
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 08 – Issue 04, July 2019

www.ijcit.com 108

Post Synthesis Optimization of SWAP Fredkin Based

Reversible Circuits

Md Asif Nashiry

Dept. of Mathematics and Computer Science

University of Lethbridge

Lethbridge, AB, Canada

Email: asif.nashiry [AT] uleth.ca

Jacqueline E. Rice

Dept. of Mathematics and Computer Science

University of Lethbridge

Lethbridge, AB, Canada

Email: j.rice [AT] uleth.ca

Abstract— Most existing synthesis approaches in reversible logic

result in circuits that may not be optimal in terms of cost metrics

such as the gate count, the number of garbage lines or the quantum

cost. Hence post synthesis optimization approaches are used to

generate simplified circuits. This paper proposes ten templates for

optimizing SWAP and Fredkin gates based reversible circuits. We

have also proposed the moving rule which can be used in SWAP-

Fredkin based circuits. We have applied these templates with

moving rule in SWAP and Fredkin gates-based circuits, and

achieved (on average) a 16% reduction in quantum cost.

Keywords-reversible logic; synthesis; post synthesis

optimization; template matching; moving rule; logic gates

I. INTRODUCTION AND MOTIVATION

In recent years, reversible computing has established itself as a

promising research area and emerging technology. This is

motivated by a widely supported prediction that conventional

computer hardware technologies will reach their limits in the

near future. Limitations of traditional computing, such as heat

dissipation, can become an obstacle for the further development

of current technology [1]. Reversible computing [2] offers a

solution to this potential deadlock of further development in

traditional computing. The concept of synthesis is very

important in designing reversible logic circuits. Synthesis refers

to the transformation of a logic function into a corresponding

logic circuit. There can be more than one reversible circuit for

implementing a single function. The relationship between the

inputs and the outputs of a logic function determines the

number of the logic gates, type of logic gates used, and the order

in which the logic gates appear in the circuit. If a logic function

is already reversible, the synthesis process can take place

immediately. However, if a logic function is not reversible, the

first step in most synthesis algorithms is to transform the

irreversible function into a reversible one. One or more garbage

outputs and/or constant inputs are added to an irreversible

function in order to transform the irreversible logic function

into a reversible logic function [3].
The minimum number of garbage outputs which are required

in order to transform an irreversible function into a reversible
function is log2K, where K is the maximum number of a repeated
pattern in the output of an irreversible function [3]. A reversible
circuit generated by a synthesis method may not be optimal from
the perspective of the number of garbage lines, quantum cost

and/or gate count. A circuit design that offers fewer garbage
lines and/or lower GC and QC is desirable.

(a) NOT gate (b) n-bit Toffoli gate

(c) SWAP gate (d) 3-bit Fredkin gate

Figure 1: Commonly used reversible logic gates

After synthesis takes place, several strategies can be used in
order to simplify reversible circuits, including template
matching optimization [4-7] and rule based optimization [8, 9].
In this paper, we have considered template matching as post
synthesis optimization technique in order to simpify reversible
circuits.

The rest of the paper is organized as follows: Section II
provides the fundamentals of reversible computing; Section III
describes the basis of template matching; our proposed
templates are introduced in Section IV; Section V describes our
proposed moving rule, this section also introduces our proposed
template matching algorithm followed by the experimental
results; Section VI draws the conclusion of this paper and
provides future research direction.

a 𝑎
= 𝜋𝑟2

a

b

b

a

a

b

c

1 (0)

c (b)

b (c)

a

b

c

n-1

n 𝑎 b𝑐̅...n-1

a

b

c

n-1

n

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 08 – Issue 04, July 2019

www.ijcit.com 109

II. BACKGROUND

A. Reversible Logic

A reversible logic function has the form 𝑓: 𝐵𝑛 → 𝐵𝑛 ,

where n is a non-negative integer and the domain 𝐵 =
{0,1} , with the key feature being that the function is

bijective. More specifically, the number of inputs and the

number of outputs of a reversible function are exactly the same.
In particular, there is always a distinct output state for each of
the possible input states [1, 2].

B. Revesible Logic Gates

Let 𝑋 ≔ {𝑥1, 𝑥2, …… , 𝑥𝑛} be the set of Boolean variables.

Then a reversible gate has the form 𝑔(𝐶, 𝑇) , where 𝐶 =
{𝑥𝑖1, … . . , 𝑥𝑖𝑘} ∈ 𝑋 is the set of control lines and T =

{𝑥𝑗1, … . . , 𝑥𝑗𝑙} ∈ 𝑋 with 𝐶 ∩ 𝑇 = ∅ is the set of target lines [10].

 (a)

 (b)

Figure 2: Two templates presented in [11]

Two commonly used reversible gates are Toffoli gates and

Fredkin gates [10]. A Toffoli gate with no controls is a NOT

gate i.e. 𝑔(0, 𝑥𝑗1). Similarly, a Toffoli gate 𝑔(𝑥𝑖1, 𝑥𝑗1) can be

thought of as a controlled NOT (or CNOT) gate, and

𝑔({𝑥𝑖1, … . , 𝑥𝑖𝑛}, 𝑥𝑗1) is a 𝑛 -bit Toffoli gate. A Fredkin gate

with no controls is a SWAP gate 𝑔(𝑥𝑗1, 𝑥𝑗2) , which

interchanges the two target input bits at output. A n-bit positive

control Fredkin gate 𝑔({𝑥𝑖1, …… , 𝑥𝑖𝑛}, 𝑥𝑗1, 𝑥𝑗2) interchanges

the two target bits at output when all the control inputs are equal

to 1. A reversible gate may also have negative control. In this

case the gate becomes active when negative control has a value

of 0. Fig. 1 shows several commonly used reversible logic

gates.

C. CostMetrics

Two important metrics used to compare reversible circuit

implementations are gate count and quantum cost. The gate

count (GC) is the number of gates in a circuit and the quantum

cost (QC) is the number of basic quantum gates required to

implement macro-level reversible gates such as the Toffoli and

Fredkin gates [12, 13]. For example, the QC of a CNOT gate is

1, and QC of a SWAP gate is 3. The QC of a (3 × 3) Toffoli

and a (3 × 3) Fredkin gate is 5 [14].

III. TEMPLATE MATCHING

A template consists of two patterns of gates which are

equivalent to each other. Template matching is a process to find

a pattern of gates that can be replaced by another equivalent

pattern of gates in order to simplify a circuit design. Miller et

al. introduce templates for 2 and 3 input reversible circuits as

well as a template matching algorithm [11]. This algorithm

searches for a pattern of gates in a reversible circuit and replaces

the pattern by another simpler pattern of gates. An extension of

this algorithm is presented in [38]. Fig. 2 shows two templates

presented in [11]. The output functions of both circuits in Fig.

2(a) are evaluated as 𝑥 = 𝑎, 𝑦 = 𝑎 ⊕ 𝑏 and 𝑧 = 𝑎 ⊕ 𝑐. Thus

these two circuits perform the same reversible function. The left

hand circuit has a GC of 3 and QC of 11. However, both the GC

and QC of the right hand circuit are 2. Therefore, the right hand

circuit design is more efficient in terms of GC and QC. Maslov

et al. introduced some templates based on Toffoli and Fredkin

gates in [15]. Templates based on both positive and negative

controls are presented by Datta et al. [16] and Rahman et al. [7].

Iwama et al. also present rules which can be used to simplify

reversible circuits [9]. Other rule based post synthesis

optimization works include [8, 17].

The deletion rule for NCT-based circuits can also be used to

optimize SF circuits. However, not all NCT-based rules are

useful for optimizing SF based circuits. For example, the

moving rule proposed for NCT gates is a useful approach for

simplifying reversible circuits. The moving rule states that two

adjacent gates 𝑔1(𝑐1, 𝑡1) and 𝑔2(𝑐2, 𝑡2) can be interchanged if

the target of one gate is not a control of another gate, i.e. 𝑐1 ∩
𝑡2 = ∅ and 𝑐2 ∩ 𝑡1 = ∅.

(a) (b)

Figure 3: A SF circuit where the moving rule does not work

The moving rule is particularly useful in order to find a

template in a circuit. However, this moving rule works only on

NCT based reversible circuits. Fig. 3 shows an example of a SF

based circuit where the moving rule cannot be applied.

According to the moving rule, two gates can be interchanged if

controls of one gate are not the target of other gate. Fig. 3(a)

shows a circuit that consists of two 3-bit Fredkin gates. Since

the control of one gate is not a target of another gate, the two

gates are interchanged as shown in Fig. 3(b). However, these

two circuits are not equivalent. In this paper, we have modified

the moving rule for applications in SF based reversible circuits.

x

y

z

a

b

c

x

y

z

a

b

c

x

y

z

a

b

c

x

y

z

a

b

c

1

1

1

0

1

0

1

1

1

1

0

1

1

0

1

1

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 08 – Issue 04, July 2019

www.ijcit.com 110

IV. PROPOSED TEMPLATES

Most existing reversible circuit optimization techniques

focus on NCT gates. This section presents templates for SF gate

based reversible circuits. We consider both template matching

and rule based simplification for circuit optimization. The basic

difference between rule based simplification and template

matching is that templates must match specific patterns of

gates, while rules can be applied to a broad group of gates. For

better understanding we refer to both templates and rules as

templates in this dissertation. Note that G(C;T) represents a gate

G from the SF gates family. C and T represent the sets of the

control points and the targets of G, respectively. We are

describing the operations of only two templates in detail due to

the page limitation.

Template 1: Two adjacent gates 𝐺1(𝐶1; 𝑇1) and 𝐺2(𝐶2; 𝑇2) can

be removed from a circuit if 𝐶1 = 𝐶2 and 𝑇1 = 𝑇2. That is, if

targets of a SWAP gate are on the same line as that of an

adjacent SWAP gate, the two SWAP gates can be removed

from the circuit. In case of a Fredkin gate, when the controls

and targets of two adjacent gates are the same in polarity and

operate on the same line, the two Fredkin gates have no effect

on circuit operation.

(i) 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝑆𝑊𝐴𝑃(𝑡1𝑡2) ≡ 𝐼
(ii) 𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)𝐹𝐸𝐸𝐷(𝑐; 𝑡1𝑡2) ≡ 𝐼
(iii) 𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2)𝐹𝐸𝐸𝐷(𝑐̅; 𝑡1𝑡2) ≡ 𝐼

(a) (b)

(c) (d)

Figure 4: Template 2

Template 2: The next template can be applied when a cascade

of a SWAP gate and a 3-bit positive control Fredkin gate appear

in such a way that the targets of the SWAP and the Fredkin

gates are on the same lines of a circuit. This sequence of two

gates can be replaced by a 3-bit negative control Fredkin gate.

The control and the targets of the negative control Fredkin gate

appear on the corresponding lines where the control and the

targets of the positive control Fredkin gate appear. That is, for

two adjacent gates 𝐺1(𝑇1) and 𝐺2(𝐶; 𝑇2) if 𝑇1 = 𝑇2 , the two

gates can be replaced by 𝐺1(𝐶̅; 𝑇1).

(i) 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2)

(ii) 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)

Suppose 𝑝 and 𝑞 are the two outputs of the SWAP gate in Fig.

4(a). Here 𝑝 = 𝑏 and 𝑞 = 𝑎. The output of the Fredkin gate will

be 𝑥 = 𝑐̅𝑝 ⊕ 𝑐𝑞 = 𝑐̅𝑏 ⊕ 𝑐𝑎, 𝑦 = 𝑐𝑝 ⊕ 𝑐̅𝑞 = 𝑐𝑏 ⊕ 𝑐̅𝑎, 𝑧 = 𝑐 .

The outputs of the negative control Fredkin gate in this figure

are 𝑥 = 𝑐̅𝑏 ⊕ 𝑐𝑎, 𝑦 = 𝑐𝑏 ⊕ 𝑐̅𝑎, 𝑧 = 𝑐 . Thus, the two circuits

in this figure are equivalent to each other. Template 2 reduces

both GC and QC by 1.

Template 3: Two adjacent gates 𝐺1(𝐶1; 𝑇1) and 𝐺2(C̄2; 𝑇2) by

𝐺(𝑇1) if 𝐶1 = C̄2 and 𝑇1 = 𝑇2. Template 3 reduces QC by 70%

and GC by 1.

𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐̅; 𝑡1, 𝑡2) ≡ 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)

Template 4: This template is applicable when a 3-bit Fredkin

gate, 𝐹𝑅𝐸𝐷(𝐶1; 𝑇1) and a 4-bit Fredkin gate, 𝐹𝑅𝐸𝐷(𝐶2; 𝑇2)
appear in such a way that 𝐶1 ∩ 𝐶2 = 𝐶1 and 𝑇1 = 𝑇2. Template

4 reduces QC from 18 to 13. The GC is also reduced to 1.

𝐹𝑅𝐸𝐷(𝑐1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐1, c̄2; 𝑡1, 𝑡2)
𝐹𝑅𝐸𝐷(c̄1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(c̄1, c2; 𝑡1, 𝑡2)

Template 5: The next template is an example of a circuit

optimization using template matching when a pattern of gates

is replaced by another pattern of gates. The QC is reduced by 3

after applying this template to a circuit.

𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(t̄2; 𝑡1, 𝑐)𝐹𝑅𝐸𝐷(𝑐; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(c̄; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(t̄2; 𝑡1, 𝑐)

Template 6: Template 6 can be applied to simplify two n-bit

Fredkin gates when 𝑛 ≥ 4. Two adjacent 𝑛-bit Fredkin gates

𝐺1(𝐶1 ∪ 𝑐𝑖; 𝑇1) and 𝐺2(𝐶2 ∪ c̄𝑖; 𝑇2) can be replaced by a 𝑛 − 1-

bit Fredkin Gate 𝐺3(𝐶3; 𝑇3) , where 𝐶1 = 𝐶2 = 𝐶3 , and 𝑇1 =
𝑇2 = 𝑇3.

𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(𝑐2; 𝑡1, 𝑡2)
𝐹𝑅𝐸𝐷(c̄1, c̄2; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c1, c̄2; 𝑡1, 𝑡2) ≡ 𝐹𝑅𝐸𝐷(c̄2; 𝑡1, 𝑡2)

𝐹𝑅𝐸𝐷(𝑐1, 𝑐2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c1, 𝑐2, c̄3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2)

𝐹𝑅𝐸𝐷(c̄1, c̄2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2, c̄3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(c̄1, c̄3; 𝑡1, 𝑡2)

Template 7: Template 7 can be applied when two adjacent 4-bit

Fredkin gates appear in such a way that the controls and the

targets of both gates are on the same line. However, the

polarities of control points on same line are different. The GC

remains the same after applying this template, however, the QC

reduces from 26 to 10.

𝐹𝑅𝐸𝐷(c1, c̄2; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐2; 𝑡1, 𝑡2)

x

y

z

a

b

c

x

y

z

a

b

c

x

y

z

a

b

c

a

b

c

p

q

x

y

z

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 08 – Issue 04, July 2019

www.ijcit.com 111

Template 8: The GC remains the same after applying this

template, however, the QC is reduced by 2.

𝐹𝑅𝐸𝐷(c̄1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐2; 𝑡1, 𝑡2)

≡ 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c1, c̄2; 𝑡1, 𝑡2)
𝐹𝑅𝐸𝐷(c1; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄2; 𝑡1, 𝑡2)

≡ 𝑆𝑊𝐴𝑃(𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2; 𝑡1, 𝑡2)

Template 9: Template 9 is applicable to 5-bit Fredkin gates.

Unlike other templates, Template 9 increases GC by 1.

However, QC is reduced from 58 to 31.

𝐹𝑅𝐸𝐷(𝑐1, 𝑐2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄2, 𝑐3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐2, 𝑐3; 𝑡1, 𝑡2)
𝐹𝑅𝐸𝐷(c̄1, c̄2, c̄3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐2, c̄3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(c̄3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, c̄3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄2, c̄3; 𝑡1, 𝑡2)

Template 10: Template 10 works for two 5-bit Fredkin gates.

The GC for this template remains the same, however QC is

reduced from 58 to 26.

𝐹𝑅𝐸𝐷(𝑐1, c̄2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(c̄1, 𝑐2, 𝑐3; 𝑡1, 𝑡2)
≡ 𝐹𝑅𝐸𝐷(𝑐2, 𝑐3; 𝑡1, 𝑡2)𝐹𝑅𝐸𝐷(𝑐1, 𝑐3; 𝑡1, 𝑡2)

V. REVERSIBLE CIRCUITS OPTIMIZATION

This section introduces a proposed modified moving rule

which can be used for optimizing SF gate based circuits. Two

adjacent SF gates 𝐺1(𝐶1, 𝑇1) and 𝐺2(𝐶2, 𝑇2) can be

interchanged if 𝐶1 ∩ 𝑇2 = ∅ and 𝐶2 ∩ 𝑇1 = ∅, and either 𝑇1 ∩
𝑇2 = ∅ or 𝑇1 = 𝑇2. In other words, two adjacent gates from the

SF gate family can be interchanged if two conditions hold: (i)

no control of one gate is a target of another gate, and (ii) targets

of both gates are on the same line, or targets of both gates are

on different lines. We have used an algorithm that incorporates

the moving rule in order to apply the proposed templates. This

algorithm is based on the algorithm presented in [7]. The

moving rule increases the chances to match more templates,

which can optimize a circuit even further. For example,

consider the (4 × 4) reversible circuit shown in Fig. 5(a). The

GC and QC of this circuit are 3 and 15 respectively. The gates

of this circuit do not match any of the proposed templates.

However, it can be observed that for the gates labeled 1 and 2,

no control point of any gate is on the target lines of the other

gate. In addition, the targets of both gates are on the same line.

So according to the moving rule, it is possible to interchange

the position of these two gates. After applying the moving rule,

the circuit becomes as shown in Fig. 5(b). Now gates 2 and 3

match Template 3. Gates 2 and 3 can be replaced by a SWAP

gate, as shown in Fig. 5(c). The two gates in Fig. 5(c) match

Template 2. The resulting circuit after applying Template 2 is

presented in Fig. 5(d) with a GC of 1 and QC of 5.

The template matching algorithm maintains two lists of

gates: an input list and an output list. The input list includes all

the gates which appear in the original circuit. The output list

stores the gates after the process of simplification is finished.

The algorithm reads the input list and the list of all templates,

and applies templates when a match is found. When a sequence

of gates is replaced by a template, the new sequence of gates is

stored in the output list. The algorithm processes the next

sequence of gates from the input list. At each step, the algorithm

decides whether a sequence of gates is to be replaced by a

template or not. If no match is found for a sequence of gates,

the algorithm applies the moving rule to increase the possibility

of finding a match. A sequence of gates that does not match any

template is also stored in the output list. Algorithm 1 shows the

major steps involved in the

(a) A reversible circuit. (b) After applying moving rule

 on gates 1 and 2.

(c) After applying Template 3. (d) After applying Template 2.

Figure 5: An example to show the role of moving rule and

templates in optimization

template matching algorithm. The algorithm executes the

CHECK TEMPLATE (input gate list) procedure in order to find

a match. The algorithm terminates its execution when no more

templates can be applied to the input gate list.

Algorithm 1: Template matching algorithm.

1: Input : input gate list

2: Output : output gate list

3: procedure CHECK TEMPLATE(input gate list)

4: Count the number of gates in the input gate list

5: Repeat while the number of gates in the input gate list > 2

6: if a match is found then

7: Apply Template (input gate list)

8: else

9: Apply Moving Rule (input gate list)

10: end if

11: end procedure

12:

1 2 3

w

x

y

z

a

b

c

d

1 2 3

w

x

y

z

a

b

c

d

w

x

y

z

a

b

c

d

1 1 2

w

x

y

z

a

b

c

d

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 08 – Issue 04, July 2019

www.ijcit.com 112

13: procedure APPLY TEMPLATE(input gate list)

14: if two adjacent gates 𝑔𝑖 and 𝑔𝑖+1 match a template then

15: Append the template gates to the output gate list

16: Remove 𝑔𝑖 and 𝑔𝑖+1 from the input gate list

17: end if

18: if three adjacent gates 𝑔𝑖, 𝑔𝑖+1 and 𝑔𝑖+2 match Template 5

then

19: Append the template gates to the output gate list

20: Remove 𝑔𝑖, 𝑔𝑖+1 and 𝑔𝑖+2 from the input gate list

21: end if

22: Return

23: end procedure

24:

25: procedure APPLY MOVING RULE(input gate list)

26: if two gates 𝑔𝑖 and 𝑔𝑖+1 can be interchanged then

27: Append 𝑔𝑖+1 to the output gate list

28: Remove 𝑔𝑖+1 from the input gate list

29: else

30: Append 𝑔𝑖 to the output gate list

31: Remove 𝑔𝑖 from the input gate list

32: end if

33: Return

34: end procedure

We have tested the algorithm on the benchmark circuits

available on RevLib [18]. In the benchmarks there are only six

circuits based on the SF gate family. The result of this

experiment is presented in Table 1. The column labled ‘Lines’

in this table indicates the number of input bits. The GC and QC

under the ‘original circuit’ column indicates the GC and QC of

the circuits before applying the templates. The GC and QC

under the ‘optimized circuit’ column represent GC and QC of

the circuits after applying the templates. The template matching

reduces GC and QC for two of the six benchmark circuits. The

best results are achieved for hwb4 circuit, which sees 18% GC

and 9% QC reduction. The number of circuits considered for

this experiment is not large enough, since the number of

benchmark circuits based on the SF gate family are very few.

In addition, one circuit consists of only one gate which cannot

be further optimized. In order to evaluate the efficiencies of the

proposed templates from a broader perspective, we randomly

generated 500 SF based circuits. The number of lines of these

circuits varied from 3 to 7, similar to the benchmark circuits in

RevLib. Based on the number of gates, these circuits are of

three different sizes: 10, 50 and 100. Our proposed approach for

circuit optimization has been applied to these randomly

generated circuits, and a portion of the result is presented in

Table 2. The highest percentage of reduction of both GC and

QC is 91%. The percentage of reduction of GC on average is

17%. The average reduction of QC is 16%.

VI. CONCLUSION

Reversible circuits generated with the transformation based

synthesis [11] may not be optimal. Template matching and rule

based optimization techniques are two common approaches to

simplify reversible circuits generated by transformation based

Table 1: Results after applying the proposed algorithm on

benchmark circuits.

Circuits Original

circuits

Optimized

circuits

% of

reduction

Functions Lines GC QC GC QC GC QC

fredkin 3 1 5 1 5 0 0

hwb4 4 11 65 9 59 18.18 9.23

hwb5 5 24 214 24 214 0 0

decode24 6 3 15 3 15 0 0

hwb6 6 65 1115 64 1112 1.54 0.27

hwb7 7 116 3998 166 3998 0 0

Table 2: Results after applying the proposed algorithm on

randomly generated circuits.

Circuits Original

circuits

Optimized

circuits

% of

reduction

Functions Lines GC QC GC QC GC QC

random173 5 100 695 94 673 6 3.17

random297 4 10 42 8 36 20 14.29

random172 6 55 878 55 878 0 0

random298 6 55 715 54 710 1.82 0.7

random171 7 10 203 10 203 0 0

random299 6 100 1385 97 1376 3 0.65

random178 7 55 1093 55 1093 0 0

 random8 5 100 624 95 609 5 2.4

random163 3 55 165 31 93 43.64 43.64

random286 5 55 375 50 360 9.09 4

random166 3 55 165 15 45 72.73 72.73

random283 6 55 887 54 882 1.82 0.56

random164 4 100 410 77 329 23 19.76

random422 3 100 300 16 48 84 84

random302 3 100 300 30 90 70 70

random423 4 10 40 10 40 0 0

random303 3 10 30 2 6 80 80

random424 7 55 1253 52 1238 5.45 1.2

random500 6 100 1234 100 1234 0 0

random4 7 55 1097 51 1085 7.27 1.09

random193 5 55 392 53 384 3.64 2.04

synthesis. In this paper we have presented 10 templates based

on template matching and rule based optimization. We have

tested the proposed templates to simplify reversible circuits

consisting of only SF gates. We have considered templates for

both positive and negative control Fredkin gates. We have

identified the fact that some rules proposed for NCT gates can

not be applied for SF gates, e.g. the moving rule. We have

modified the moving rule in order to apply this rule for

optimizing SF based reversible circuits. We have also proposed

an algorithm by following the principle proposed in [7] in order

to apply the proposed templates and the moving rule. Since few

SF gate based circuits are available as benchmark circuits in

RevLib, we have randomly generated 500 SF based reversible

circuits. The results of experiments suggest that our proposed

templates can contribute to optimizing SF gate based reversible

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 08 – Issue 04, July 2019

www.ijcit.com 113

circuits. The highest reduction in QC is 9% after applying the

proposed templates on benchmark circuits. In case of randomly

generated circuits we have achieved 16% reduction in QC on

average.

Identifying more templates based on SF gates or on a

combination of NCT and SF gates is an area for future research.

Our experimental results show that the QC is reduced up to 9%

after applying the proposed templates on benchmark circuits.

The QC can be reduced further using an efficient template

matching algorithm. The algorithm which we have used to

apply the templates uses an exhaustive search approach to

match templates. In [7], Rahman et al. proposed a template

matching algorithm that assigns ranks to the templates based on

the amount of QC reduction offered by the templates. Thus their

proposed algorithm applies templates that offer the best

possible reduction in QC at a particular instant. This indicates

that developing an efficient SF gate based template matching

algorithm can also be an area of future study.

REFERENCES

[1] Michael P Frank. “Approaching the physical limits of computing”.
In Proceedings of 35th International Symposium on Multiple-

Valued Logic, IEEE, pp. 168–185, 2005.

[2] Michael P Frank. “Introduction to reversible computing: motivation,

progress, and challenges”. In Proceedings of the 2nd Conference on
Computing Frontiers, ACM, pp. 385–390, 2005.

[3] Dmitri Maslov and Gerhard W Dueck. “Reversible cascades with
minimal garbage”. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 23(11), pp. 1497–1509,
2004.

[4] Nabila Abdessaied, Mathias Soeken, RobertWille, and Rolf
Drechsler. “Exact template matching using Boolean satisfiability”.

IEEE 43rd International Symposium on In Multiple-Valued Logic

(ISMVL), pp 328–333, 2013.

[5] Kamalika Datta, Indranil Sengupta, and Hafizur Rahaman. “A post-

synthesis optimization technique for reversible circuits exploiting
negative control lines”. IEEE Transactions on Computers, vol.

64(4), pp. 1208–1214, 2015.

[6] Dmitri Maslov, Gerhard W Dueck, and D Michael Miller.

“Simplification of Toffoli networks via templates". In Proceedings
of 16th Symposium on Integrated Circuits and Systems Design. pp.

53–58, 2003.

[7] Md Zamilur Rahman and Jacqueline E Rice. “Templates for positive
and negative control Toffoli networks”. In International Conference

on Reversible Computation, pp. 125–136, 2014.

[8] Mona Arabzadeh, Mehdi Saeedi, and Morteza Saheb Zamani.
“Rule-based optimization of reversible circuits”. In Proceedings of

the Asia and South Pacific Design Automation Conference, pp.

849–854, 2010.

[9] Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita.

“Transformation rules for designing cnot-based quantum circuits”.
In Proceedings of the 39th annual Design Automation Conference,

pp. 419–424, 2002.

[10] T. Toffoli. “Reversible computing”, MIT, Tech. Rep. MIT/LCS/TM
No. 151, 1980.

[11] D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. “A
transformation based algorithm for reversible logic synthesis”. In
Proceedings of the 40th annual Design Automation Conference, pp.

318–323, 2003.

[12] Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary

gates for quantum computations,” Physical Review A, vol. 52, no.

5, pp. 3457–3467, 1995.

[13] J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are
sufficient to implement the quantum fredkin gate,” Physical Review

A, vol. 53, no. 4, pp. 2855–2856, 1996.

[14] Md Asif Nashiry, Mozammel H. A. Khan and Jacueline E. Rice.
“Controlled and uncontrolled SWAP gates in reversible logic
synthesis”, International Conference on Reversible Computation.

pp. 141-147, 2017.

[15] Dmitri Maslov, Gerhard W Dueck, and D Michael Miller.
Fredkin/Toffoli templates for reversible logic synthesis. In

Proceedings of international conference on Computer-aided design,
pp. 256, 2003.

[16] Kamalika Datta, Gaurav Rathi, Robert Wille, Indranil Sengupta,
Hafizur Rahaman, and Rolf Drechsler. “Exploiting negative control

lines in the optimization of reversible circuits”. In International
Conference on Reversible Computation, pp. 209–220, 2013.

[17] Xueyun Cheng, Zhijin Guan,WeiWang, and Lingling Zhu. “A
simplification algorithm for reversible logic network of

positive/negative control gates”. In Fuzzy Systems and Knowledge

Discovery (FSKD), 2012 9th International Conference on, pp.
2442–2446. 2012.

[18] Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler.
Revkit: “A toolkit for reversible circuit design”. Multiple-Valued

Logic and Soft Computing, vol. 18(1). pp. 55–65, 2012.

http://www.ijcit.com/

