
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 25

A Small Initial Investigation into a Key-dependent

Random Permutation with an Example in PRESENT

D. Dhebar
*
 and S. Jassim

University of Buckingham, Dept. of Applied Computing

Buckingham MK18 1EG, United Kingdom
*
Email: 0109340 [AT] buckingham.ac.uk

Abstract— In this paper we demonstrate a way to create a

random permutation component directly from a symmetric key;

we call this the Bipartite Graph Function (BGF). The idea is that

the BGF will inherit the entropy of the key and therefore produce

unpredictable permutations. We first show, by a few small initial

trials, that the BGF retains the expected number of fixed points

as for any random permutation. Then, as a secondary idea, we

explain how one might use the BGF to replace a permutation in a

block cipher and chose PRESENT to demonstrate an example.

Several small trials that focussed on different Hamming distances

showed BGF-PRESENT compared well with PRESENT. Indeed,

both ciphers produced near ideal Hamming distances of n/2 = 32

in all trials. The BGF may therefore be a useful tool to protect

ciphers that have weak fixed permutations that can be exploited

by attacks such as the statistical saturation attack.

Keywords: random permutations, symmetric ciphers, bipartite

graphs, PRESENT

I. INTRODUCTION

In modern ciphers the only component that must
necessarily remain secret is the encryption key, KE [1]. To help
ensure this secrecy, encryption keys should be the result of
approved random bit generators (RBG), such as those
described by NIST, and therefore hard to predict [2]. In this
paper we used a similar key called the rearrangement key, KR,
(also the result of an approved RBG) to create a random
permutation component called the Bipartite Graph Function
(BGF). The idea is that the BGF should inherit the same, or
nearly the same, entropy from KR and therefore create
unpredictable permutations.

Block ciphers typically meet their security needs through
the use of iterated rounds in which each includes a layer that
aims to confuse and diffuse the input message and the key. The
use of substitution boxes, often the only non-linear component
in a cipher, is responsible for adding confusion, while the
permutation layer is responsible for adding diffusion.

The purpose of the permutation layer is to diffuse the input
such that after only a few rounds every bit will depend on
every previous one. This ensures the desirable property that a
small change in the input will effect a large change in the
output; ideally a 1-bit change in the input will cause a change
in about half the output bits. Indeed, a good cipher will
typically achieve full diffusion after relatively few rounds. For

example, AES-128 achieves full diffusion after just two of its
ten rounds [3]. This required property highlights the
importance of a carefully described permutation layer and for
this reason we first show that the BGF retains the expected
number of fixed points of a random permutation, i.e. 1. If the
number of fixed points were too high this would render the
BGF useless as a means to cause diffusion.

We then do a small initial investigation into how the BGF
may work in practice by comparing PRESENT (original) with
BGF-PRESENT, i.e. PRESENT with the permutation layer
replaced with the BGF. For any good cipher a good avalanche
effect is a result of both a good substitution layer and a good
permutation layer working in harmony. Therefore, changing
the permutation layer in a cipher may adversely disturb its
avalanche effect, so in this initial investigation we focus on
comparing the avalanche effect of PRESENT and BGF-
PRESENT to observe if there are any immediate concerns.

The rest of the paper is organised as follows: In section II
we review related research work on randomising cryptographic
components of existing symmetric ciphers and section III
describes the process of constructing a BGF, including some
analysis. In section IV we briefly describe PRESENT and our
variant, BGF-PRESENT while section V provides the results
of four small trials. Section VI offers conclusions and further
work.

II. RELATED WORK

The idea of random S-boxes and permutations in symmetric
ciphers goes back some thirty years and there is still much
interest in them. In the next two paragraphs we look at some of
the work on random S-boxes and then some of the work on
random permutations.

Biham and Shamir looked at randomising the contents, and
the order, of DES S-boxes only to show that both made DES
weaker [4]. In 1993 Schneier published Blowfish [5], a 16-
round Feistel cipher that uses 64-bit input blocks, four 32-bit
key-dependent S-boxes and keys up to 448 bits in length.
However, despite this a reduced-rounds variant of Blowfish
could be susceptible to certain weak keys because they might
generate weak S-boxes [6]; a weak key is one that creates an S-
box that has a collision, i.e. two distinct inputs to an S-box
produce the same output. Even though such attacks are not
effective against the standard Blowfish algorithm, it shows that

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 26

key-dependent aspects and the sheer size of a key space are not
guarantees against weaknesses. Five years after Blowfish was
published Schneier et al. released Twofish [7], the successor to
Blowfish and the only one from five finalists for the Advanced
Encryption Standard contest that included random features by
way of key-dependent S-boxes [8]. Abd-ElGhafar et al. (2009)
recommends adding dynamism to AES by using the stream
cipher RC4 to generate a random key stream that in turn
produces the S-box [9]. Hosseinkhani et al. (2012) [10] and
Mahmoud E. et al. (2013) [11] put forward similar ideas that
include a key-dependent S-box for AES, yet more recently
Tiessen, Knudsen et al. (2015) showed how AES with a secret
S-box is weak to attacks when reduced to six rounds [12].

Ruby and Rackoff (1988) showed how to construct
pseudorandom permutations from pseudorandom functions
[13], and Even and Mansour (1991) created a cipher from a
single pseudorandom permutation and only two subkeys [14].
However, Daeman (1991) quickly demonstrated its severe
limitations [15] and further weaknesses were found by
Dunkelman et al. (2012) [16]. No matter, other ways of using
random permutations persisted. Hall et al. (1998) [17] looked
at building pseudorandom functions from pseudorandom
permutations and, more recently, Kuppusamy et al. (2014) [18]
proposed a means of creating a table of permutations created
by a key-pair K1 and K2. However, this paper showed some
poor avalanche effects. For example, two inputs differing by
one bit resulted in ciphertexts that also differed by only one bit.
Borgoff, Knudsen et al. (2011) offers an attack on PRESENT-
like ciphers with secret S-boxes and even extend the idea to
cases where both the S-boxes and permutations are chosen
uniformly at random [19]. The attacks were effective against
PRESENT-like ciphers, with 16 secret S-boxes, up to 28
rounds. For example, they attacked the cipher Maya,
Gomathisankaran and Lee (2009), and recovered all 16 S-
boxes even though all were key-derived and therefore secret
[20]. However, once the random S-boxes and permutation were
chosen, they remained fixed thus making differential-type
attacks easier to carry out. In 2010 Knudsen, Leander, et al.
proposed the ultra-lightweight PRINTcipher that includes a
key-dependent permutation. Every set of three bits that enter an
S-box are randomly permuted but thereafter remain the same
for each round, and even then not all permutations are available
[21].

The difference in our proposal is that the permutations will
change randomly and dynamically for each round, not just for
each full encryption, and are entirely dependent on M, KE and
KR (see Fig. 5). Indeed, the BGF may offer greater resistance
against the statistical saturation attack. In the case of
PRESENT, this attack exploits a weakness in its permutation
layer. As just one example, of the sixteen bits that enter S-
boxes 5, 6, 9 and 10, only eight bits are sent to other S-boxes
by the permutation layer. Therefore, fixing sixteen bits means
eight of those bits will be known at the very same input of the
next round [22]. By exploiting this and using the statistical
saturation attack an attacker can break up to fifteen rounds of
PRESENT using about 2

36
 plaintext-ciphertext pairs. The

permutation in PRESENT also leads to other attacks such as
linear cryptanalysis. For example, Cho (2010) demonstrated a

way to recover the 80-bit key of PRESENT for up to 26 of the
31 rounds [23]. However, if the permutation were random for
each round, as for BGF-PRESENT, such attacks may be
infeasible.

III. THE BIPARTITE GRAPH FUNCTION (BGF)

The Bipartite Graph Function (BGF) is a random
permutation function that accepts inputs of various lengths and,
in this paper, is dependent on the symmetric key KR. We use
the expression n-BGF where n refers to the number of objects
being permuted. Moreover, we use a KR that is independent of
KE, but this may not be a necessity. The required length of KR
depends on the degree of security necessary. However, it
would be sensible to make KR as short as possible (i.e. such
that security is not compromised) so as not to burden key
management unnecessarily. We have chosen KR to be 64 bits
as this is the same length as the encryption key for PRESENT.

A. Creating a permutation from the BGF

Consider a complete bipartite graph Kn,n with vertex sets K

= L and where K = {k0, k1, … , kn-1} and L = {0, 1, …, n-1}
(Fig. 1). A BGF graph is a subset of Kn,n where exactly one
edge from each vertex in K joins a vertex in L. Hence, it is
permissible for more than one vertex in K to join the same
vertex in L, but not the other way around, i.e. it is comparable
to a surjective function. The BGF of interest is in fact a
directed graph from K to L, but for clarity we omit the arrows.
Succinctly, a BGF graph is a directed bipartite graph without
multiple edges.

Now imagine each vertex ki K can accept some input

element mi m (where m is a finite set) that can traverse any

edge incident with its vertex and move to any vertex li L. For
example, if input m0 traverses edge {k0, 0} it will move straight
down to the vertex parallel with its original position. However,
if it traverses edge {k0, 1} it will move to a position parallel
with vertex k1. In this way any mi can traverse an edge that
would place it parallel with any ki. For example, if we
randomly select edges {k0, 2}, {k1, 1}, {k2, 0} and {k3, 1} we
end up with a random permutation of the inputs. See Fig.2 in
which the non-traversed edges have been removed for clarity.

Figure 1: Complete Graph K4,4

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 27

Therefore we can use a BGF graph to create a random
permutation of a finite set m = {m0, m1, … , mn-1}. By using

two-line notation, we obtain a permutation : m m:

Note that when two or more inputs go to the same vertex in
L, the natural order takes precedence and hence the resulting
permutation from the BGF graph depicted in Fig. 2 is:

However, while graphs offer clear visual examples of the
BGF, they soon become cumbersome (and indeed unclear) as n
becomes larger. Therefore, we shall now introduce a more
formal description using matrices.

The adjacency matrix of a bipartite graph is given as:

,

where B is an r × s matrix (sometimes called the bi-
adjacency matrix), B

T
 is the transpose of B and 0r,r and 0s,s are

the zero matrices of r × r and s × s respectively. However, we
need only matrix B to represent the graph. Furthermore, the
BGF graph is always square (i.e. r = s) so we denote the matrix
of the BGF graph as:

,

connectednotareedgesingcorrespondtheif

connectedareedgesingcorrespondtheif

0

1
,

jia

For a BGF graph, the rows and columns of its
corresponding bi-adjacency matrix, BKR, are represented by the
vertices in the sets K and L respectively. For example, Fig. 3 is
the BGF bi-adjacency matrix of Fig. 2:

Choosing desired edges at random requires a reliable and
convenient method, so we use KR to meet this need. Consider
an 8-bit KR where each pair of bits ki refer to the rows of BKR
and where the denary expression of each ki refer to the
columns. For example:

0010

0001

0010

0100

3210

210110010001

3

2

1

0

0123

k

k

k

k

B

kkkkKR

KR

 (1)

We can now multiply (1) by the input vector m to produce

the permutation (m):

)(mmBKR (2)

Where m is the input row vector of n elements to be

permutated by the bi-adjacency matrix BKR and m() is the
resulting row vector permutation.

In conventional matrix operations the result of multiplying
such a matrix by a vector might include noughts and addition
symbols. However, we are interested only in the objects being
permuted so we discard them from the result. For example, if
we use (2) with the same BKR described in (1), then:

)()0}{(031203123210 mmmmmmmmBmmmm KR

B. BGF analysis

For an n-BGF we require a KR of minimum length nlog2(n)
= N bits with bit-partitions of length log2(n). In our case, a 64-
BGF requires KR to be a minimum 384 bits long with bit-
partitions of length 6, so we need a key expansion; see (5).
However, since the total number of permutations of n objects is
n! there will be many KRs that produce the same permutation.
We know this since n! < n

n
. We omit the proof here, but this

can easily be shown using Sterling’s approximation for
factorials and setting nlog2(n) = N and with 2

N
 written in terms

of n.

All KRs that produce the same permutation are considered
to be of the same class. The number of KRs in each class can
be found using the formula for combinations with
replacements:

110

110

n

n

mmm

mmm

0312

3210

mmmm

mmmm

ss
T

rr

B

B
A

,

,

0

0

nnnn

n

n

aaa

aaa

aaa

B

,2,1,

,22,21,2

,12,11,1

0010

0001

0010

0100

3210

3

2

1

0

k

k

k

k

BKR

Figure 3: Bi-adjacency matrix of BGF graph in Fig. 2

Figure 2: A random permutation of inputs m0 to m3

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 28

 (3)

where n is the number of possibilities and r the number
selected.

As n increases the number of certain KRs in a class will
also increase rapidly, thus making them more likely to be used
to create a permutation. In other words, a certain number of
distinct keys will produce the same permutation. For example,
a 4-BGF permutes 4 elements which gives only 4! = 24
permutations, even though a 4-BGF comes from an 8-bit KR
for which there is a total of 2

8
 = 256 keys. We can find how the

24 classes of KRs are shared among the 256 keys using (3) and
fixing r = 4 and substituting n = 4, n = 3, n = 2, and n = 1
respectively. The results tell us that one class/perm is produced
by 35 distinct KRs, eleven different classes/perms are each
produced by 15 distinct KRs, another eleven different
classes/perms are each produced by 5 distinct KRs and one
class/perm is produced by 1 distinct KR. This means, for
instance, in the worst case there is a 13.7 per cent chance
(35/256) of a random 8-bit KR being one of those in the KR
class of 35 keys. However, as n becomes larger this worst-case
percentage decreases rapidly. For example, for a 32-BGF the
worst case is 2

60
/2

160
 = 2

-100
. No matter, we can easily check if

two distinct KRs are of the same class. There are n! ways to
permute n objects and therefore n! distinct n × n permutation
matrices P. Moreover, since there are n! key classes KR, there
must be one, and only one, P for each class. If two distinct
permutation matrices were in the same class, this would mean
they would both produce the same permutation, which is
impossible. Therefore, if we have two keys KR and KR*, we
can check if they are from the same class by observing their bi-
adjacency matrices and comparing them with their
corresponding permutation matrices P and P*. We can easily
find a corresponding matrix P by observing the two-line

notations of m() and m*(). For example, BKR from (1) gives:

Therefore, each input mi corresponds to row ki in P and

each m() to the column. For instance, in the two-line notation
above m0 maps to m3 and therefore P has a 1 in row k0, column
3. Continuing in this way we obtain:

Similarly, we can deduce P*. If P = P* then KR and KR*
are in the same class and if P ≠ P* then KR and KR* are in
distinct classes.

IV. PRESENT AND BGF-PRESENT

In this section we shall demonstrate a possible application
of the BGF by using it as a replacement for the permutation
layer in the lightweight cipher PRESENT. However, we
emphasise this as a theoretical example, not necessarily as a
recommendation. Indeed, the extra coding would inevitably
undo its lightweight properties. No matter, PRESENT is
susceptible to the statistical saturation attack and multivariate
linear cryptanalysis because of its fixed permutation layer.
Therefore, there is good reason to consider replacing it with a
stronger one.

A. PRESENT cipher overview

PRESENT is a lightweight substitution-permutation
network that takes 64-bit input blocks and uses an 80-bit or
128-bit encryption key, KE. In this work we consider only the
80-bit KE. There are 31 full rounds with a final XOR to
complete a full encryption. PRESENT uses a fixed 4-bit S-box
and a fixed bitwise 64-bit permutation. KE is used to create 32
subkeys, one for each of the 31 rounds and one more for the
final XOR operation. PRESENT is one of only two lightweight
ciphers specified by ISO/IEC [24].

B. BGF-PRESENT

BGF-PRESENT is exactly the same as PRESENT except
the permutation layer is replaced with the BGF (see Fig. 5).
When using the BGF for BGF-PRESENT we require a subkey
KRr for each round r. These subkeys are used to create the
BGF of corresponding rounds, so we refer to a BGF perm of
round r as BGF-r, e.g. BGF-3 refers to the BGF perm in round
3. The key schedule for KRr is given below:

])1([

;212

;11

KErrKRKRr

KEKRKR

KEKRKR

 (4)

C. Creating a BGF for BGF-PRESENT

 To create a BGF we first need to expand KRr to its
minimum bit length N = nlog2n, where n is the length of KRr,
and then partition it into x = N/n blocks. In this paper we chose
to further apply a distinct and simple bit-shift to each partition
(5).

For BGF-PRESENT n = 64 so we expand KRr from 64 bits
into 64log2(64) = 384 bits. We then partition it into x = N/n =
384/64 = 6 blocks and apply bit-shifts of 0, 1, 2, 3, 4 and 5:

51111)1(KRKRKRKRE (5)

D. Outline of the key register for the BGF (see also Fig. 4)

1) A 64-bit KR is XORed with KE to give a 64-bit subkey

KR1.

2) KR1 is expanded and partitioned by (5) and used to

create BGF-1.

3) KR1 is XORed with KE2 to produce KR2 (4).

r

rn
C R

rn

1
),(

2103

3210

mmmm

mmmm

0100

0001

0010

1000

3210

3

2

1

0

k

k

k

k

P

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 29

4) KR2 is expanded and partitioned by (5) and used to

create BGF-2.

5) KR2 is XORed with KE3 to produce KR3. Continue in

this way up KR31.

6) C31 is XORed with KR to produce a new KR ready for

a new encryption.

The internals of BGF-PRESENT, including the key register

of KR, is explained below (see also Fig. 5).

E. BGF-PRESENT outline

1) A 64-bit input M is XORed with a 64-bit subkey KE1

(from the PRESENT encryption key)

2) The 64-bit output from 1. enters the S-box layer (the

usual PRESENT S-box).

3) The output from 2. is randomly permuted by the BGF-1

layer.

4) The output of the BGF-1 layer completes one

encryption round to give ciphertext C1.

5) The new input, C1, is XORed with KE2 and enters the

S-box as before and the output of this is permutated by

BGF-2. Continue in this way until BGF-31 gives C31.

6) XOR C31 with KE32 to produce the final output

ciphertext C.

Decryption works by applying the scheme in reverse order.

Users will have access to KE and KR and therefore each BGF-

r can easily be obtained from (4).

F. Analysis of BGF-PRESENT

The PRESENT cipher has already undergone extensive
testing and is clearly strong against cryptanalytic attacks.
However, as described in Section II, it could be stronger
against the statistical saturation attack (and others) that exploit
its weak permutation layer. The random permutation provided
by the BGF should, in theory, remove this weakness because
any bit output from an S-box has the potential to move to any
of the available sixty-four positions for each round. Therefore,
the fixed and predictable patterns will no longer occur.
Nonetheless, we must not assume that solving one problem will
not lead to others. For example, S-boxes and permutations
work in harmony, so changing one of them may create new
weakness that were not there originally. In particular, we must
be careful that the BGF does not introduce weaknesses to
differential and linear cryptanalysis. In theory, this should not
be the case because the S-box remains unchanged and
collecting input-out pairs of differentials will be much harder;
the BGF-PRESENT produces unique outputs even when two
or more inputs are the same. In a future paper we will look at
this more closely, but here we look at how the BGF behaves as
a random function independently and then how it might work
as a replacement for the permutation in the cipher PRESENT.

V. RESULTS

In this section we offer the results of our investigation. In
Trial 1 we check the number of fixed points of permutations
created by the BGF. If there were a notably high number, the

BGF may have to be reviewed of even discarded, so we did
this one first. In Trials 2-4 we investigated how the BGF may
influence the avalanche effect of BGF-PRESENT, including
comparisons with PRESENT original.

A. Trial 1: Testing the BGF for fixed points

For any random permutation the expected number of fixed
points is 1 [25]. However, we are using partitions of bits from a
random key and then using that to create a random permutation
function, the BGF. This raises the question, does the expected
number of fixed points change unfavourably by the very
process of creating the BGF? To test this, we tried 100 random
64-bit permutations obtained from Random.org because they
produce random numbers based on atmospheric noises, i.e.
non-deterministic [26]. We also tested a further 100 random
64-bit permutations that were each 1-bit different from the
initial 100 permutations. See Table 1 at the end of this
document.

From this small test of 200 random permutations the results
appeared favourable since most fixed points (about 80 per cent)
were in the range 0–4 and none were higher than 7. Therefore,
we continued with further tests that would offer some idea on
how the BGF might work in practice.

All good ciphers will obtain full diffusion in relatively few
rounds and with fixed components this can be shown precisely.
However, a random permutation will, by its very nature, be
unpredictable. Therefore, since good diffusion offers a good
avalanche effect, we checked for this in several ways to see if
there were any immediate and obvious problems when we
replace the permutation of PRESENT with the BGF.
Moreover, since we are using KR as the means to directly
control the initial permutation, our trials pay particular
attention to this key.

B. Trial 2: BGF-PRESENTKR versus BGF-PRESENTKR’

This trial consisted of forty pairs of tests (i.e. eighty in
total) where we observed the Hamming distances, denoted by
d(,), of the corresponding output ciphertexts. Each pair of
tests included one encryption with KR and another with KR’
such that d(KR, KR’) = 1 or where KR’ = KR-compliment.
Each M, KE and KR were carefully selected and included all-
zeros and particular patterns such as 0x0f…0f and 0x0…0f…f.
The aim was to observe if there were any noticeable patterns
between KR and its ciphertext C, and KR’ and its ciphertext
C’. Our results produced an average d(C, C’) = 29.2. However,
we noticed the keys KR = 00…00 and KR’ = 00…01 typically
resulted in weaker d(C, C’). When we discount these
potentially weak keys, the average changed to d(C, C’) = 32.4.

C. Trial 3: BGF-PRESENT (KR fixed) versus PRESENT

In this trial we compared fifty encryptions using BGF-
PRESENT against fifty using PRESENT. The encryption key
was fixed at KE = 0 for all tests and for BGF-PRESENT we
fixed KR = 0x0123456789abcdef. The hand-picked inputs M
were distinct for each pair of fifty encryptions. The purpose of
this experiment was to compare the Hamming distances (HD in
the table) between M and the outputs of each complete round

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 30

Cr, where r is the round number; see Table 2 at the end of this
document. The average Hamming distances for the final
outputs C (after 32 rounds) were almost the same for each
cipher. For PRESENT d(M, C) = 32.1 and for BGF-PRESENT
d(M, C) = 31.6 and therefore both ciphers were almost exactly
the desired average of 32. Indeed, the tabulated results show
the Hamming distances of BGF-PRESENT were almost the
same as for PRESENT throughout the various round-ranges
tested and again both ciphers were almost an ideal 32. In
addition, the standard deviations (SD in the table) of BGF-
PRESENT were slightly better (though not significantly) than
those of PRESENT as they were a little closer to their average.

D. Trial 4: BGF-PRESENT versus PRESENT with random M,

K and KR

In this trial we used 100 random 64-bit inputs M and 100
random 80-bit encryption keys KE. For BGF-PRESENT we
also used 100 random 64-bit keys KR. All were obtained from
Random.org.

As for Trial 2, the purpose of this experiment was to
compare the Hamming distances between M and the outputs of
each complete round Cr, where r is the round number. For each
round of outputs Cr, the Hamming distances for BGF-
PRESENT and PRESENT were very similar, especially when
considering the same average ranges as shown in Table 1. The
average Hamming distances for the final output C (after 31
rounds and the final XOR operation) were almost the same for
each cipher. For PRESENT d(M, C) = 31.7 and for BGF-
PRESENT d(M, C) = 32.3.

VI. CONCLUSIONS AND FURTHER WORK

This paper explored a way to use a random symmetric
encryption key as a means to create a random permutation
function called the BGF. We showed by a small experiment
that the BGF retained the expected number of fixed points as
for any random permutation and therefore warrants further
experiments. We also showed by several different experiments
that replacing the permutation layer in PRESENT with the
BGF did not adversely affect the Hamming distances. Indeed,
the results showed a near perfect Hamming distance of n/2 in
nearly all cases. Moreover, BGF-PRESENT has so far shown
to offer good diffusion even though its permutation layer is not
fixed. Therefore, we theorised that BGF-PRESENT may offer
greater protection against attacks, such as the statistical
saturation attack, that target the weaknesses in the permutation
of PRESENT. These results will prompt us to do further
similar experiments, with a much larger data set and with
different model ciphers, for a future paper.

Further still, we theorised that BGF-PRESENT might be
better resistant to differential-type attacks because identical
inputs will not produce identical outputs and therefore
differentials between rounds will not propagate in a predictable
way as they do for ciphers with fixed components. However,
this requires a separate and detailed investigation. Perhaps an
even simpler cipher, one that focuses on random permutations,
such as the Even-Mansour cipher [14] with the BGF, would be

an ideal model to check for resistance to differential and linear
cryptanalysis specifically.

Naturally, simple ways to improve the security of a cipher
are to increase the key length and/or the number of rounds. Yet
longer keys will further add to the burden of key management
and more rounds may even offer less security [27]. Therefore,
using key-created components that change dynamically could
lead the way to longer use of keys (i.e. less frequent key
changes) without adversely affecting security even, perhaps,
with fewer rounds. No doubt, a scheme that uses KE XORed
with an IV (rather than KR) to create the BGF would also be
interesting future work. This will make for a more efficient
scheme whilst using only one symmetric key.

REFERENCES

[1] Kerckhoffs, A. (1883) La cryptographie militaire. J sci militaires IX:5–
38, 161–191. [http://www.petitcolas.net/fabien/kerckhoffs/]

[2] Barker, E. and Kelsey, J., 2015. NIST Special Publication 800-90A
Revision 1. tech. rep., National Institute of Standards and Technology.

[3] Daemen, J. and Rijmen, V., 2013. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media, pp.
41.

[4] Biham, E. and Shamir, A. “Differential Cryptanalysis of DES-like
Cryptosystems,” Journal of Cryptology, Vol.4, pp.3–72, (1991).

[5] Schneier, B.: Description of a New Variable-Length Key, 64-Bit Block
Cipher (Blowfish). Fast Software Encryption, Cambridge Security
Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp.
191-204.

[6] Orhun, K. and Cevat, M. A New Class of Weak Keys for Blowfish. FSE
2007.

[7] Schneier, B. et al.: Twofish: A 128-bit Block Cipher (1998)
[https://www.schneier.com/paper-twofish-paper.pdf].

[8] (NIST), N. I. (1997). ANNOUNCING REQUEST FOR CANDIDATE
ALGORITHM NOMINATIONS FOR THE ADVANCED
ENCRYPTION STANDARD. Retrieved November 2017 from
http://csrc.nist.gov/edgehive/aes/pre-round1/aes_9709.htm.

[9] Abd-ElGhafar, A.R., Diaa, A. and Mohammed, F., 2009, May.
Generation of AES key dependent S-boxes using RC4 algorithm. In 13th
International Conference on Aerospace Sciences & Aviation Technology
(pp. 26-28).

[10] Hosseinkhani R., Haj Seyyed Javadi H. Using Cipher Key to Generate
Dynamic S-box in AES Cipher System. International Journal of
Computer Science and Security (IJCSS), Volume 6, issue 1. (2012).

[11] Eman Mohammed Mahmoud et al. Dynamic AES-128 with Key-
dependent S-box. International Journal of Engineering Research and
Applications (IJERA), Vol. 3, Issue 1, Jan-Feb (2013), pp.1662-1670.

[12] Tiessen, T., Knudsen, L.R., Kölbl, S. and Lauridsen, M.M., 2015,
March. Security of the AES with a Secret S-Box. In International
Workshop on Fast Software Encryption (pp. 175-189). Springer, Berlin,
Heidelberg.

[13] Luby, M. and Rackoff, C., 1988. How to construct pseudorandom
permutations from pseudorandom functions. SIAM Journal on
Computing, 17(2), pp.373-386.

[14] Even, S. and Mansour, Y., 1991, November. A construction of a cipher
from a single pseudorandom permutation. In International Conference
on the Theory and Application of Cryptology (pp. 210-224). Springer,
Berlin, Heidelberg.

[15] Daemen, J., 1991, November. Limitations of the Even-Mansour
construction. In International Conference on the Theory and Application
of Cryptology (pp. 495-498). Springer, Berlin, Heidelberg.

[16] Dunkelman, O., Keller, N. and Shamir, A., 2012, April. Minimalism in
Cryptography: The Even-Mansour Scheme Revisited. In Eurocrypt (Vol.
7237, pp. 336-354).

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 31

[17] Hall, C., Wagner, D., Kelsey, J. and Schneier, B., 1998. Building prfs
from prps. In Advances in Cryptology—CRYPTO'98 (pp. 370-389).
Springer Berlin/Heidelberg.

[18] Kuppusamy, Arulmani, Swaminathan Pitchai Iyer, and Kannan
Krithivasan. "Two-key dependent permutation for use in symmetric
cryptographic system." Mathematical Problems in Engineering 2014
(2014).

[19] Borghoff, J., Knudsen, L.R., Leander, G., Thomsen, S.S.: Cryptanalysis
of PRESENT-like Ciphers with Secret S-Boxes. In: Joux, A. (ed.) FSE
2011. LNCS, vol. 6733, pp. 270–289. Springer, Heidelberg (2011)].

[20] Gomathisankaran M., Lee, R.B.: Maya: A Novel Block Encryption
Function. In: Proceedings of International Workshop on Coding and
Cryptography (2009), (February 14, 2010).

[21] Knudsen, L.R., Leander, G., Poschmann, A. and Robshaw, M.J., 2010,
August. PRINTcipher: A Block Cipher for IC-Printing. In CHES (Vol.
6225, pp. 16-32).

[22] Collard, B. and Standaert, F.X., 2009, April. A Statistical Saturation
Attack against the Block Cipher PRESENT. In CT-RSA (Vol. 5473, pp.
195-210).

[23] In CT-RSA (Vol. 5473, pp. 195-210). (Cho, J.Y., 2010, March. Linear
Cryptanalysis of Reduced-Round PRESENT. In CT-RSA (Vol. 5985,
pp. 302-317).

[24] Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-
Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007).

[25] Grinstead, C.M. and Snell, J.L., 2012. Introduction to probability.
American Mathematical Soc., pp. 81.

[26] Haahr, M. and Haahr, S., 2005. Retrieved September 2017 from
https://www.random.org/bytes/

[27] Bhaumik, R., Dutta, A., Guo, J., Jean, J., Mouha, N. and Nikolić, I.,
2015. More Rounds, Less Security? (Doctoral dissertation, Inria Paris
Rocquencourt).

Table 1 Fixed points of 200 BGFs

 Number of fixed points from 100 trials

 0 1 2 3 4 5 6 7

Random bit-string 1

 (non-deterministic)
12 33 24 18 9 3 0 1

Random bit-string 2

(1-bit different from Random bit-string 1)
15 35 22 18 8 1 0 1

Table 2 Average Hamming distances over ranges of rounds

 PRESENT BGF-PRESENT

Rounds HD SD HD SD

1-8 31.9 3.7 31.9 4.2

1-16 31.9 3.9 32.0 4.1

1-24 31.8 3.9 31.9 4.1

1-32 31.9 4.0 32.0 4.1

Figure 4: Key register for BGF-PRESENT

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 7– Issue 01, January, 2018

www.ijcit.com 32

Figure 5: BGF-PRESENT with round-function components

