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Abstract--- In this paper, we are concerned with the two-grid
finite volume element methods to the second-order quasi-linear
parabolic problems. Two-grid finite volume element methods
are based on two linear conforming finite element spaces on
one coarse grid and one fine grid. Here, it is proved that the
coarse grid can be much coarser than the fine grid. With the
proposed techniques, solving the nonlinear problems is
reduced to solving a linear problem on the fine space.
Convergence estimates are derived to justify the efficiency of
the proposed two-grid algorithms. A numerical experiment
confirms some results of theoretical analysis.
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. INTRODUCTION

The finite volume element methods (FVEMS) are a
discretization technique for the partial differential equations
arising from physical conservation laws including mass,
energy.

The finite volume element methods are the special cases
of generalized difference methods.[1-6]

The finite volume element methods discretize the
integral form of conservation law of differential equation by

choosing linear or bilinear finite element space as trial space.

They have the simplicity of finite difference methods and
the accuracy of finite element methods and have been
widely used in computational fluid mechanics because they
keep the conservation law of mass or energy.

Cai and Steve Mccormic [1] had presented finite volume
element method for diffusion equations on composite grids
and provided the error estimates which were relatively
complicated.

Afterwards, they gave simple theoretical analysis for
diffusion equations on general triangulations.

However, it was constrained to special choosing of
control volumes.

Li Qian and his colleagues [7,8] also had a lot of
contributions to the studies of finite volume element
methods. Plexousakis and Zouraris [9] derived a class of
high order finite volume element methods for solving one
dimensional elliptic equation. Cai, Douglas and Park [10]
constructed a high order finite volume element method by
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mixed variational principle. They presented a ways to derive
high order finite volume element method over rectangular
meshes.

Mishev [11] has considered the FVEM in the linear
conforming finite element space and has established the

error estimate in the H ' -norm.
Wau and Li [12] have obtained the H ! superconvergence

and LP error estimates between the solution of the FVEM
and that of the finite element method.

Li [13] has considered the finite volume element method
for a nonlinear elliptic problem and obtained the error

estimate in the H ' norm.

Xu [14-16] has studied the two-grid finite element
method based on two finite element spaces on one coarse
and one fine grid for non-symmetric and nonlinear elliptic
problems.

Late on, Xu, Zhou [17] for eigenvalue problems,
Axelsson and Layton [18] for nonlinear elliptic problems,
Dawson, Wheeler and Woodward [19] for finite difference
scheme for nonlinear parabolic equations, Layton and
Lenferink [20] and Utnes [21] for Navier-Stokes equations,
Marion and Xu [22] for evolution equations have considered
the two grid method.

C.J. Bi and V. Ginting [23] have studied two grid finite
volume element discretization techniques for the non-
selfadjoint and definite linear elliptic problems and the
nonlinear elliptic problems based on two linear conforming

finite element spaces V,, and V, with grid size H and h
(H >>h).

In this paper, we consider two-grid finite volume element
method for two-dimensional quasi-linear parabolic equation
based on two linear conforming finite element spaces with
coarse grid and dense grid.

The rest of the article is organized as follows: In Section
2, we describe the FVEM for the quasi-linear parabolic
equation and algorithm of two-grid finite volume element
scheme. Section 3 contains the error analysis by two-grid
finite volume element method for quasi-linear parabolic
equation.
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Il.  -TWO GRID FINITE VOLUME ELEMENT SCHEME
We consider the initial-boundary value problem of quasi-linear parabolic equations

g—ltj —div(a(x,t,u)Vu) = f(x,t,u), (x,t)eQx(0,T], 1.1
u(x,t) =0, (x,t) e Q2% (0,T], (1.2
u(x,0) =u,(x), XxeQ, (1.3)

where Q — R?is a bounded-closed, convex domain.
We assume that ar(X,t,u), f(X,t,u) are smooth functions on Qx (0,T]x R and equations (1.1) - (1.3) have the

only unique solution U € H,(€2) onthe Qx(0,T] .
Writing the variational equations of equations (1.1) — (1.3),

jg—l:vdx+j(a(x,t,u)Vu)-Vvdx: I f(x,t,u)vdx, YWeH Q).
Q Q Q
The weak formulation of (1.1) — (1.3) is

(G +aiu = (Ftu) ), WeHi@), @

where ( -,- ) denotes the L*(Q) -—inner product and the bilinear a(-,-) is defined by
a(u, v) :I(a(x,t,u)Vu)-Vvdx, VU, Ve H;(Q) and a(w;u,v) = (a(x,t,w)Vu, Vv).
Q

Let T, be a quasi — uniform triangulation of Q2 with h = max{h, }, where h, is the diameter of the element triangle
keT,.

We consider a finite element discretization of (1.4) in the standard conforming finite element space V, of piecewise
linear functions, defined on the triangulation T, ,

V, ={v|veC(Q), | islinear, v ,=0, VkeT}.

In order to describe the FVEM for solving equation (1.1) — (1.3), we construct a dual partition Th* based upon the
original triangulation T, whose elements are called the control volumes.

We construct the control volume as follows; Let z, be the barycenter of K €T, . We connect z, with line segments to

the midpoints of the edges of K, thus partitioning K into three quadrilaterals K, z € Z, (K), where Z, (K) are the set of

vertices of K.

Then with each vertex Z € Z,, = UZh(K) we associate a control volume W, , which consists of the union of the
KeT,

subregions K, , sharing the vertex z . Thus we obtain a group of control volumes covering the domain €2, which is called the
dual partition Th* of the triangulation T, .
We denote the set of interior vertices of Z, by Z.
We call the partition Th* regular or quasi-uniform, if there exists a positive constant C >0 such that
C'h?* <meas(w,) <Ch?, vw, eT, .
We formulate the FVEM for the equation (1.1) ) — (1.3) as follows.

Given the vertex Z € Z,,, integrating equation (1.1) ) — (1.3) over the associated control volume W, and applying
Green’s formula, we obtain
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ou
I—dx+ I(a(x,t,u)Vu)- nds= j f(x,t,u)dx, (1.5) where N denotes the unit outer-normal vector on OW, .
ow,

ot

WZ z WZ
The semi-discrete FVE approximation solution of (1.1) — (1.3) is defined as a u, (X,t) €V, (0<t <T), such that

j%dm J'(a(x,t,uh)Vuh). nds = J. f(x,t,u,)dx. (1.6)
W, Wy Wh

Now the interpolation operator T1; :V, —V, is defined by
v, = ZVh(Z)){z : @7 where

ZeZﬁ
V, ={v|ve (), v, isconstant for allw, T,’; V|, =0, if 2€0Q} and y, is the characteristi

function of the control volume W, .
The semi-discrete FVEM (1.6) can be rewritten in a variational form
au * * *
Ehv IV, ) +a, (ugsuy, vy ) = (F (xtuy ), Tvy)
Uy, (X,0) = U, (X)
a, (-;+I1,") is defined by
a, (W Uy, Ty ) ==Y I(a(~,wh)Vuh) v, ds=—->"v, (2) j(a(x,t,wh)Vuh) -nds (1.9)
ZeZﬁ&m ZEZS oW,

Next we partition off the interval (0, T] in order to derive full discrete FVE scheme.

, (1.8) where for any u,, V,, W, €V, the bilinear form

Let 7 be the time step size. t“ =Kz and u, (t,) = uy .
Writing the full discrete FVE scheme for equation (1.1) — (1.3),
(Buf, TIVE) +a, (uf;uf, TTvE) = f((x,t%,uf), TV, W eV
tUn» LaVh n (Up Uy LRV, n )y LipVh " SV 1 10) where ouf =

u = Uy, (%), XeQ T
We shall present the two-grid finite volume element algorithm for the equation (1.10) based on two finite element spaces.

The two-grid method is to reduce the quasi-linear problem on a fine grid into a linear problem by solving a quasi-linear
problem on a coarse grid.

Let T,, and T, be two quasi-uniform triangulations of Q2 with two different mesh size H, h (H > h).

uf —ust

T,, T, will be called the coarse grid, the fine grid, respectively.
V., V, are the corresponding finite element spaces.
The two-grid finite volume element algorithm of the equation (1.10) is as follows.
® Find u,ﬁ eV, (k=12,...) suchthat

oul T vE ) +a, (U uk TT,vE ) = f((x,t5,ul),TT,,v8), vk eV
(G T4V ) +ay, (U Uy HOH) (( DREMAY H S VH (1.11) on the coarse grid T,, .
Uy = Ugy (X), xeQ
@ Find uf €V, (k=1 2,...) such that
Ouy ITove) +a, (U ;us, ITve) = (Ot us), Ihvy), Vv eV,

. (1.12) on the fine grid T, .
Uy, = Uy, (X), XeQ

This approximate solution u,‘j is called the approximate solution of the two-grid finite volume element method of
equations (1.1) — (1.3).
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1. ERROR ANALYSIS OF APPROXIMATE SOLUTION
In this section, we shall present the error estimate for the two-grid finite volume element method.

To describe error estimates, we first define some discrete norms on V, .

2 * *
|uh|0’h = (uh' uh)o,h ) (Uhv uh)O,h = Zmeas(\/i)uhiuhi = (Hhuh’ Hhuh)

XjeZy

|uh|12,h = 2 2 meas(V,)((u, —uy)/dy)*, ||“h||12,h =|uh|§,h +|uh|12,h’ \Iluh||\§ = (u,, ITu,)

X, €Zy X;€Zy,
We introduce the following bilinear forms
a(W, ;U V) = [ (@(wy VU, ) - Vv dx g (Wi, v, ) = [ (@(w,)Vu,) - v, dx,
Q Q

a (Wh; Uy, H;Vh) = _z I(a("Wh)VUh) ’ nH;vhds,

zeN, ow,

Ao (W, iUy TTv ) == _[(a(-, w, )Vu,) - nIl,v,ds,

zeN;ow,

where a(Wh)|k = WS(K)

Ia(-, W, )dx and d;; =d(x;, X;) is the distance between X; and X;.
Q
For U, We H; (Q) we assume that a, (w; u, TT;u) > C2||u||l2 :
Lemma 1. For any arbitrary U, ,V, €V, , we have
a, (Uy; Uy, vy ) — 8y (uh;uh’H;Vh) =

= Z j(a(x,t,uh)Vuh + B(x,t,u,))-n(v, =TT, v, )ds— (2.2)
KeT, oK
- Zj(a(x,t,uh)wh + B(X,t,u))- (v, —IT5v, )dx
KeT k
Proof. Using the formula of Green,

D (div(a(x,t,u,)Vu,, v,) = Zjdiv(a(x,t,uh)Vuh)vhdx =

keT, keT k
= Zj(a(x,t,uh)Vuh) -nv,ds—a, (u,;u,,v,)
keT ok
Moreover
Z(div(a(x!tiuh)vuh)fHhvh)ZZ z (div(a(xltvuh)vuh)vHhvh)kmwxj =
keT, keT Xj€Zy
=> [(axtu)vu) - nMvds— > [((@(xt,u,)Vu,)-niTv,ds =
keT ok Xj €Zn ow,
=> [(a(xt,u,)Vu,)-niTv,ds —a, (uy; uy, T, )
keT ak

From two expressions above
a (uh;uh 'Vh) -4, (uh;uh’Hth) =

= zj(a(x,t,uh)wh) n(v, —TT v, )ds — zj(a(x,t,uh)wh).(vh —IT v, )dx’

keTy ok keTy, k

The following lemma is proved in [3].
Lemma 2. For any arbitrary U, €V, , there exist a positive constant C, ,C, such that
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C0|uh|o,h < ”uhno < Cl|uh|o,h
Cowuhmo = ”uh”o < C1H|uh|Ho (2:3)
Collunll, < Junl, < Cullusl,

Lemma 3. For any arbitrary U, €V, , there exist a positive constant C,,C, such that

0, <.
* , VU, W, eV, (24)
a, (Wy; Uy, ITyu, ) 2 CZ||uh||1

proof.

* 2 * *
From inequality thuhu <(ITyu,,ITu,) = Zuhiuhi -meas(w, ), the first inequality is established.
X eNp
The second inequality is established from the given condition.
Let p, : H?(€) —V, be operator defined by equation a, (W; u— p,u, IT,v,) =0, WV, €V, .

We call elliptic projection of U € H? () N HZ () operator p, : H*(Q) -V, .
Now we give the error of the approximate solution of the finite volume element method for the equations (1.1) — (1.3).
Theorem 1. Let U and u,‘j be the solution of equation (1.1) — (1.3) and (1.10), respectively.
Assume that f (X,t,u) satisfies the inequality
[f(xt,w)— f(x,t,v) <Clw-v|, Yw,veR.
Then, there exist a positive constant C such that
Uy —u*| < C(Juy =gy |+ h?u,|, + h?u| +zfus.]). @5)
h = 0 oh olls 3 tth[/ - \&
proof. By ellipse projection operator p,,
uf —u* = (U = pu) +(pu —u) =& +7° (26
From the equation (1.10) and the elliptic operator p,,,
k * k. £k *
(0.5" vy ) +a, (uy; &7 11, v, ) =
k * k * k. k *
= (0, ppu”, TV ) = (F (-, up), T v ) + @, (Ug s pput, TLvy) =
k * k * k., k * k., k *
= (0, ppu”, Iy ) = (F (-, up), ITv,) +[a, (uy s u®, vy ) —a, (U u”, I, )] -
—a, (U u", T v,) =
k k * k k *
= (0, ppu” —u, I )+ [(F G ut) = F(,up), TLv )] -

_[ah (UE’ uk’ H;vh)_ah(uk; uk’ H;Vh)]

v, €V,
Choosing V, = &¥,
(08" T1, (")) + &y (uy; £ IT,E") =
= (8, Ppu —uf TLE ) +[(F (L u) = £, uy), THE)T+

_[ah(uﬁ;uk’nzgk)_ah(uk;ukansz)]
By Lemma 3,
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%(ﬁk =& ILE) < (0Pt —ug THE) +[(F ¢, u*) = £, up), TLE)]+

_[ah (UE; ukv H;é:k) - ah(uk; uk1 H;s‘k)]
Rewriting,

L -G + )< (@Rt - T +E )+

FICFCU) = £ ug) T (E  + &)1+
_[ah(U::; Uk, H;(fk +r§k_l))—ah(uk; Uk, H;(cfk +§k—1))]

Then
%(mf I =le) <o pou —ue ][ g + &<+
S e R A R C e B
<ot w6 ut= e ubf oDt e

(2.7)
By Lemma 2

[ ey < Qoo et uy - 1 b el ot D- & JgH mewicng

S0e1le=dapat —ut+fre,uty e unf e+

sing (¢, u) = £, up)| <c ]+ |
kaH<H5k‘1H+r<Ha P ukH+c (&=l D>- 2

From (2.8) [¢* H <= ‘ k-1

Kk k
= uf+ -

Then

-1 1 2 k k
s el (“ j<ua o -t oD

k-1 1+C T K K
<k -l e
n N N
T 1 1 (1+ Czrj (1+ CZTJ (N +c2TJ
Note that 7 = —, then = < = )
N 1-c,7 1-c, T (1-c,r 1-c,7 N-c,T
N+cT)
-1, +C, —e%" <o (N — o).
1-c,r N —c,T
By the (2.9) we have

£ < e+ S o.pt —u [+ e o
j=1

In the (2.10)

Therefore,
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2] = 11t = o | = o — an| + 17°] = o — tin] + ],
7| = en®lu'], 211

s <
From (2.11)
|£¥] = ©luo —ton|+ch?|ugl, +ch?|u*]|, +7|us ) @12)

Combining (2.6) — (2.12), we have
ot oo ]+
< C(|Jug = Ugp |+ g, + hzuuku3 + THUtkthH) + C'hzuuku3 <
< C (|lug = Ugp |+ g, + hzuuku3 + rHut';hH)
Next, we give the error of the approximate solution of the two-grid finite volume element scheme (1.11) - (1.12) for the

equations (1.1) — (1.3).
Theorem 2. Let U and u,f be the solution (1.1) — (1.3) and (1.11) — (1.12), respectively.

Then for h, H sufficiently small ,there exists a positive constant C such that
o —ut] < e+ HAu, + eus ) @19
proof. By the equation (1.11) — (1.12) and the elliptic projection operator p,,,
ah,c(uti ;UE - phuk’ v,) = [ah,c(ulﬁ ;U:' ITv,) -8, (u:; phuk’ v, )]+
+[ay, (uy; pou*, TV, ) —ay, (U5 P, Ty, )] =
:[ah,c(utl;ufl:’ H;Vh)_ah(u:;uk’ H;Vh)]"‘
+[a, (up; pou’, TIhv, ) =2, Uy Pu*, T, )] =
= (atuE’H:Vh)_(f ( ’UI:)’ H;Vh)—(ufﬁ, H:Vh)+(f ( J Uk)1 H;Vh)+
+[ah(u::; phuk' H;Vh)_ah,c(ullfl; phuk’ Tiv,)]=
= (atu:: _utkh’ H;Vh)"‘(f ( | Uk)_ f ( ’U|k4 )1 H:Vh)+
+[ah (ur:(; phuk’ H;Vh) —a (u:: . phuk! H;Vh)] =
=Q+Q, +Q;
Q= ‘(atu,'f — U, H;vh)‘ < Hatu: —uﬁh“ - HH;vhH < CTHUtka'HVhH
Q[ =[(f (. u*) = F(oul), THV)[<[(FC,u*) = F(ouly), T (v,)) +
(FCou*) = FCLul), TH 0, =TTV )|+ [(F G uf) = £¢ouf), T (T, v,) =TT, (T, )| <

< cH 2|, v, [, +cH Huk —uf Hl v, +cth+ H)Hu" —uf Hl.C <cH?|v, [,

www.ijcit.com
41


http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 — 0764)

Q=2 (0} P, C) -2, u; ot T, )] =

<ZJ

< c(h2 +H )Huh Hz -thHl

Therefore

g,

(- uy)

=Y [(at,u)Vput) v ds+ Y. f(a,

Volume 08 — Issue 01, January 2019

Vph u*)-nTI;v,ds <

LA

Vo) n s <y v -], ol <l —u'l o - ], ol <

k. .k k * k * 2 * 2 2 k *
2, (0 — Py, TT0,) < el [T + 2w+ (02 + MY, [ <

< cefu] - val, + H? vl + (0% + B v,

Choosing Vv, = urf - phuk

2
k k k.
cHuh - p,u Hl <a, (uy;

, from expression above

k K e gk
Uy — ppu’, T (uy -

pu*)) <

<c(H*+(h*+H Z)HUEH2 + THUtka) Huﬁ - phukH

Then [Juf — pu*|, < c(H? + (h? + H?)|uf||, + ]uf, )

Therefore

o, <l pa], <ot ], e o]+ o+ 0 O] + e

<c((h+H 2)Hu,‘j”2 g )

V. CONCLUSION
In this paper, we have studied present a full
discrete scheme and algorithm of the two — grid finite
volume element method for a quasi - linear parabolic
equation.
We have estimated the error of the approximate
solution by the two — grid finite volume element method.
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