces from 26 to 10. 

 

𝐹𝑅𝐸𝐷(c1, c̄2; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐2; 𝑡1, 𝑡2) 
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Template 8: The GC remains the same after applying this 

template, however, the QC is reduced by 2. 

 
𝐹𝑅𝐸𝐷(c̄1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2)

≡ 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c1, c̄2; 𝑡1, 𝑡2) 
𝐹𝑅𝐸𝐷(c1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄2; 𝑡1, 𝑡2)

≡ 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2; 𝑡1, 𝑡2) 

 

Template 9: Template 9 is applicable to 5-bit Fredkin gates. 

Unlike other templates, Template 9 increases GC by 1. 

However, QC is reduced from 58 to 31. 

 

𝐹𝑅𝐸𝐷(𝑐1, 𝑐2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄2, 𝑐3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐2, 𝑐3; 𝑡1, 𝑡2) 
𝐹𝑅𝐸𝐷(c̄1, c̄2, c̄3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐2, c̄3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(c̄3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄2, c̄3; 𝑡1, 𝑡2) 

 

Template 10: Template 10 works for two 5-bit Fredkin gates. 

The GC for this template remains the same, however QC is 

reduced from 58 to 26. 
 

𝐹𝑅𝐸𝐷(𝑐1, c̄2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2, 𝑐3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐3; 𝑡1, 𝑡2) 

 

V. REVERSIBLE CIRCUITS OPTIMIZATION 

This section introduces a proposed modified moving rule 

which can be used for optimizing SF gate based circuits. Two 

adjacent SF gates 𝐺1(𝐶1, 𝑇1)  and 𝐺2(𝐶2, 𝑇2)  can be 

interchanged if 𝐶1 ∩ 𝑇2 = ∅ and 𝐶2 ∩ 𝑇1 = ∅, and either 𝑇1 ∩
𝑇2 = ∅ or 𝑇1 = 𝑇2. In other words, two adjacent gates from the 

SF gate family can be interchanged if two conditions hold: (i) 

no control of one gate is a target of another gate, and (ii) targets 

of both gates are on the same line, or targets of both gates are 

on different lines. We have used an algorithm that incorporates 

the moving rule in order to apply the proposed templates. This 

algorithm is based on the algorithm presented in [7]. The 

moving rule increases the chances to match more templates, 

which can optimize a circuit even further. For example, 

consider the (4 × 4) reversible circuit shown in Fig. 5(a). The 

GC and QC of this circuit are 3 and 15 respectively. The gates 

of this circuit do not match any of the proposed templates. 

However, it can be observed that for the gates labeled 1 and 2, 

no control point of any gate is on the target lines of the other 

gate. In addition, the targets of both gates are on the same line. 

So according to the moving rule, it is possible to interchange 

the position of these two gates. After applying the moving rule, 

the circuit becomes as shown in Fig. 5(b). Now gates 2 and 3 

match Template 3. Gates 2 and 3 can be replaced by a SWAP 

gate, as shown in Fig. 5(c). The two gates in Fig. 5(c) match 

Template 2. The resulting circuit after applying Template 2 is 

presented in Fig. 5(d) with a GC of 1 and QC of 5.  

 

The template matching algorithm maintains two lists of 

gates: an input list and an output list. The input list includes all 

the gates which appear in the original circuit. The output list 

stores the gates after the process of simplification is finished. 

The algorithm reads the input list and the list of all templates, 

and applies templates when a match is found. When a sequence 

of gates is replaced by a template, the new sequence of gates is 

stored in the output list. The algorithm processes the next 

sequence of gates from the input list. At each step, the algorithm 

decides whether a sequence of gates is to be replaced by a 

template or not. If no match is found for a sequence of gates, 

the algorithm applies the moving rule to increase the possibility 

of finding a match. A sequence of gates that does not match any 

template is also stored in the output list. Algorithm 1 shows the 

major steps involved in the  

 

 

 

 

 

 

 

 

 

 
(a) A reversible circuit.                              (b) After applying moving rule     

                                                                    on gates 1 and 2. 

 

 

 

 

 

 

 

 

 
(c) After applying Template 3.                (d) After applying Template 2. 

Figure 5: An example to show the role of moving rule and 

templates in optimization 

 

template matching algorithm. The algorithm executes the 

CHECK TEMPLATE (input gate list) procedure in order to find 

a match. The algorithm terminates its execution when no more 

templates can be applied to the input gate list. 

 

Algorithm 1:  Template matching algorithm. 

1: Input : input gate list 

2: Output : output gate list 

3: procedure CHECK TEMPLATE(input gate list) 

4: Count the number of gates in the input gate list 

5: Repeat while the number of gates in the input gate list > 2 

6: if a match is found then 

7: Apply Template (input gate list) 

8: else 

9: Apply Moving Rule (input gate list) 

10: end if 

11: end procedure 
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13: procedure APPLY TEMPLATE(input gate list) 

14: if two adjacent gates 𝑔𝑖 and 𝑔𝑖+1 match a template then 

15: Append the template gates to the output gate list 

16: Remove 𝑔𝑖 and 𝑔𝑖+1 from the input gate list 

17: end if 

18: if three adjacent gates 𝑔𝑖, 𝑔𝑖+1 and  𝑔𝑖+2 match Template 5 

then 

19: Append the template gates to the output gate list 

20: Remove 𝑔𝑖, 𝑔𝑖+1 and  𝑔𝑖+2 from the input gate list 

21: end if 

22: Return 

23: end procedure 

24: 

25: procedure APPLY MOVING RULE(input gate list) 

26: if two gates 𝑔𝑖 and 𝑔𝑖+1 can be interchanged then 

27: Append 𝑔𝑖+1 to the output gate list 

28: Remove 𝑔𝑖+1 from the input gate list 

29: else 

30: Append 𝑔𝑖 to the output gate list 

31: Remove 𝑔𝑖 from the input gate list 

32: end if 

33: Return 

34: end procedure 

 

We have tested the algorithm on the benchmark circuits 

available on RevLib [18]. In the benchmarks there are only six 

circuits based on the SF gate family. The result of this 

experiment is presented in Table 1. The column labled ‘Lines’ 

in this table indicates the number of input bits. The GC and QC 

under the ‘original circuit’ column indicates the GC and QC of 

the circuits before applying the templates. The GC and QC 

under the ‘optimized circuit’ column represent GC and QC of 

the circuits after applying the templates. The template matching 

reduces GC and QC for two of the six benchmark circuits. The 

best results are achieved for hwb4 circuit, which sees 18% GC 

and 9% QC reduction. The number of circuits considered for 

this experiment is not large enough, since the number of 

benchmark circuits based on the SF gate family are very few. 

In addition, one circuit consists of only one gate which cannot 

be further optimized. In order to evaluate the efficiencies of the 

proposed templates from a broader perspective, we randomly 

generated 500 SF based circuits. The number of lines of these 

circuits varied from 3 to 7, similar to the benchmark circuits in 

RevLib. Based on the number of gates, these circuits are of 

three different sizes: 10, 50 and 100. Our proposed approach for 

circuit optimization has been applied to these randomly 

generated circuits, and a portion of the result is presented in 

Table 2. The highest percentage of reduction of both GC and 

QC is 91%. The percentage of reduction of GC on average is 

17%. The average reduction of QC is 16%. 

VI. CONCLUSION 

Reversible circuits generated with the transformation based 

synthesis [11] may not be optimal. Template matching and rule 

based optimization techniques are two common approaches to 

simplify reversible circuits generated by transformation based 

  

Table 1: Results after applying the proposed algorithm on 

benchmark circuits. 

 
Circuits Original 

circuits 

Optimized 

circuits 

% of 

reduction 

Functions Lines GC QC GC QC GC QC 

fredkin 3 1 5 1 5 0 0 

hwb4 4 11 65 9 59 18.18 9.23 

hwb5 5 24 214 24 214 0 0 

decode24 6 3 15 3 15 0 0 

hwb6 6 65 1115 64 1112 1.54 0.27 

hwb7 7 116 3998 166 3998 0 0 

 

 

Table 2: Results after applying the proposed algorithm on 

randomly generated circuits. 

 
Circuits Original 

circuits 

Optimized 

circuits 

% of 

reduction 

Functions Lines GC QC GC QC GC QC 

random173 5 100 695 94 673 6 3.17 

random297 4 10 42 8 36 20 14.29 

random172 6 55 878 55 878 0 0 

random298 6 55 715 54 710 1.82 0.7 

random171 7 10 203 10 203 0 0 

random299 6 100 1385 97 1376 3 0.65 

random178 7 55 1093 55 1093 0 0 

 random8 5 100 624 95 609 5 2.4 

random163 3 55 165 31 93 43.64 43.64 

random286 5 55 375 50 360 9.09 4 

random166 3 55 165 15 45 72.73 72.73 

random283 6 55 887 54 882 1.82 0.56 

random164 4 100 410 77 329 23 19.76 

random422 3 100 300 16 48 84 84 

random302 3 100 300 30 90 70 70 

random423 4 10 40 10 40 0 0 

random303 3 10 30 2 6 80 80 

random424 7 55 1253 52 1238 5.45 1.2 

random500 6 100 1234 100 1234 0 0 

random4 7 55 1097 51 1085 7.27 1.09 

random193 5 55 392 53 384 3.64 2.04 

 

synthesis. In this paper we have presented 10 templates based 

on template matching and rule based optimization. We have 

tested the proposed templates to simplify reversible circuits 

consisting of only SF gates. We have considered templates for 

both positive and negative control Fredkin gates. We have 

identified the fact that some rules proposed for NCT gates can 

not be applied for SF gates, e.g. the moving rule. We have 

modified the moving rule in order to apply this rule for 

optimizing SF based reversible circuits. We have also proposed 

an algorithm by following the principle proposed in [7] in order 

to apply the proposed templates and the moving rule. Since few 

SF gate based circuits are available as benchmark circuits in 

RevLib, we have randomly generated 500 SF based reversible 

circuits. The results of experiments suggest that our proposed 

templates can contribute to optimizing SF gate based reversible 
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circuits. The highest reduction in QC is 9% after applying the 

proposed templates on benchmark circuits. In case of randomly 

generated circuits we have achieved 16% reduction in QC on 

average. 

 

Identifying more templates based on SF gates or on a 

combination of NCT and SF gates is an area for future research. 

Our experimental results show that the QC is reduced up to 9% 

after applying the proposed templates on benchmark circuits. 

The QC can be reduced further using an efficient template 

matching algorithm. The algorithm which we have used to 

apply the templates uses an exhaustive search approach to 

match templates. In [7], Rahman et al. proposed a template 

matching algorithm that assigns ranks to the templates based on 

the amount of QC reduction offered by the templates. Thus their 

proposed algorithm applies templates that offer the best 

possible reduction in QC at a particular instant. This indicates 

that developing an efficient SF gate based template matching 

algorithm can also be an area of future study. 
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