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Abstract— In this paper we demonstrate a way to create a 

random permutation component directly from a symmetric key; 

we call this the Bipartite Graph Function (BGF). The idea is that 

the BGF will inherit the entropy of the key and therefore produce 

unpredictable permutations. We first show, by a few small initial 

trials, that the BGF retains the expected number of fixed points 

as for any random permutation. Then, as a secondary idea, we 

explain how one might use the BGF to replace a permutation in a 

block cipher and chose PRESENT to demonstrate an example. 

Several small trials that focussed on different Hamming distances 

showed BGF-PRESENT compared well with PRESENT. Indeed, 

both ciphers produced near ideal Hamming distances of n/2 = 32 

in all trials. The BGF may therefore be a useful tool to protect 

ciphers that have weak fixed permutations that can be exploited 

by attacks such as the statistical saturation attack.               

Keywords: random permutations, symmetric ciphers, bipartite 

graphs, PRESENT 

I.  INTRODUCTION 

In modern ciphers the only component that must 
necessarily remain secret is the encryption key, KE [1]. To help 
ensure this secrecy, encryption keys should be the result of 
approved random bit generators (RBG), such as those 
described by NIST, and therefore hard to predict [2]. In this 
paper we used a similar key called the rearrangement key, KR, 
(also the result of an approved RBG) to create a random 
permutation component called the Bipartite Graph Function 
(BGF). The idea is that the BGF should inherit the same, or 
nearly the same, entropy from KR and therefore create 
unpredictable permutations.  

Block ciphers typically meet their security needs through 
the use of iterated rounds in which each includes a layer that 
aims to confuse and diffuse the input message and the key. The 
use of substitution boxes, often the only non-linear component 
in a cipher, is responsible for adding confusion, while the 
permutation layer is responsible for adding diffusion. 

The purpose of the permutation layer is to diffuse the input 
such that after only a few rounds every bit will depend on 
every previous one. This ensures the desirable property that a 
small change in the input will effect a large change in the 
output; ideally a 1-bit change in the input will cause a change 
in about half the output bits. Indeed, a good cipher will 
typically achieve full diffusion after relatively few rounds. For 

example, AES-128 achieves full diffusion after just two of its 
ten rounds [3]. This required property highlights the 
importance of a carefully described permutation layer and for 
this reason we first show that the BGF retains the expected 
number of fixed points of a random permutation, i.e. 1. If the 
number of fixed points were too high this would render the 
BGF useless as a means to cause diffusion.  

We then do a small initial investigation into how the BGF 
may work in practice by comparing PRESENT (original) with 
BGF-PRESENT, i.e. PRESENT with the permutation layer 
replaced with the BGF. For any good cipher a good avalanche 
effect is a result of both a good substitution layer and a good 
permutation layer working in harmony. Therefore, changing 
the permutation layer in a cipher may adversely disturb its 
avalanche effect, so in this initial investigation we focus on 
comparing the avalanche effect of PRESENT and BGF-
PRESENT to observe if there are any immediate concerns. 

The rest of the paper is organised as follows: In section II 
we review related research work on randomising cryptographic 
components of existing symmetric ciphers and section III 
describes the process of constructing a BGF, including some 
analysis. In section IV we briefly describe PRESENT and our 
variant, BGF-PRESENT while section V provides the results 
of four small trials. Section VI offers conclusions and further 
work.  

II. RELATED WORK 

The idea of random S-boxes and permutations in symmetric 
ciphers goes back some thirty years and there is still much 
interest in them. In the next two paragraphs we look at some of 
the work on random S-boxes and then some of the work on 
random permutations.  

Biham and Shamir looked at randomising the contents, and 
the order, of DES S-boxes only to show that both made DES 
weaker [4]. In 1993 Schneier published Blowfish [5], a 16-
round Feistel cipher that uses 64-bit input blocks, four 32-bit 
key-dependent S-boxes and keys up to 448 bits in length. 
However, despite this a reduced-rounds variant of Blowfish 
could be susceptible to certain weak keys because they might 
generate weak S-boxes [6]; a weak key is one that creates an S-
box that has a collision, i.e. two distinct inputs to an S-box 
produce the same output. Even though such attacks are not 
effective against the standard Blowfish algorithm, it shows that 
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key-dependent aspects and the sheer size of a key space are not 
guarantees against weaknesses. Five years after Blowfish was 
published Schneier et al. released Twofish [7], the successor to 
Blowfish and the only one from five finalists for the Advanced 
Encryption Standard contest that included random features by 
way of key-dependent S-boxes [8]. Abd-ElGhafar et al. (2009) 
recommends adding dynamism to AES by using the stream 
cipher RC4 to generate a random key stream that in turn 
produces the S-box [9]. Hosseinkhani et al. (2012) [10] and 
Mahmoud E. et al. (2013) [11] put forward similar ideas that 
include a key-dependent S-box for AES, yet more recently 
Tiessen, Knudsen et al. (2015) showed how AES with a secret 
S-box is weak to attacks when reduced to six rounds [12]. 

Ruby and Rackoff (1988) showed how to construct 
pseudorandom permutations from pseudorandom functions 
[13], and Even and Mansour (1991) created a cipher from a 
single pseudorandom permutation and only two subkeys [14]. 
However, Daeman (1991) quickly demonstrated its severe 
limitations [15] and further weaknesses were found by 
Dunkelman et al. (2012) [16]. No matter, other ways of using 
random permutations persisted. Hall et al. (1998) [17] looked 
at building pseudorandom functions from pseudorandom 
permutations and, more recently, Kuppusamy et al. (2014) [18] 
proposed a means of creating a table of permutations created 
by a key-pair K1 and K2. However, this paper showed some 
poor avalanche effects. For example, two inputs differing by 
one bit resulted in ciphertexts that also differed by only one bit. 
Borgoff, Knudsen et al. (2011) offers an attack on PRESENT-
like ciphers with secret S-boxes and even extend the idea to 
cases where both the S-boxes and permutations are chosen 
uniformly at random [19]. The attacks were effective against 
PRESENT-like ciphers, with 16 secret S-boxes, up to 28 
rounds. For example, they attacked the cipher Maya, 
Gomathisankaran and Lee (2009), and recovered all 16 S-
boxes even though all were key-derived and therefore secret 
[20]. However, once the random S-boxes and permutation were 
chosen, they remained fixed thus making differential-type 
attacks easier to carry out. In 2010 Knudsen, Leander, et al. 
proposed the ultra-lightweight PRINTcipher that includes a 
key-dependent permutation. Every set of three bits that enter an 
S-box are randomly permuted but thereafter remain the same 
for each round, and even then not all permutations are available 
[21]. 

The difference in our proposal is that the permutations will 
change randomly and dynamically for each round, not just for 
each full encryption, and are entirely dependent on M, KE and 
KR (see Fig. 5). Indeed, the BGF may offer greater resistance 
against the statistical saturation attack. In the case of 
PRESENT, this attack exploits a weakness in its permutation 
layer. As just one example, of the sixteen bits that enter S-
boxes 5, 6, 9 and 10, only eight bits are sent to other S-boxes 
by the permutation layer. Therefore, fixing sixteen bits means 
eight of those bits will be known at the very same input of the 
next round [22]. By exploiting this and using the statistical 
saturation attack an attacker can break up to fifteen rounds of 
PRESENT using about 2

36
 plaintext-ciphertext pairs. The 

permutation in PRESENT also leads to other attacks such as 
linear cryptanalysis. For example, Cho (2010) demonstrated a 

way to recover the 80-bit key of PRESENT for up to 26 of the 
31 rounds [23]. However, if the permutation were random for 
each round, as for BGF-PRESENT, such attacks may be 
infeasible.  

III. THE BIPARTITE GRAPH FUNCTION (BGF) 

The Bipartite Graph Function (BGF) is a random 
permutation function that accepts inputs of various lengths and, 
in this paper, is dependent on the symmetric key KR. We use 
the expression n-BGF where n refers to the number of objects 
being permuted. Moreover, we use a KR that is independent of 
KE, but this may not be a necessity. The required length of KR 
depends on the degree of security necessary. However, it 
would be sensible to make KR as short as possible (i.e. such 
that security is not compromised) so as not to burden key 
management unnecessarily. We have chosen KR to be 64 bits 
as this is the same length as the encryption key for PRESENT. 

A. Creating a permutation from the BGF 

Consider a complete bipartite graph Kn,n with vertex sets K 

= L and where K = {k0, k1, … , kn-1} and L = {0, 1, …, n-1} 
(Fig. 1). A BGF graph is a subset of Kn,n where exactly one 
edge from each vertex in K joins a vertex in L. Hence, it is 
permissible for more than one vertex in K to join the same 
vertex in L, but not the other way around, i.e. it is comparable 
to a surjective function. The BGF of interest is in fact a 
directed graph from K to L, but for clarity we omit the arrows. 
Succinctly, a BGF graph is a directed bipartite graph without 
multiple edges.  

Now imagine each vertex ki  K can accept some input 

element mi  m (where m is a finite set) that can traverse any 

edge incident with its vertex and move to any vertex li  L. For 
example, if input m0 traverses edge {k0, 0} it will move straight 
down to the vertex parallel with its original position. However, 
if it traverses edge {k0, 1} it will move to a position parallel 
with vertex k1. In this way any mi can traverse an edge that 
would place it parallel with any ki. For example, if we 
randomly select edges {k0, 2}, {k1, 1}, {k2, 0} and {k3, 1} we 
end up with a random permutation of the inputs. See Fig.2 in 
which the non-traversed edges have been removed for clarity. 

   

 

 
Figure 1: Complete Graph K4,4 
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Therefore we can use a BGF graph to create a random 
permutation of a finite set m = {m0, m1, … , mn-1}. By using 

two-line notation, we obtain a permutation : m  m: 

 

Note that when two or more inputs go to the same vertex in 
L, the natural order takes precedence and hence the resulting 
permutation from the BGF graph depicted in Fig. 2 is: 

 

However, while graphs offer clear visual examples of the 
BGF, they soon become cumbersome (and indeed unclear) as n 
becomes larger. Therefore, we shall now introduce a more 
formal description using matrices.  

The adjacency matrix of a bipartite graph is given as: 

, 

where B is an r × s matrix (sometimes called the bi-
adjacency matrix), B

T
 is the transpose of B and 0r,r and 0s,s are 

the zero matrices of r × r  and s × s respectively. However, we 
need only matrix B to represent the graph. Furthermore, the 
BGF graph is always square (i.e. r = s) so we denote the matrix 
of the BGF graph as:  

, 

connectednotareedgesingcorrespondtheif

connectedareedgesingcorrespondtheif

0

1
,





jia  

For a BGF graph, the rows and columns of its 
corresponding bi-adjacency matrix, BKR, are represented by the 
vertices in the sets K and L respectively. For example, Fig. 3 is 
the BGF bi-adjacency matrix of Fig. 2: 

 

Choosing desired edges at random requires a reliable and 
convenient method, so we use KR to meet this need. Consider 
an 8-bit KR where each pair of bits ki refer to the rows of BKR 
and where the denary expression of each ki refer to the 
columns. For example: 
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We can now multiply (1) by the input vector m to produce 

the permutation (m): 

)(mmBKR               (2) 

Where m is the input row vector of n elements to be 

permutated by the bi-adjacency matrix BKR and m() is the 
resulting row vector permutation.   

In conventional matrix operations the result of multiplying 
such a matrix by a vector might include noughts and addition 
symbols. However, we are interested only in the objects being 
permuted so we discard them from the result. For example, if 
we use (2) with the same BKR described in (1), then:   

  )()0}{( 031203123210 mmmmmmmmBmmmm KR 

 

B. BGF analysis 

For an n-BGF we require a KR of minimum length nlog2(n) 
= N bits with bit-partitions of length log2(n). In our case, a 64-
BGF requires KR to be a minimum 384 bits long with bit-
partitions of length 6, so we need a key expansion; see (5). 
However, since the total number of permutations of n objects is 
n! there will be many KRs that produce the same permutation. 
We know this since n! < n

n
. We omit the proof here, but this 

can easily be shown using Sterling’s approximation for 
factorials and setting nlog2(n) = N and with 2

N
 written in terms 

of n. 

All KRs that produce the same permutation are considered 
to be of the same class. The number of KRs in each class can 
be found using the formula for combinations with 
replacements: 
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Figure 3: Bi-adjacency matrix of BGF graph in Fig. 2 

 

Figure 2: A random permutation of inputs m0 to m3 
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           (3) 

where n is the number of possibilities and r the number 
selected. 

As n increases the number of certain KRs in a class will 
also increase rapidly, thus making them more likely to be used 
to create a permutation. In other words, a certain number of 
distinct keys will produce the same permutation. For example, 
a 4-BGF permutes 4 elements which gives only 4! = 24 
permutations, even though a 4-BGF comes from an 8-bit KR 
for which there is a total of 2

8
 = 256 keys. We can find how the 

24 classes of KRs are shared among the 256 keys using (3) and 
fixing r = 4 and substituting n = 4, n = 3, n = 2, and n = 1 
respectively. The results tell us that one class/perm is produced 
by 35 distinct KRs, eleven different classes/perms are each 
produced by 15 distinct KRs, another eleven different 
classes/perms are each produced by 5 distinct KRs and one 
class/perm is produced by 1 distinct KR. This means, for 
instance, in the worst case there is a 13.7 per cent chance 
(35/256) of a random 8-bit KR being one of those in the KR 
class of 35 keys. However, as n becomes larger this worst-case 
percentage decreases rapidly. For example, for a 32-BGF the 
worst case is 2

60
/2

160
 = 2

-100
. No matter, we can easily check if 

two distinct KRs are of the same class. There are n! ways to 
permute n objects and therefore n! distinct n × n permutation 
matrices P. Moreover, since there are n! key classes KR, there 
must be one, and only one, P for each class. If two distinct 
permutation matrices were in the same class, this would mean 
they would both produce the same permutation, which is 
impossible. Therefore, if we have two keys KR and KR*, we 
can check if they are from the same class by observing their bi-
adjacency matrices and comparing them with their 
corresponding permutation matrices P and P*. We can easily 
find a corresponding matrix P by observing the two-line 

notations of m() and m*(). For example, BKR from (1) gives: 

 

Therefore, each input mi corresponds to row ki in P and 

each m() to the column. For instance, in the two-line notation 
above m0 maps to m3 and therefore P has a 1 in row k0, column 
3. Continuing in this way we obtain: 

 

Similarly, we can deduce P*. If P = P* then KR and KR* 
are in the same class and if P ≠ P* then KR and KR* are in 
distinct classes.  

IV. PRESENT AND BGF-PRESENT 

In this section we shall demonstrate a possible application 
of the BGF by using it as a replacement for the permutation 
layer in the lightweight cipher PRESENT. However, we 
emphasise this as a theoretical example, not necessarily as a 
recommendation. Indeed, the extra coding would inevitably 
undo its lightweight properties. No matter, PRESENT is 
susceptible to the statistical saturation attack and multivariate 
linear cryptanalysis because of its fixed permutation layer. 
Therefore, there is good reason to consider replacing it with a 
stronger one. 

A.  PRESENT cipher overview 

PRESENT is a lightweight substitution-permutation 
network that takes 64-bit input blocks and uses an 80-bit or 
128-bit encryption key, KE. In this work we consider only the 
80-bit KE. There are 31 full rounds with a final XOR to 
complete a full encryption. PRESENT uses a fixed 4-bit S-box 
and a fixed bitwise 64-bit permutation. KE is used to create 32 
subkeys, one for each of the 31 rounds and one more for the 
final XOR operation. PRESENT is one of only two lightweight 
ciphers specified by ISO/IEC [24]. 

B. BGF-PRESENT 

BGF-PRESENT is exactly the same as PRESENT except 
the permutation layer is replaced with the BGF (see Fig. 5).  
When using the BGF for BGF-PRESENT we require a subkey 
KRr for each round r. These subkeys are used to create the 
BGF of corresponding rounds, so we refer to a BGF perm of 
round r as BGF-r, e.g. BGF-3 refers to the BGF perm in round 
3. The key schedule for KRr is given below: 

])1([

;212

;11

KErrKRKRr

KEKRKR

KEKRKR








                      (4) 

C. Creating a BGF for BGF-PRESENT 

 To create a BGF we first need to expand KRr to its 
minimum bit length N = nlog2n, where n is the length of KRr, 
and then partition it into x = N/n blocks. In this paper we chose 
to further apply a distinct and simple bit-shift to each partition 
(5). 

For BGF-PRESENT n = 64 so we expand KRr from 64 bits 
into 64log2(64) = 384 bits. We then partition it into x = N/n = 
384/64 = 6 blocks and apply bit-shifts of 0, 1, 2, 3, 4 and 5: 

51111)1(  KRKRKRKRE              (5) 

D. Outline of the key register for the BGF (see also Fig. 4) 

1) A 64-bit KR is XORed with KE to give a 64-bit subkey 

KR1.  

2) KR1 is expanded and partitioned by (5) and used to 

create BGF-1. 

3) KR1 is XORed with KE2 to produce KR2 (4). 
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4) KR2 is expanded and partitioned by (5) and used to 

create BGF-2. 

5) KR2 is XORed with KE3 to produce KR3. Continue in 

this way up KR31. 

6) C31 is XORed with KR to produce a new KR ready for 

a new encryption.  

 
The internals of BGF-PRESENT, including the key register 

of KR, is explained below (see also Fig. 5). 

E. BGF-PRESENT outline  

1) A 64-bit input M is XORed with a 64-bit subkey KE1 

(from the PRESENT encryption key) 

2) The 64-bit output from 1. enters the S-box layer (the 

usual PRESENT S-box). 

3) The output from 2. is randomly permuted by the BGF-1 

layer. 

4) The output of the BGF-1 layer completes one 

encryption round to give ciphertext C1. 

5) The new input, C1, is XORed with KE2 and enters the 

S-box as before and the output of this is permutated by 

BGF-2. Continue in this way until BGF-31 gives C31. 

6) XOR C31 with KE32 to produce the final output 

ciphertext C. 

Decryption works by applying the scheme in reverse order. 

Users will have access to KE and KR and therefore each BGF-

r can easily be obtained from (4).  

F. Analysis of BGF-PRESENT  

The PRESENT cipher has already undergone extensive 
testing and is clearly strong against cryptanalytic attacks. 
However, as described in Section II, it could be stronger 
against the statistical saturation attack (and others) that exploit 
its weak permutation layer. The random permutation provided 
by the BGF should, in theory, remove this weakness because 
any bit output from an S-box has the potential to move to any 
of the available sixty-four positions for each round. Therefore, 
the fixed and predictable patterns will no longer occur. 
Nonetheless, we must not assume that solving one problem will 
not lead to others. For example, S-boxes and permutations 
work in harmony, so changing one of them may create new 
weakness that were not there originally. In particular, we must 
be careful that the BGF does not introduce weaknesses to 
differential and linear cryptanalysis. In theory, this should not 
be the case because the S-box remains unchanged and 
collecting input-out pairs of differentials will be much harder; 
the BGF-PRESENT produces unique outputs even when two 
or more inputs are the same. In a future paper we will look at 
this more closely, but here we look at how the BGF behaves as 
a random function independently and then how it might work 
as a replacement for the permutation in the cipher PRESENT.        

V. RESULTS  

In this section we offer the results of our investigation. In 
Trial 1 we check the number of fixed points of permutations 
created by the BGF. If there were a notably high number, the 

BGF may have to be reviewed of even discarded, so we did 
this one first. In Trials 2-4 we investigated how the BGF may 
influence the avalanche effect of BGF-PRESENT, including 
comparisons with PRESENT original.   

A. Trial 1: Testing the BGF for fixed points 

For any random permutation the expected number of fixed 
points is 1 [25]. However, we are using partitions of bits from a 
random key and then using that to create a random permutation 
function, the BGF. This raises the question, does the expected 
number of fixed points change unfavourably by the very 
process of creating the BGF? To test this, we tried 100 random 
64-bit permutations obtained from Random.org because they 
produce random numbers based on atmospheric noises, i.e. 
non-deterministic [26]. We also tested a further 100 random 
64-bit permutations that were each 1-bit different from the 
initial 100 permutations. See Table 1 at the end of this 
document. 

From this small test of 200 random permutations the results 
appeared favourable since most fixed points (about 80 per cent) 
were in the range 0–4 and none were higher than 7. Therefore, 
we continued with further tests that would offer some idea on 
how the BGF might work in practice.  

All good ciphers will obtain full diffusion in relatively few 
rounds and with fixed components this can be shown precisely. 
However, a random permutation will, by its very nature, be 
unpredictable. Therefore, since good diffusion offers a good 
avalanche effect, we checked for this in several ways to see if 
there were any immediate and obvious problems when we 
replace the permutation of PRESENT with the BGF. 
Moreover, since we are using KR as the means to directly 
control the initial permutation, our trials pay particular 
attention to this key. 

B. Trial 2: BGF-PRESENTKR versus BGF-PRESENTKR’  

This trial consisted of forty pairs of tests (i.e. eighty in 
total) where we observed the Hamming distances, denoted by 
d( , ), of the corresponding output ciphertexts. Each pair of 
tests included one encryption with KR and another with KR’ 
such that d(KR, KR’) = 1 or where KR’ = KR-compliment. 
Each M, KE and KR were carefully selected and included all-
zeros and particular patterns such as 0x0f…0f and 0x0…0f…f. 
The aim was to observe if there were any noticeable patterns 
between KR and its ciphertext C, and KR’ and its ciphertext 
C’. Our results produced an average d(C, C’) = 29.2. However, 
we noticed the keys KR = 00…00 and KR’ = 00…01 typically 
resulted in weaker d(C, C’). When we discount these 
potentially weak keys, the average changed to d(C, C’) = 32.4.    

C. Trial 3: BGF-PRESENT (KR fixed) versus PRESENT   

In this trial we compared fifty encryptions using BGF-
PRESENT against fifty using PRESENT. The encryption key 
was fixed at KE = 0 for all tests and for BGF-PRESENT we 
fixed KR = 0x0123456789abcdef. The hand-picked inputs M 
were distinct for each pair of fifty encryptions. The purpose of 
this experiment was to compare the Hamming distances (HD in 
the table) between M and the outputs of each complete round 
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Cr, where r is the round number; see Table 2 at the end of this 
document. The average Hamming distances for the final 
outputs C (after 32 rounds) were almost the same for each 
cipher. For PRESENT d(M, C) = 32.1 and for BGF-PRESENT 
d(M, C) = 31.6 and therefore both ciphers were almost exactly 
the desired average of 32. Indeed, the tabulated results show 
the Hamming distances of BGF-PRESENT were almost the 
same as for PRESENT throughout the various round-ranges 
tested and again both ciphers were almost an ideal 32. In 
addition, the standard deviations (SD in the table) of BGF-
PRESENT were slightly better (though not significantly) than 
those of PRESENT as they were a little closer to their average. 

D. Trial 4: BGF-PRESENT versus PRESENT with random M, 

K and KR  

In this trial we used 100 random 64-bit inputs M and 100 
random 80-bit encryption keys KE. For BGF-PRESENT we 
also used 100 random 64-bit keys KR. All were obtained from 
Random.org. 

As for Trial 2, the purpose of this experiment was to 
compare the Hamming distances between M and the outputs of 
each complete round Cr, where r is the round number. For each 
round of outputs Cr, the Hamming distances for BGF-
PRESENT and PRESENT were very similar, especially when 
considering the same average ranges as shown in Table 1. The 
average Hamming distances for the final output C (after 31 
rounds and the final XOR operation) were almost the same for 
each cipher. For PRESENT d(M, C) = 31.7 and for BGF-
PRESENT d(M, C) = 32.3. 

VI. CONCLUSIONS AND FURTHER WORK 

This paper explored a way to use a random symmetric 
encryption key as a means to create a random permutation 
function called the BGF. We showed by a small experiment 
that the BGF retained the expected number of fixed points as 
for any random permutation and therefore warrants further 
experiments. We also showed by several different experiments 
that replacing the permutation layer in PRESENT with the 
BGF did not adversely affect the Hamming distances. Indeed, 
the results showed a near perfect Hamming distance of n/2 in 
nearly all cases. Moreover, BGF-PRESENT has so far shown 
to offer good diffusion even though its permutation layer is not 
fixed. Therefore, we theorised that BGF-PRESENT may offer 
greater protection against attacks, such as the statistical 
saturation attack, that target the weaknesses in the permutation 
of PRESENT. These results will prompt us to do further 
similar experiments, with a much larger data set and with 
different model ciphers, for a future paper.  

Further still, we theorised that BGF-PRESENT might be 
better resistant to differential-type attacks because identical 
inputs will not produce identical outputs and therefore 
differentials between rounds will not propagate in a predictable 
way as they do for ciphers with fixed components. However, 
this requires a separate and detailed investigation. Perhaps an 
even simpler cipher, one that focuses on random permutations, 
such as the Even-Mansour cipher [14] with the BGF, would be 

an ideal model to check for resistance to differential and linear 
cryptanalysis specifically.  

Naturally, simple ways to improve the security of a cipher 
are to increase the key length and/or the number of rounds. Yet 
longer keys will further add to the burden of key management 
and more rounds may even offer less security [27]. Therefore, 
using key-created components that change dynamically could 
lead the way to longer use of keys (i.e. less frequent key 
changes) without adversely affecting security even, perhaps, 
with fewer rounds. No doubt, a scheme that uses KE XORed 
with an IV (rather than KR) to create the BGF would also be 
interesting future work. This will make for a more efficient 
scheme whilst using only one symmetric key.   
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Table 1 Fixed points of 200 BGFs 

 Number of fixed points from 100 trials 

 0 1 2 3 4 5 6 7 

Random bit-string 1 

 (non-deterministic) 
12 33 24 18 9 3 0 1 

Random bit-string 2  

(1-bit different from Random bit-string 1) 
15 35 22 18 8 1 0 1 

 

 
Table 2 Average Hamming distances over ranges of rounds 

 PRESENT BGF-PRESENT 

Rounds HD SD HD SD 

1-8 31.9 3.7 31.9 4.2 

1-16 31.9 3.9 32.0 4.1 

1-24 31.8 3.9 31.9 4.1 

1-32 31.9 4.0 32.0 4.1 

 

 

 

 
 

Figure 4: Key register for BGF-PRESENT 
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Figure 5: BGF-PRESENT with round-function components 


