
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07– Issue 01, January 2018

www.ijcit.com

19

A Vendor Neutral QoS Monitoring Model for

SaaS Cloud Computing Solutions

Frankline Makokha

School of Computing and Informatics

University of Nairobi

Nairobi, Kenya

goldmedalist321 [at] gmail.com

Elisha, E. Opiyo

School of Computing and Informatics

University of Nairobi

Nairobi, Kenya

Abstract— The increased uptake in use of cloud computing

solutions and an upsurge in the number of cloud service providers

has raised the need for cloud consumers to validate the QoS

derived from the various cloud solution providers. This validation

requires use of cloud QoS monitoring tools that are developed by

entities other than the cloud providers themselves. Further, the

tool should not be tied to the underlying architecture of any cloud

platform to make it usable across various cloud vendors, thus

making it vendor neutral. Due to unavailability of vendor neural

QoS monitoring tools, cloud users have had to rely on the tools

developed by the same providers from whom they get the cloud

services. This is due to the fact that the tools are dependent on the

underlying cloud architecture of the specific cloud vendor. In cases

where the client has more that one cloud provider for the same

services, it is not possible to compare the level of QoS derived from

the different providers since the tools are not portable. This paper

presents a model for developing a cloud QoS monitoring tool for

SaaS cloud computing solutions that is not tied to an underlying

architecture of any particular cloud provider.

Keywords- Quality of Service, Vendor Neutral, Cloud, Cloud

Computing, Model, Browser Extension, Web

I. INTRODUCTION

With the advancement in cloud computing technology, more

and more companies are opting to adopt this technology due to

lower cost of investment compared to actual purchase of

hardware and software systems. With this trend by most

companies, more and more cloud service providers are coming

up, leading to competition for available clients.

To facilitate the client in choosing which cloud service provider

offers better services, there has to be a mechanism through

which clients can gauge the Quality of Service (QoS) offered

by the various cloud providers.

The various cloud QoS monitoring models in existence, namely

the Agent Based Model, Adaptive QoS-driven Monitoring

Model, CloudQual, The Quality of Service MONitoring as a

Service Model (QoSMONaaS) are all tied to the physical

infrastructure of the service provider and hence a monitoring

tool developed using any of the above model can not be used

across multiple cloud vendors [1]. This means the current cloud

QoS monitoring tools are not portable across various cloud

vendors.

Cloud service models can be divided into three main categories:

SaaS (Software as a Service), PaaS (Platform as a Service), and

IaaS (Infrastructure as a Service), [2].

The above listed models can be depicted architecturally as in

the figure 1.

Figure 1: The Cloud Reference Architecture

Adapted from [3]

mailto:goldmedalist321@gmail.com

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07– Issue 01, January 2018

www.ijcit.com

20

II. HIGH LEVEL ARCHITECTURE FOR CLOUD QOS

MONITORING MODEL

From the analysis done by [1], the current high-level

architecture of the existing cloud QoS monitoring models is as

shown in figure 2.

Figure 2: High Level Architecture of the Current QoS

Monitoring Model

From the above model, the QoS monitoring tools developed

reside in the cloud, they measure the QoS experienced by the

user and store the results in the providers systems for querying

by the user. This in deed poses the possibility of vendor bias

since the service provider and the QoS tool developer are the

same entity, the provider further stores the results before the

user can query them. In cases where the Service Level

Agreements (SLA) is strict, trust issues on the measured QoS

may arise.

Further, from the above diagram, it is clear that the tool is tied

to the architecture of the cloud on which it runs. This implies

that the tool cannot be used on any other cloud platform and

thus in case the service user wishes to compare the QoS levels

of different providers of the same service, it would not be

possible using the same tool.

To eliminate possible cases of vendor bias, it would be wise to

develop a model that is not tied to the system architecture any

specific cloud provider. Further, the QoS results as measured

should be directly relayed to the service user without first being

stored on the cloud provider’s infrastructure.

The possible high-level architecture for the solution to the

above problem is depicted in figure 3.

Figure 3: A Conceptual Architecture of a Possible Vendor

Neutral QoS Monitoring Model.

From figure 3, the tool resides on the user’s terminal, monitors

the QoS of the cloud service, and stores the results in the user’s

terminal.

The solution to this puzzle lies in the access method to the

service. The three cloud service models, namely SaaS, PaaS and

IaaS, can be accessed by the user via two methods, namely, a

cloud provider specialized application installed on the user

terminal or via the web browser. The various access methods to

the three cloud service models are as shown in figure 4.

Figure 4 : Coud Services Access Methods

Adapted from [4].

A close analysis of this access mode shows that the cloud

provider specialized application access method is still

dependant on the cloud provider and is thus vendor specific.

The only access method that is vendor neutral is the browser

based method. As [5] puts it, Services provided by SaaS are

accessed by end users through Web portals.

This method grants an opportunity for developing a vendor

neutral model for monitoring the QoS of cloud solutions. This

will involve an in-depth study of the architecture of web

browsers for proper understanding of the various components

that comprise the browser to inform on how a third party tool

can be incorporated in the browser to extend its functionality to

include cloud QoS monitoring.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07– Issue 01, January 2018

www.ijcit.com

21

III. THE WEB BROWSERS ARCHITECTURE

A web browser is an essential application program for accessing

the Internet [6]. It is defined by [7] as a program that can read

and fetch documents locally as well as from sites around the

world via the Internet. An alternative definition by [8] is that it

is a program that retrieves documents on the World Wide Web

from remote servers and displays them on screen, either within

the browser window itself or by passing the document to an

external helper application. Based on these definitions a web

browser can be defined as an end user application with an

interface (graphical/text based) through which the user can

interact with content on the Internet and the World Wide Web

by specifying the Uniform Resource Identifiers of the content.

A reference architecture for a web browser is as depicted in

figure 5.

Figure 5: A Reference Architecture for a Web Browser.

Adapted from [8]

A reference architecture for a domain captures the fundamental

subsystems common to systems of that domain, as well as the

relationships between these subsystems [8].

A. Web Browser Sub Components

The functions of the above listed sub components are as

highlighted below [8]:

The User Interface subsystem: is the layer between the user and

the Browser Engine. It provides features such as toolbars, visual

page-load progress, smart download handling, preferences, and

printing. It may be integrated with the desktop environment to

provide browser session management or communication with

other desktop applications.

The Browser Engine subsystem is an embeddable component

that provides a high level interface to the Rendering Engine. It

loads a given URI and supports primitive browsing actions such

as forward, back, and reload. It provides hooks for viewing

various aspects of the browsing session such as current page

load progress and JavaScript alerts. It also allows the querying

and manipulation of Rendering Engine settings.

The Rendering Engine subsystem translates a URI into a visual

representation. It is capable of displaying HTML and XML

documents, optionally styled with Cascading Style Sheets

(CSS), as well as embedded content such as images. It is

responsible for page layout and may contain reflow algorithms,

which incrementally adjust the position of elements on the page.

This subsystem also includes the HTML parser.

The Networking subsystem implements file transfer protocols

such as HTTP and FTP. It translates between different character

sets, and resolves MIME media types for files. It may include a

cache of recently retrieved resources.

The JavaScript Interpreter evaluates JavaScript (also known as

ECMAScript) code, which may be embedded in web pages.

JavaScript is an object-oriented scripting language developed by

Netscape. Certain JavaScript functionality, such as the opening

of popup windows, may be disabled by the Browser Engine or

Rendering Engine for security purposes.

The XML Parser subsystem parses XML documents into a

Document Object Model (DOM) tree. This is one of the most

reusable subsystems in the architecture. Most browser

implementations leverage an existing XML Parser, rather than

rewriting their own from scratch.

The Display Backend subsystem provides drawing and

windowing primitives, a set of user interface widgets, and a set

of fonts. It may be tied closely with the Operating System.

The Data Persistence subsystem stores various data associated

with the browsing session on disk namely high level data such

as bookmarks or toolbar locations and lower level data such as

cookies, cache and security certificates

B. Browser Extensibility

An extensible system is one that permits later revision of the

previously designed base system: additions to, improvements

upon, or replacements of existing functionality [9]. Modern day

browsers have three ways of improving their functionality,

namely vide extensions, plug-ins or widgets.

In computing, a plug-in (or add-in / addin, plugin, extension or

add-on / addon) is a software component that adds a specific

feature to an existing software application [10].

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07– Issue 01, January 2018

www.ijcit.com

22

Plugins allow browsers to parse and display content that is not

traditional HTML [11]. Webpages that depend on plugins,

directly invoke them through the use of appropriately set

<object> and <embed> tags.

Browser extensions are meant to extend or modify the default

behavior of a browser and make use of well-defined APIs

provided to them by browsers [11].

A clear difference between the terms add-on, plug-in, widget

and extension is highlighted in table1.

Table 1: Key Differences between Add-on, Plug-in, Widget

and Extension and other related terms.

A web browser architectural diagram, with an add-on is as

shown in figure 6.

Figure 6: Browser architecture with an add-on sub component.

Adapted from [12]

The Generic structure on how an add-on interfaces with an

existing program is a shown in figure 7.

Figure 7: A generic interface between an add-on and a host

application.

Adapted from [10]

From the descriptions provided in table 1, a vendor neutral

model for cloud QoS monitoring is best designed and developed

as an Extension.

IV. THE ARCHITECTURE OF A BROWSER EXTENSION

The generic structure of a web browser extension is as depicted

in figure 8.

Figure 8 : The Architecture of a Browser Extension

Adapted from [13].

A more zoomed-in view of the architecture of a browser

extension is as shown in figure 9.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07– Issue 01, January 2018

www.ijcit.com

23

Figure 9: A zoomed in view of a browser extension.

Adapted from [14].

From figure 9, the Content scripts are limited to only interacting

with untrusted Web content and therefore execute with no

privileges; the Extension core implements extension specific

features including browser User Interface (UI) modification,

interacting with system level resources via browser’s extension

(Application Programming Interface) API and therefore

executes with the extension’s full privileges; while the native

binary code interacts with the host machine.

One example of a browser, Chrome, separates privileges

between different components of an extension [15]. In

particular, the content script of an extension can directly interact

with web contents. However, by default it does not have the

permissions to access browser modules, except that it can

communicate to the extension core via postMessage.

The extension core has most assigned privileges, but it is

insulated from web pages. It has to use content scripts or invoke

XMLHttpRequest to communicate with the web content. The

native binary of an extension, running as an NPAPI plugin, has

the most privileges as it can run arbitrary code or access any

files.

This privilege separation with a modular architecture was

introduced in modern browsers to address the security

challenges of legacy monolithic browsers where extension code

and code interacting with Web page content execute in a unified

JavaScript heap.

V. PROPOSED VENDOR NEUTRAL CLOUD QOS MONITORING

MODEL

To develop a vendor neutral model for cloud QoS monitoring,

the model will have to be developed as an extension, which

would be pegged to a particular browser. A high level

architecture, of this proposed model would be as shown in

figure 10.

Figure 10 : High Level architecture of the Proposed Vendor

Neutral QoS Monitoring Model.

A zoomed in view of the Extension sub component would be as

depicted in figure 11.

Figure 11 : A Zoomed in View of the Vendor Neutral Model.

The terminal specifications module is to retrieve the

specifications of the system (user equipment) on which the

extension is running, e.g. RAM capacity, CPU speed and the

Internet speeds at the time of monitoring. This is important in

cases where the QoS from the cloud is also affected by the

terminal that measured those QoS. The QoS parameter module

monitors the specific parameter it is programed to monitor and

stores the results in the report module.

A. Implementation of the Proposed Vendor Neutral Cloud

QoS Model

The proposed vendor neutral model can be implemented as an

extension for any of the web browsers. The development tools

in this model can be a combination of any of the standard web

development technologies, namely HTML, CSS, JavaScript

and Canvas. For data storage and rendering, any of the database

technologies namely SQL and MySQL could be used subject to

what the web browser APIs support.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 07– Issue 01, January 2018

www.ijcit.com

24

CONCLUSION

With the growth of public cloud offerings, for cloud customers

it has become increasingly difficult to decide which provider

can fulfill their QoS requirements, since each cloud provider

offers similar services at different prices and performance levels

with different set of features [16]. Due to the difficulty in

portability of the existing cloud QoS monitoring models, the

proposed Vendor Neutral model will be handy to cloud users to

validate the QoS data as retrieved from the cloud providers

system and also compare the performance of two or more cloud

providers offering the same service.

ACKNOWLEDGMENTS

We acknowledge the assistance and guidance provided by the

late Prof.Okello-Odongo, of the University of Nairobi, during

the nascent stages of this research before his untimely demise.

REFERENCES

[1] Makokha, F., Opiyo, E. and Okello-odongo (2017). Challenges of

Quality of Service Monitoring in Cloud Computing Solutions.

International Journal of Computer and Information Technology Vol. 06

Issue 06.

[2] Gorelek, E. (2013). Cloud Computing Models. MEng, Massachusetts

Institute of Technology (MIT).

[3] Kumar, S. and Goudar, R. H. (2012) Cloud Computing – Research

Issues, Challenges, Architecture, Platforms and Applications: A Survey.

International Journal of Future Computer and Communication.Vol. 1,

No. 4.

[4] Ashraf, I. (2014). An Overview of Service Models of Cloud Computing.

International Journal of Multidisciplinary and Current Research. Vol.2

(July/Aug 2014 issue.

[5] Buyya, R., Broberg, J. and Goscinski, A. (Eds., 2011). Cloud

Computing: Principles and Paradigms. Hoboken, New Jersey: John

Wiley & Sons, Inc.

[6] Junghoon, O., Seungbong, L., and Sangjin L. (2011). Advanced

evidence collection and analysis of web browser activity: Proceedings of

The Digital Forensic Research Conference, DFRWS 2011 USA, New

Orleans, LA (Aug 1st - 3rd).

[7] Vetter, R. J., Spell, C., and Ward, C. (1994). Mosaic and the World Wide

Web. IEEE Computer, Volume: 27, Issue: 10.

[8] Grosskurth, A. and Godfrey, M. (2005). A Reference Architecture for

Web Browsers. Software Maintenance, 2005. ICSM'05. Proceedings of

the 21st IEEE International Conference Software Maintenance,

Budapest, Hungary, IEEE Computer Society, Los Vaqueros Circle, CA.

[9] Lerner, B. S. (2011). Designing for Extensibility and Planning for

Conflict: Experiments in Web-Browser Design. PhD., University of

Washington.

[10] Jain, J. (2015) Security Plug-ins Handbook: A Student’s Guide, Chicago:

InfoSec Institute.

[11] Starov, O. and Nikiforakis, N.(2017) "XHOUND: Quantifying the

Fingerprintability of Browser Extensions," 2017 IEEE Symposium on

Security and Privacy (SP), San Jose, CA.

[12] Vrbanec, T., Kirić, N. and Varga, V. (2013) The evolution of web

browser architecture, in M Mokrys, S Badura, A Lieskovsky (Eds.),

SCIENCOF 2013 :Proceedings of The 1st International Virtual Scientific

Conference. Publishing Society: Slovakia:

[13] Karim, R. (2015) Techniques And Tools For Secure Web Browser

Extension Development. PhD, The State University of New Jersey.

[14] Barth, A., Porter Felt, A., Saxena, P. and Boodman, A. (2010), Protecting

Browsers from Extension Vulnerabilities: Proceedings of the 17th

Network and Distributed Systems Security Symposium, San Diego, CA

(Feb 28th – March 3rd, 2010).

[15] Liu, L., Zhang, X., Yan, G and Chen, S. (2012) Chrome Extensions:

Threat Analysis and Countermeasures, NDSS ’12: Proceedings of the

19th Network and Distributed System Security Symposium. San Diego,

California February 5-8, 2012.

[16] Mamoun, H. M and Ibrahim, E. M. (2014). A Proposed Framework for

Ranking and Reservation of Cloud Services. International Journal of

Engineering and Technology, Volume 4, No. 9.

