
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 300

Simplifying Scientific Programming with Streak©

Francisca O. Oladipo, PhD

Department of Computer Science, Faculty of Science

Federal University Lokoja

Lokoja, Nigeria

Email: francisca.oladipo [AT] fulokoja.edu.ng

Victor U. Anawo

Department of Computer Science, Faculty of Science

Federal University Lokoja

Lokoja, Nigeria

Abstract— It is still often perceived that programming is only for

experts. This in combination with the low expressiveness features

of many programming languages discourage a lot more people

from going fully into the field of programming. The result of this

research is a quasi-programming environment named Streak©.

Streak© parades a command line interface where all

programming activities including variable declaration can be

carried out. Streak©, supports primitive data types, comments

using the “#” symbol and an array of reserved words like streak,

streakvar, feedin, feedout, end, etc. Being a quasi-environment,

Streak© does not have its own Graphical User Interface, but the

output is displayed on the Command Line Interface. The

language building blocks is made up of a translation program,

grammatical structures based on the Backus-Naur form and

regular expressions. It runs on a command line interface which

can be integrated into popular IDE and has its own set of easy to

remember and use keywords. Streak© provides extensive support

for breakpoints which in turn allows the debugger to debug

programs faster.

Keywords- programming language, quasi-environments, CLI,

mac/windows interface

I. INTRODUCTION

Languages in general is a means for communication and
they are made up of the structure which refers to the syntax and
the rules which define the meaning of a language –the
semantics. A computer system only understands and
communicates in the binary code (0s and 1s), this is known as
the machine language. While it is possible to straightforwardly
write programs in the machine language, it is tedious and
mistake inclined to oversee individual bit and calculate
numerical addresses and constants manually. Therefore,
machine language is nearly never used to write programs in
present day settings; this prompted the introduction of the
assembly language [1].

Assembly language was birthed to ease programming; it
wiped out a great part of the error prone, and tedious binary
code system in programming with the earliest computer;
liberating software engineers from tedium, for example,
recollecting numeric codes and calculating addresses. An
assembly language, frequently represented as "asm", is a low
level programming language, in which there is a solid
correspondence between the language design and the
computer's machine code instructions; every assembly
language is particular to a specific computer engineering [2].

Despite the fact that Assembly languages are quicker and
superior to the binary coding system, it is as yet ailing in many
regards: there are no typical names for memory locations, the
codes are difficult to read, the code is still machine dependent,
it is difficult to maintain and debug, and the code must be
vigorously documented. This prompted the introduction of
high-level languages, which encourages programming in a
human-like language [3].

According to [4], the term “High-level language” refers to a
larger amount of reflection from machine language. High level
languages are programming languages that are machine
independent, they are nearer to human languages and require to
be translated to machine language before the instructions they
hold can be executed. Thus, the advancement of programming
languages from machine language to high-level language has
accomplished its aim, which is to simplify communication
between humans and computers. Some programming
languages were created to be used in a wide variety of fields
while others were created to be used within a certain domain;
they are the general purpose programming languages and the
domain-specific programming language [5].

A general purpose programming language is mostly
intended for writing programs in an assortment of application
domains, it has this property because it does not include
language constructs intended to be utilized inside a particular
application domain. A domain-specific programming language
is one intended to be utilized inside a particular application
domain [6].

Programming, as a branch of computer science deals with
writing sets of instructions to be executed by a computer in a
particular programming language. However, programming is
usually perceived to be difficult, and as such, novices in the
field of computing and students alike often shy away from
programming. This can be due to a variety of reasons which
may be complex rules governing a programming language,
confusing keywords, or difficult process of debugging [7].

According to [8], bugs hinder the learning process of
novices in two ways: the students get easily discouraged from
following their curriculum material due to the number of bugs
they encounter which are unrelated to the concepts being
learned; secondly, novices often possess some misconceptions
about the syntax and semantics of a programming language,
which lead to confusion when their programs behave
differently from what they expect.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 301

This research hopes to simplify programming by reducing
the amount of time spent on the process of debugging, thus,
reducing the stress encountered by newbies in the field of
computing. It aims at reducing the complexity of programming
experienced by novices in the field by simplifying the process
of program writing through the development of Streak©, a
quasi-programming language with support for breakpoints
thereby enabling efficient debugging. Streak© will provide
support for error handling by suggesting possible solutions to
errors, and reduce the length of program codes with the
concept of economy of expression.

This section on introduction will be followed by a review of
related research, approaches and products. A brief description
of the materials and methods deployed towards the
construction of Streak© will be presented before the design
artefacts. After an extensive description of Streak©’s design
results, the paper shall present the implementation before the
concluding remarks and recommendations.

II. REVIEW OF RELATED RESEARCH

A. Evolution Of Programming Languages

Programming languages are languages that determine an
arrangement of guidelines which may be used to yield different
kinds of outputs. Programming languages for the most part
comprises of instruction sets for a computer. Programming
languages may be used for writing programs which implement
particular algorithms. Programming languages generally
describe computation on a few, perhaps abstract machines.
Programming languages vary natural languages and that
regular languages are mainly used for communication between
individuals. Programming languages enables people to
communicate instructions to computer machines [9].

Amid a nine-month time frame in 1842 and 1843, Ada
Lovelace deciphered the diary of Italian statistician Luigi
Menabrea on Charles Babbage's most current planned engine,
the analytical engine. With the editorial, she attached an
arrangement of records which indicated in total detail a strategy
for computing Bernoulli numbers through the engine,
perceived by a few history specialists as per the world's
original computer program [10].

Konrad Zuse created Plankalkul, a high-level
programming language in 1945, in which the main constructs
are: variable assignments, guarded commands and while loops,
arithemetical and logical operations. Plankalkul was created for
Z1, a programmable computer built by Zuse in-between 1936
to 1945. However, the language, Plankalkul, remained not
effected up until 1998 and 2000 [11].

Some years later, John Mauchly's Small Code which was
planned in 1949, was among the first high-level languages at
any point created to be used on electronic computers.
Notwithstanding, the program must be converted to machine
code each time it was run, making the procedure much slower
than executing the equal machine code [12].

In the mid-1950s, Alick Glennie created Autocode at
University of Manchester. A programming language that used
a compiler for automatic conversion of the language to

machine code. The primary compiler and code was created in
1952 for the Mark 1 PC at University of Manchester, and is
thought to be the earliest compiled high-level programming
language, it was also faster than John Mauchly’s Small code
[13].

Around that period, John Backus invented the FORTRAN
language in the year 1954 at IBM. It was the initial high level
and also general-purpose programming language to be widely
used. It has a functional implementation. Though the language
is quickly going into extinction, it is still a widely held
language for high-performance computing [14]. The name
FORTRAN is short for FORmula TRANslating. Today, the
FORTRAN language is considered restraining as it just
includes the DO, IF and GOTO statements, yet at that time,
these statements were a major stride forward in the field of
computing. The basic data types being used today was started
in FORTRAN; they include logical variables which are TRUE
or FALSE statements, real, integer, and double [15].

Grace Hopper discovered that data processing business
customers were not comfortable using mathematical notation
(as was the case with FORTRAN). Therefore, she conceived
the idea that led to the production of another programming
language, FLOW-MATIC. It was produced to be used on the
UNIVAC I computer within the period of 1955 and 1959.
Hopper and her group designed a description for the
programming language which is in English and executed a
prototype in 1955 [16]. FLOW-MATIC compiler turned out to
be openly accessible in 1958 and was whole in 1959. FLOW-
MATIC was the main factor which led to the development of
COBOL [17].

Business computing took off in 1959, COBOL
programming language was developed because of business
computing. COBOL was developed by CODASYL in 1959
and was partially based on FLOW-MATIC. COBOL is an
acronym for Common Business-Oriented Language. It was
mainly designed for use in business. It is procedural,
imperative and object-oriented [18]. Its data types are strings
and numbers. It allows for the grouping of data types into
records and arrays so that data can be managed properly. The
statements in COBOL are very much like English grammar,
which makes it easy to learn. All these features were
implemented in order for it to be easy to learn and adopt it by
the average businessman [19].

A new type of research began during mid-1950s; it is
known as the Artificial Intelligence (AI). John McCarthy of
MIT in 1958 designed the LISP programming language. LISP
stands for LISt Processing language. It was developed for
Artificial Intelligence (AI) research. Since it was intended for a
particular field of study, the first release of LISP had unique
language structure. A conspicuous contrast with this language
(in its original form) from other languages is: the essential and
only datatype is list; in 1960's, LISP procured other data types.
LISP list can be denoted by series of items encircled by
parenthesis. LISP programs are written as an arrangement of
lists, with the goal that LISP will be capable of altering itself,
and consequently develop on its own. LISP is still in use today
because it has an abstract nature and it is highly specialized.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 302

The first complete compiler which was written in LISP was
implemented in 1962 by Mike Levin and Tim Hart [20].

Still in the year 1958, the ALGOL programming language
was made by a group for scientific use. ALGOL is short for
Algorithmic Language. ALGOL was the first language to
implement nested function definition with lexical scope. It also
introduced block of codes and the “begin” and “end” pairs for
delimiting them. It was additionally the language which
introduced a formal grammar, which was branded as Backus-
Naar Form (BNF). Its main impact is being the foundation of
the hierarchy that has prompted languages such as Java, Pascal,
C++ and C [21].

Using the development of ALGOL programming language,
Niklaus Wirth designed the Pascal language in 1968 to 1969
and was published in 1970. It was written out of a need for a
decent teaching tool. Pascal was planned in a systematic
approach, it consolidated a hefty portion of the finest elements
of the languages being used at that time; FORTRAN, COBOL
and ALGOL. At that parallel time, a considerable lot of the
abnormalities and odd statements of the languages in existence
then, were tidied up, which enabled it pick up users [22]. It is
mainly intended to encourage programming styles using
structured programming and data structuring Pascal
additionally helped the growth of dynamic variables; the
variables could be made with the NEW and DISPOSE orders
while a program ran. Notwithstanding, Pascal did not execute
dynamic arrays, or group of variables, which turned out to be
required and prompted its fall. Wirth later made a successor to
Pascal, Modula-2, yet when it showed up, C was picking up
prominence and users at a fast pace [23].

C language, also developed between 1969 and 1973 during
the same time as Pascal programming language by Dennis
Ritchie while working at Bells Labs was used to re-write the
Unix OS. The evolution in use from the first main
programming languages to the main programming languages in
our present day happened with the move from Pascal to C. Its
immediate predecessors are BCPL and B, however its
likenesses with Pascal are very self-evident. The greater part of
the components of Pascal, together with the fresh ones, for
example, the CASE construct are obtainable in C. C utilizes
pointers broadly and was made to be quick and effective to the
detriment of being hard to use. But since it settled the greater
part of the errors Pascal had, it prevailed upon previous Pascal
users quickly. C is a general-purpose and imperative
programming language; it supports structured programming,
recursion, and lexical variable scope. C makes available
constructs that map efficiently to typical machine instructions,
and in this way, it has found enduring use in applications that
had once been coded in assembly language, including
operating systems, and in addition, different application
software for computers extending from supercomputers to
embedded systems [24] [25].

Within 1970's and 1980's, another programming technique
was created. It was known as Object Oriented Programming
(OOP). Objects are bits of data which can be bundled and
controlled by the developer. Bjarne Stroustroup enjoyed this
strategy and created expansions to C known as "C with

classes". This arrangement of augmentations formed into the
fully developed language known as C++, and was published in
1983. C++ was intended to organize the power of C utilizing
OOP, yet keep up the speediness of C and have the capacity to
keep running on a wide range of sorts of computers. C++ is
regularly used in simulations, for example, games. It was
developed with an inclination concerning system programming
and resource-constrained, embedded and big systems, with
flexibility, efficiency and performance as its design highpoints
[26]. The International Organization for Standardization (ISO)
is responsible for the standardization of C++, it was firstly
standardized in 1998 and was adjusted by the C++03 standard
in 2003. The current standard is the C++14 standard which
supersedes the previous C++11 standard with latest features
and a bigger standard library. In July 2017, the C++17 standard
will be due and the next scheduled standard is the C++20
standard [27].

In 1991, the idea of Java programming language was
initiated by James Gosling, Patrick Naughton and Mike
Sheridan. It was originally intended for interactive television; it
later became too advanced for the digital television industry at
that time. The Java language was firstly called Oak which was
named after an oak tree standing outside Gosling’s office at the
time. The name of the project was later changed to Green, then
was finally named Java, after Java coffee [28]. Java
programming language was intended to allow software
developers to “compose once, run anywhere” which means that
any compiled Java code will be able to run on platforms which
support Java without any need to recompile. Java codes are
compiled to bytecode which can run on all Java virtual
machine (JVM) while not regarding the architecture of the
computer. Java was developed at Sun Microsystems. Oracle
Corporation later acquired Sun Microsystems. Java was
released in 1995 [29].

The programming language Visual Basic was developed
based on the language Basic which was created by Thomas
Kurtz and John Kemeny in 1964. The BASIC language is very
limited and was mainly designed for people of other fields of
study which is not computer science. Statements can be run in
sequence but program modification can be made through the
GOSUB and IF…THEN statements which runs a block of
code, then returns back to its initial point in the codes. BASIC
is short for Beginner’s All-purpose Symbolic Instruction Code
[30].

In 1991, Microsoft expanded BASIC in its new product,
Visual Basic. In 1998, Visual Basic 6.0 was released.
Microsoft stopped supports for the Visual Basic 6.0 IDE [31].
Visual Basic .NET was launched in 2002 by Microsoft. It
relied on .NET framework 1.0 [32].

In 1999, Andrew Hejlsberg of Microsoft gathered together
a team to develop a new language which would be called
“cool”. It was later renamed to C#. C# encompasses
imperative, functional, declarative, strong typing generic,
component-oriented and object-oriented programming
disciplines [33].

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 303

Programming Languages have and will continue to evolve
as new ideas are implemented. All programming languages in
existence possess primitive building blocks for describing data
[34].

B. Paradigm Shifts in Programming Languages

In the 1970s, the stepwise refinement and top-down
methodologies were developed. Prior to the time, deficiencies
discovered in primary programming languages were
inadequacy of control statements which required the
widespread use of GOTOs and incompleteness of type
checking.

A shift began to occur in the late 1970s from procedure-
oriented design methodologies to data-oriented design
methodologies. The latter design methodology focused more in
the use of abstract data types to find solutions to problems. In
the evolution of data-oriented development of software, the
latest step which began in 1980 is Object-oriented design.
Object-oriented design methodology starts with data
abstraction. This captures data processing objects and controls
access to data. It also adds dynamic method binding and
inheritance. Inheritance in OOP empowers new objects to
adopt the properties of objects which are already in existence.
Procedure-oriented programming methodology on the other
hand is the opposite of data-oriented programming
methodology. Despite the fact that data-oriented methodology
is mainly adopted in most programming languages, procedure-
oriented programming has not been abandoned as there have
recently been an increased research on it especially in the field
of concurrency [35].

C. Programming languages Implementation Principles

There are generally two methods of implementing a

programming language. They are the interpretation and

compilation. Interpreters directly executes programs written in

high-level programming language without compiling them

into machine language. An interpreter interprets the source

code line in sequence. Interpreters are generally flexible.

Interpretation are the step of conversion, transmission and

implementation. The various characteristics of an interpreter

are:

i. A short amount of time is spent analyzing and

running the program.

ii. The subsequent code is some kind of

intermediate code

iii. The resultant code is interpreted by a different

program.

iv. Execution of programs is relatively slow [36].

Compilers are programs that converts source codes in a

programming language into the target language. It translates

programs written in a high-level programming language to

that of a low-level machine language. Compilers were written

first before an interpreter.

The following are characteristics of a compiler:

i. Spends a considerable amount of time analyzing

and running the program.

ii. The resultant executable code is in a way

machine-specific binary code.

iii. The hardware of the computer executes the

resultant code.

iv. Execution of programs is fast [37].
Both an Interpreter and a compiler translates codes from

high-level language to low-level machine language. A compiler
translates codes all at once while an interpreter translates codes
line by line.

D. Creating a Programming Language

Creating a programming language can be structured in

stages. Each stage possess data which have been formatted in

a certain way and also has functions which converts data from

one stage to the next. The following are two of the stages;

Lexical analysis and Syntactic analysis (parsing).

Lexical analysis is the conversion of sequences of

characters into a sequence of tokens. These characters may

either be a computer program, an expression or a web page.

Lexemes or tokens are strings of characters that form a

syntactic unit. Tokenization is the procedure of demarcation

and classification of sections of strings of input characters

[35].

Syntactic analysis, also known as parsing is the procedure

of analyzing a set of symbols and checking if they conform to

the rules of a formal grammar. Parsing can be done in two

ways:

1. Top-down Parsing: Top-down parsing constructs

parse trees from the start symbol (top) to the through,

to the down.

2. Bottom-up Parsing: Bottom-up parsing constructs

parse trees from the terminal symbols (leaves) to the

up [38].

E. Relevant Approaches to Creating a Programming

Language

Computer programs are written in a programming

language; mostly in high-level languages. The computer,

however, cannot understand these programs in high-level

language as it only understands the machine language. Hence,

it needs a translation program to translate the program (source

codes) into machine language. The translation program is

known as a compiler.

The process of translation is steered by a structure of the

examined code. The process of translation is structured into

parts: these parts also are the steps followed when creating a

translation program (compiler). They are:

1. The arrangement of characters of the source code is

converted into a relating succession of symbols of the

terminology of the language. This is also known as

Lexical Analysis.

2. The arrangement of symbols is translated into a

depiction which reflects the structure of the syntax of

the source code and allows the structure to be easily

recognized. This stage is known as the Syntax

Analysis.

3. In high-level languages, objects such as functions and

variables are categorized accordingly to their type.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 304

There are rules which exist among the types of

operators and operands. These rules define the

language. Therefore, confirming if these rules are

properly followed by a program is an added feature

of a compiler. This verification process is known as

type checking.

4. Based on the results from the syntactic analysis phase

of the translation program, a set of instructions is

generated from the instruction set of the target

machine. This stage is known as the Code Generation

phase. This part of translation program is often the

most complex part because the instruction sets of a

lot of computers lack regularity. Hence, in most

cases, the code generation part is further divided into

subparts.

When building a high-level programming language, these

steps are generally followed [39].

F. Review of Existing Relevant Literature

Computers play a significant role in today’s world as

programs are constantly being developed to perform many

functions in different aspects of life. These programs are

written in different programming languages. Different kinds of

programming language for different applications has been

developed in a large amount and they are broadly categorized

into imperative, logical, markup, object-oriented and

functional languages. The languages are structured differently

from each other and also in how they operate. A few of the

existing programming languages are reviewed below:

Ada is a multi-paradigm, object-oriented high level

language obtained from extending the structure and semantics

of Pascal. It is a strongly typed, static, safe and nominative

language with its file extension as .adb and .ads. designed

with mainly development of large systems in mind [40]. Ada

eases debugging easier by allowing the programmer to specify

the conditions attached to codes, or the restrictions on a code.

Its major disadvantage is the relatively obscure nature, making

it difficult for system developers developing in other

programming language to be able to offer assistance if needed

[41].

Algol, short form for Algorithmic Language, appeared

first in 1958. It was a great influence to many of the

programming languages currently in existence now such as

Simula, B, BCPL, C, Pascal [42]. Algol pioneered the code

blocks with the “begin” and “end” pairs which were used for

delimiting them, nested functions and the Backus-Naur form

which is a formal grammar for language design were firstly

implemented in Algol 60 [21].

BC is short for Basic or Bench Calculator. It is a

calculator with arbitrary precision whose syntax is closely

related to C programming language. BC is mainly used as a

scripting language or interactive shell for mathematics; with

support for single-lettered arrays, functions and variables. It

appeared firstly in 1975 and was invented by Lorinda Cherry

and Robert Morris of Bell Labs [43].

BCPL is short for Basic Combined Programming

Language. It is a structured, procedural and imperative

language designed by Martin Richards in 1966. BCPL was

influenced by CPL and it in turn influenced B, C and Go

programming languages. The language was intended to be a

“compiler’s compiler” i.e. for creating compilers to use in

other programming languages. Though no longer in frequent

use again, its existence is still acknowledged because of the

language B: which is almost like a newer and cleaner version

of BCPL. C programming language was based on B. BCPL

actually was the first to use brace while programming, and

these braces survived the test of time and various changes in

syntaxes [44].

The C programming language is an imperative structured

language. It appeared firstly in 1972 and was designed by

Dennis Ritchie. It was influenced Algol 68, Fortran, B, PL/l

and it in turn influenced numerous languages such as AWK,

AMPL, C--, C++, C#, csh, Objective-C, BitC, Go, Java, D,

LPC, Perl, Limbo, Julia, PHP, Pike, Rust, Processing, Seed7,

Python, Verilog, Vala [45]. C provides support for constructs

which maps effectively to machine instructions. C was

developed for compilation process to be done in a straight

fashion to make provision for low-level access to memory.

The C language encourages cross-platform programming. as a

program written in C can be run in a variety of system

platforms from simple micro-controllers to super-computers.

C is weakly typed but static, is very powerful; has a large

traditional base which makes it easy to find libraries; the codes

are compiled and are stand-alone (which means it has no need

for interpreters), it is one of the fastest languages running. It

has a few disadvantages which are: platform dependency

(programs must be compiled in each platforms), codes can

easily get chaotic, it is hard to port non-trivial programs.

Nevertheless, the C language remains the father of many

languages [3] [46].

C# is a static, safe, dynamic, strong, nominative, and

partially inferred language developed by Microsoft in the year

2000. Its extension is .cs. The C# language was influenced by

Eiffel, Modula-3, Pascal, C++, Java, Haskell, F#, J#, Rust, ML

[47] [48]. The “C sharp” name was inspired by music notes in

which a “sharp” shows that note should be higher by a

semitone in pitch. The language was built with the intention of

making it simple, a general-purpose, modern and object-

oriented programming language [34].

C++ is a multi-paradigm programming language (i.e.

procedural, object-oriented, functional and generic) and its

typing discipline is partially inferred, nominative and static.

The file extensions are .cc, .cxx, .cpp, .C, .hh, .hxx, .hpp, .h++.

C++ was developed with efficiency, performance and

flexibility as the highlights of its design. C++ has influenced

the development of many programming languages such as

Ada 95, C99, D, Chapel, C#, Java (later versions), Lua,

Python, PHP, Rust, Perl [49] [26].

COBOL is short for Common Business-Oriented

Language developed in 1959 for use primarily in the field of

business, and administrative systems for various companies.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 305

COBOL is still in use today but is being quickly replaced by

other programming languages as many programs written

originally in COBOL are being ported to other modern

programming languages. The COBOL language was based on

a previous language designed by Grace Hopper, hence, she

was known as the grandmother of COBOL [18] [50].

D (extension ‘.d’) is a strongly typed, compiled and

multi-paradigm language designed by Walter Bright in 2001.

It was influenced by C, C#, C++, Java, Python, Eiffel and in

return influenced a few programming languages such as

DScript, Genie, MiniD, Qore, Swift, Vala. D’s main design

aim was to join both the safety and performance of languages

which are compiled with the express power of dynamic

languages [51] [52].

Euphoria is a high-level general-purpose imperative-

procedural interpreted language created by Robert Craig in

Toronto, Ontario, Canada. The first marketable release in 1993

was intended for the 16-bit DOS platform. Programs written in

Euphoria programming language can be bound with the

Euphoria interpreter to create executable files which are stand

alone as it provides supports for a number of GUI libraries

which includes Win32lib and wrappers for GTK+, wxWidgets

and IUP. Euphoria became an open-source program in the

year 2006 with the release of its version 3. The current version

is the version 4 release [53].

F# is a multi-paradigm and a strongly typed language

that can be used to generate JavaScript and also graphics

processing unit. It is mainly used as a cross-platform Common

Language Infrastructure (CLI) and it found its root from

Microsoft Research, Cambridge [54] [55]. One major feature

of F# is; there is no need for type declaration as the compiler

deduces the data types during compilation [56]. New values in

F# are defined through the use of the “type” keyword. F#

makes provision for record, list, tuple, option, discriminated

union and result types [57].

Fortran, is an acronym for Fornula Translation [58].

Fortran is a general-purpose programming language mainly

designed for computing numbers and also for scientific

computation. Fortran has developed through the years with the

latest version being Fortran 2008, which supports concurrent

programming [59]. Fortran influenced many other

programming languages such as ALGOL 58, C, Julia, PACT I,

Ratfor, BASIC. Fortran 2008 contains block constructs (which

holds the declaration of objects), Submodules (more improved

structuring methods for modules), Contiguous attribute (which

allows for specification of storage for layout restrictions)

[60][61][62].

Go! programming language is developed Google Inc and

designed by Robert Griesemer, Ken Thompson and Rob Pike).

It is a compiled, imperative, concurrent and structured

language originally released in 2009 [63] [64]. It was a project

undertaken by Google engineers as they desired to write a new

programming language which would maintain most of the

positive aspects of already existing popular languages and still

resolve the negative aspects of these existing popular

programming languages. Go achieved most of its objectives

and was a successful project [65][66].

Google Apps Script is a scripting programming

language which is used for development of applications which

are light-weighted in Google Apps platform [67]. It is

adequately easy to learn because it is based on JavaScript, has

a debugger which is cloud based and is used in web browsers

for debugging Apps Scripts. The language is useful in the

creation of tools which are relatively simple for the internal

consumption of an organization but has some limitations

which include producing results which may be incorrect when

dealing with related functions to date and time because of data

crossing time zones [68].

Groovy is another object oriented programming

language for Java platform released in January 2007 and

upgraded in July, 2012 [69]. It is dynamic in nature and has

features which are similar to Ruby, Smalltalk, Perl and Python

[70]. The extension is ‘.groovy’. Groovy is compiled

dynamically to Java virtual machine bytecode and also

interoperates with extra Java libraries and code.

Haskell is a functional high-level language which gives

an interesting view on numerous programming issues. Like

other functional languages of the present day, higher-order

functions give Haskell its energy [71]. The security offered by

Haskell is of solid, adaptability of polymorphism and static

writing; a blend which prevents programming blunders

without an overwhelming syntactic overhead [72][73].

Java programming language is similar to C++, however

streamlined to dispose of language characteristics that cause

basic programming blunders [30]. Java source code records

are ordered into a configuration called bytecode (documents

with a .class augmentation), which would then be able to be

executed by a Java mediator. Java codes which have been

compiled can keep running on most computer platforms since

Java translators and runtime conditions, known as Java Virtual

Machines (JVMs), exist for most working frameworks, which

includes Windows, the Macintosh OS, and UNIX OS [74].

Julia, a high-performance dynamic language meant

mainly for numerical computing first appeared in the year

2012. It was created mainly by Jeff Bezanson, Stefan

Karpinski, Viral Shas [75]. Julia makes provision for a

compiler, numerical accuracy, distributed parallel execution

and a broad mathematical function library [76]. It is also very

much suited for general purpose programming.

Kotlin is a statically-typed programming language that is

executed on the Java virtual machine. It can be compiled also

to the source code of JavaScript. It was developed by a team

of “JetBrains” programmers which are based in St. Petersburg

in Russia. Though its syntax is not harmonious with Java, it is

however designed to be interoperable with Java codes [77]. As

of 2017, Kotlin programming language was declared officially

to be one of the programming languages used for developing

Android applications alongside with C++ and Java [78].

Declaring variables and parameter list in Kotlin is similar to

that of Pascal in which the data type comes after the variable

name has been written. There is no need for a statement

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 306

terminator in Kotlin, but if needed, semicolons can act as the

statement terminator [79].

Perl is a High-level, and a general purpose, dynamic

programming language. It was intended to be simple for

people, as opposed to, simple for computers to get it. The

sentence structure of the language is part more like human

language than strict structures. It is easy to port from one

platform to the other as Perl is available for many popular

platforms [80][81]. Perl ended up plainly prevalent for two

noteworthy reasons: First, the vast majority of what is being

done on the Web occurs with text, and is best finished with a

language that is intended for processing texts. All the more

critically, Perl was considerably superior to whatever choice

was there at that time [82].

Ruby is an intelligent, dynamic, general purpose and

object-oriented programming language that joins language

structure motivated by Perl`s realism with Smalltalk`s

calculated style, Python's simplicity of learning like elements.

Ruby holds support for multiple programming paradigms

which are object-oriented, reflective, functional and

imperative. It has a type system which is dynamic and an

automatic memory management [83][84].

Visual basic.NET is a general purpose object-oriented

programming language. Any software engineer can create

applications rapidly with Visual Basic. It is an exceptionally

easy to use language [85]. One only needs to simply organize

components by utilizing visual tools and then coding the

arranged components. Pushing ahead, Microsoft's .NET

framework is made out of prearranged code that users can get

to at any time. This prearranged code is known as the class

library. The programs existing in the class library can be

joined or adjusted so as to suit the necessities of developers

[33].

III. MATERIALS AND METHODS

Because Streak© was expected to be developed quickly, the

Agile SDLC methodology (Figure 1) was adopted in its

development. This model combines both the incremental and

iterative processes as it focuses more on user satisfaction and

adaptability of processes by rapid delivery of software

products which are working. Through the Agile method, the

product is broken into small incremental builds, and the builds

are iterated as each iteration averagely lasts from one to three

weeks.

The following development tools were deployed in the

construction of Streak©

- Cygwin version 2.881 (64bit) as Linux/Window

integrating tool

- Bison (GNU Bison) 3.0.4

- Flex 2.6.4

- UML diagrams for the logical descriptions of

Streak©

From the project plan (Figure 2), Streak©’s development

spanned a period of ten (10) weeks including planning and

integration testing. Other pre-design activities conducted

during this research are:

1. Studies to determine the technical, economic and

environmental feasibilities of developing Streak©

2. Requirement elicitation collection through oral

interviews of selected novice programmers and

brainstorming with experts and other researchers.

3. Specification of the functional and non-requirements

for Streak©

After the pre-design phase, the specification of the design

artefacts for Streak© was carried out and the design

documents generated. Further post-design activities carried out

in the course of developing Streak© are:

1. Specification of the modulus, component areas

and algorithms necessary for the

implementation of the Streak programming

language.

2. Application of the programming language

design theories and specification earlier

identified into the implementation of the

programming environment.

3. Transformation of the defined architecture and

artefacts into the syntax of Java programming

language.

4. Release of the first version to users.

Figure 1. Agile Methodology for Streak©

Iteration 1

Planning

Req Analysis

Designing Building

Testing

Iteration 2

Planning

Req Analysis

Designing Building

Testing

Iteration 3

Planning

Req Analysis

Designing Building

Testing

2-3

months

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 307

Figure 2: Project Plan for the Development of Streak©

IV. EVOLUTION OF STREAK©

A. Functional Requirements for Streak©

1. The Streak programming language must have the

Syntax which are the grammar rules that defines legal

statements.

2. The programming language must have the semantics

which defines the meaning of things.

3. The programming language must allow statements

which are instructions that directs on what to do.

4. The programming language must have variables.

Variables are places which holds data in memory

during program execution.

5. The programming language must possess primitive

data types and procedures.

6. The programming language must provide a means of

combining expressions (values), composition (objects

or procedures) and containment (placing objects in

other objects).

B. Non-Functional Requirements for Streak©

1. The programming language will allow support for

breakpoints which will enable efficient debugging.

2. The programming language will provide support for

error handling by suggesting possible solutions to

errors.

C. Design artefacts for Streak©

In the ourse of medeling Streak©, a number of design

artefats were developed. This section present the high-level

specifications for the Streak© environment.

The High-level Model of Streak© Programming Compiler

(Figure 3) showed the process of compilation of Streak©

codes in phases with each of the phases accepting inputs from

the previous phase. In the first phase which is the lexical

analysis, the source code is collected from the source program

and converted into lexeme (tokens). The next phase which is

the Syntax analysis stage, the tokens from the lexical analysis

phase is used as input and a parse/syntax tree is generated: the

check for syntactically correct expression which is made by

the lexemes is done here. The parse tree generated is now

checked to see if it follows the rules of the language. This is

the semantic analysis phase. An annotated syntax tree is

produced as an output by the semantic analyzer. In the next

phase, code generation, an intermediate code is generated by

the compiler for the target machine. Code optimization is done

in the next phase. The codes are well arranged in a way that it

can be executed without resource wastage. The optimized

code as mapped into the machine language. The Symbol table

is a data structure which is maintained all through the stages of

the compiler. The symbol table is used for management of

scope. The identifier record can be easily searched quickly by

the compiler through the use of the symbol table.

The data and control flow specification for Streak©

(Figure 4) shows the text editor as the input on which the

source code is written. The source code after it is written can

still be edited before it is passed on to the Compiler/Interpreter

to be translated to object code which the machine understands

and hence, the machine can now execute the instructions

contained in the source code.

In the System architecture (Figure 5), the source code

passes through the preprocessor and the output (preprocessed

code) now moves into the compiler. After the stages of

compilation has fully taken place and the machine code

(object code) is generated, the object code will fetch whatever

it needs from the library and the linker takes the object code

along with the imports from the library and create an

executable file

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 308

Figure 3. High-level Model of the Streak© Programming Language

Figure 4. High level View of Data and Control Flow for Streak©

Editor

Source code

Compiler

Object code

Program

Execution

Source Code

Preprocessed Source

Code

Preprocessor

Object Code

Compiler

Linker Library

Executable Code

Figure 5. System Architecture of Streak© Programming Language

FRONT END

BACK END

SYMBOL TABLE

Source

program

Lexical

analyzer

Syntactic

analyzer
Semantic

analyzer

Target

language

Code

generator

Code

optimization

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 309

Streak© does not use a GUI, rather the codes are written

directly in the command line interface (CLI) and the ouput

will also be displayed on the CLI following a set of

compilation commands. The Streak programming language

can also be integrated into the Eclipse IDE. The basic

language elements for input are data types, variables,

constants, operators and delimiters (Figure 6).

Figure 6: Streak© Command Line Interface

One major design artefat for Streak© is a use case

description that identified and partitioned the system to actors

and use cases depicting the roles that could be played by the

actors. The use-case diagram below shows the actor

(Developer) with roles of managing the writing of new

programs, debugging an already written program and adding

new features to a program (Figure 7).

The workflows for the use cases of Streak© were modeled

in an activity diagram (Figure 8) The source code moves

through the parsing phase and the abstract syntax tree is

generated. The rough machine code is created and is

optimized and the executable code understandable by the

machine is generated. The written instructions in the source

code is then carried out by the computer.

The sequence diagram (Figure 9) is another design artefact

which shows how the user interacts with the Streak© compiler

and how the executable code is created. The user writes a

program and compiles it, the compiler can either load the

compiled files into the file system directly or save the

generated object files into the file system. The compiler

however, passes

the object files to the linker and the linker loads them and

creates an executable file for the system.

Figure 10 shows the class hierarchy of the Streak©

programming environment. The Command line interface

(CLI) is a superclass, the Lexer a subclass of the CLI class

and inherits the attributes of the class. While the parser is a

subclass of the Lexer, its class has its own subclasses which

are the Classparser, Import parser and the

Interface parser. These parsers perform different

functions when called by the Streak© compiler.

D. Streak© Application Manual

Streak© is originally developed for Linux OS environment

but Cygwin 1.7 tool was deployed for Linux/Windows

integration by installing the Command Line Interface (CLI) on

Windows OS based systems in order to allow them run

Streak©.

To use the Streak© programming language, users are

required to follow the following steps:

1. Place the Streak© files in a named folder

2. Open the CLI

3. In the CLI, change the default directory to the folder

which houses the Streak© files.

4. Ensure that all the necessary environment files and

variables such as the lex and parser files as well as

the executable file of the Streak© programming

language is complete in the Streak© folder. The

Figure 7 Streak© Use-case Description

Developer

Manage program creation

Manage debugging of

programs

Manage program

modification

Start Compilation

Source code

AST Extended

Code

Optimization

Display and

Storage

Executable

Code

Figure 8. Activity diagram

Intermediate Code

generation

Code

generation

Parsing

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 310

command “ls” may be used to list out the names of

the files present in the folder. If the executable file

with the filename and extension “streak.exe” exists,

the user can then proceed to the next step.

5. Type command “./Streak” in the CLI and the Streak©

programming environment will start to run.

All programs written in Streak must begin with the

keyword “Streak”. The streak programming language has

statement terminator which is “;”.

The End keyword must be used to end a program in Streak©.

The comments in Streak© should be enclosed in <comment>

without any space.

V. CONCLUSION

Programming deals with writing sets of instructions to be

executed by a computer in a particular programming language.

However, students and novices in computer science often

perceive programming to be a task meant for only experts in

the field of computing and as such, are discouraged from

exploring the potentials of programming. This can be due to a

variety of reasons which may include the complex rules

governing a programming language; confusing keywords, or

difficult process of debugging. This research had simplified

programming by developing Streak©, a quasi-programming

environment that accepts simple text-based codes without the

cumbersome IDEs thereby reducing the amount of time spent

on the process of debugging and reducing the stress

encountered by newbies in the field of computing.

Streak© was constructed to use breakpoints in order to

speeds up the debugging process making it easy to handle

large-component codes. With debugging made easy in a

programming language, much less time and effort would be

spent in building and running programs therefore enabling the

programmer to record much success, hence, encouraging more

people to delve into programming.

Streak was an effective tool for teaching and learning

programming. The easy-to-use debugging system was of great

importance to novice programmers as it enabled them to

achieve success with less effort, the Streak environment

greatly ignited their passion by enticing them to go further in

software development and learn other major languages such as

Java and C++.

REFERENCES

[1] Hennessy, J. L., & Patterson, D. A. (2014). Computer
Orgarnization and Design: The Hardware/Software Interface
(5th ed.). Waltham, USA: Elsevier.

[2] Hyde, R. (2010). The Art of Assembly Language (2nd ed.).
Canada: William Pollock.

[3] Aaby, A. (2004). Introduction to Programming Languages.

[4] HThreads. (2007, August 26). RD - Glossary. Retrieved from
HThreads:
http://www.ittc.ku.edu/hybridthreads/glossary/index.php

[5] Watt, D. A. (2004). Progrmming Language Design Concept.
England: John Wiley & Sons.

[6] Kosar, T., Oliveira, N., Mernik, M., Pereira, M. J., Crepinsek,
M., Cruz, D. d., & Henriques, P. R. (2000). Comparing General-

Purpose and Domain-Specific Langauges: An Empirical Study.
Portugal. doi:10.2298/CSIS1002247K

[7] Casperson, M., Utting, I., Tew, A. E., McCraken, M., Thomas,
L., Bouvier, D., . . . Wilusz, T. (2001). A Fresh Look at Novice
Programmers' Performance and their Teachers' Expectations.
doi:10.1145/2543882.2543884

[8] Robins, A., Rountree, J., & Rountree, N. (2003). Learning and
Teaching Programming: A Review and Discussion. Computer
Science Education, 13(2), 137-172.

[9] Mostrom, J. E. (2011). A Study of Student Problems in Learning
to Program. Sweden

[10] Fuegi, J., & Francis, J. (2003). Lovelace & Babbage and the
creation of the 1843 'notes'. Annals of the History of Computing,
25(4), 16, 19, 25. doi:10.1109/MAHC .2003.1253887

[11] Rojas, R., Goktekin, C., Friedland, G., & Kruger, M. (2000).
Plankalkul: The First High-Level Programming Language and
its Implementation. Berlin: Feinarbeit.

[12] Sebesta, R. W. (2006). Concepts of Programming Languages
(Seventh Edition). Boston: Pearson/Addison-Wesley.

[13] Bentley, P. J. (2012). The Science of Computers and how it
Shapes Our World. London: Oxford University Press.

[14] Loh, E. (2010, June 18). The Ideal HPC Programming
Language. Association of Computing Machines.

[15] Chivers, I. D., & Sleightholme, J. (2013). Compiler support for
the Fortran 2003 & 2008 standards. ACM SIGPLAN, pp. 26-28.
doi:10.1145/152.752.1520755

[16] Bergin, T. J. (2007, May). A History of the History of
Programming Languages. Communications of the ACM.

[17] O'Regan, G. (2015). Pillars of Computing: A Compendium of
Select, Pivotal Technology Firms. Springer.

[18] Mitchell, R. (2012, March 14). Brain drain: Where Cobol
systems go from here. Retrieved from Computerworld:
https://www.computerworld.com/article/2502420/data-
center/brain-drain-where-cobol-systems-go-from-here.html

[19] Ferguson, A. (2000). A History of Computer Programming
Languages.

[20] Maynard, C., Jones, R., & Stewart, I. (2012, December 6). The
Art of Lisp Programming. Springer Science & Business Media,
p. 2.

[21] Nerlove, M. (2003). Programming Languages: A Short History
for Economics. Maryland.

[22] Pausch, C. K. (2003). Lowering the Barriers to Programming: a
survey of programming environments and languages for novice
programmers. Pittsburgh.

[23] Wirth, N. (2002). Pascal and is Successors. In e. a. M. Broy,
Software are Engineering.Pioneers: Contributions to Soft.
Springer-Verlag.

[24] Prinz, P., & Crawford, T. (2006, December 16). C in a Nutshell.
Sebastopol: O'Reilly Media, Inc.

[25] Kernighan, B. W., & Ritchie, D. M. (1998). The C Programming
Language (2nd ed.). New Jersey: Prentice Hall.

[26] Stroustrup, B. (2000). The C++ Programming Language.
Addison-Wesley.

[27] International Organization for Standardization. (2014,
December). Information Technology -- Programming Langages
-- C++. (4).

[28] Kabutz, H. (2003, July 15). Once Upon an Oak. Retrieved from
Artima:
http://www.artima.com/weblogs/viewpost.jsp?thread=7555

[29] Gosling, J., Joy, B., Steele, G., Bracha, G., & Bukley, A. (2005).
The Java Language Specification. Addison-wesley.

[30] Root, R., & Sweeney, M. R. (2006). A Tester's Guide to .NET
Programming. USA: Apress Berkerly.

[31] Microsoft. (2015, October 15). Support Statement for Visual
Basic 6.0 on Windows Vista, Windows Server 2001, Windows

http://www.ittc.ku.edu/hybridthreads/glossary/index.php

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 311

7, Windows 8.1. Windows server 2012 and Windows 10.
Retrieved from https://msdn.microsoft.com/en-
us/vstudio/ms788708.aspx

[32] Mackenzie, D. (2006). Navigate The .NET Framework and Your
Projects with the My Namespace. Retrieved from MSDN
Magazine Visual Studio 2005 Guided Tour 2006: Microsoft

[33] Ecma International. (2006). C# Language Specification (4th
ed.).

[34] Sethi, P. (2014, Oct-Dec). Programming Language. KAAV
International Journal of Science, Engineering & Technology,
1(4).

[35] Sebesta, R. W. (2012). Concepts of Programming Languages
Tenth Edition. Pearson Education, Inc.

[36] Theodore H. Romer, D. L.-L. (n.d.). The Struture and
Performance of Interpreters. Seattle.

[37] Knuth, D. E., & Pardo, L. T. (2012). The Early Development of
Programming Languages. In N. Metropolis, J. Howlett, & G.
Rota, A History of Computing in the Twentieth Century: A
Collection of Essays with Introductory Essay and Indexes (pp.
197-274). New York: NY: Academic Press/HBJ.

[38] Frost, R., & Callaghan, R. H. (2007). Modular and Efficient
Top-Down Parsing for Ambiguous Left-Recursive Grammars.
10th International Workshop on Parsing Technologies (IWPT),
ACL-SIGPARSE, 109-120.

[39] Terrence, P., & Zelkowitz, M. (2000). Programming Languages:
Design and Implementation (4th ed.). Prentice Hall.

[40] Ben-Ari, M. (2005). Ada for Software Engineers. Chichester:
John Wiley & Sons.

[41] Ryder, B. G., & Soffa, M. L. (2003). Influences on the Design of
Exception Handling. ACM SIGSOFT Project on the Impact of
Software Engineering Research on Programming Language
Design.

[42] Aretz, F. K. (2003, June 30). The Djikstra-Zonneveld ALGOL
60 compiler for the Electrological X1. Software Engineering.

[43] Nelson, P. A. (2001, March 20). bc Command Manual.
Retrieved from Free Software Foundation:
https://www.gnu.org/software/bc/manual/html_mono/bc.html#S
EC18

[44] Richards, M. (1969). BCPL - A Tool for Compiler Writing and
Systems Programming. Proceedings of the Spring Joint
Computer Conference, 34, pp. 557-566.

[45] Harbison, S. P., & Steele, G. L. (2002). C: A refernce Manual
(5th ed.). Englewood Cliffs, NJ: Prentice Hall.

[46] Stroustrup, B. (2002). Sibling Rivalry: C and C++. New Jersey:
AT&T Labs.

[47] Naugler, D. (May 2007). C# 2.0 for C++ and Java Programmer:
Conference Workshop. Journal of Computing Sciences in
Colleges.

[48] Hamilton, N. (2008, October 1). The A-Z of Programming
Languages. Retrieved from Computerworld:
http://www.computerworld.com.au/article/261958/a-
z_programming_languages_c_/?pp=7

[49] Chip, W. (2014). Programming and Problem Solving with C++
(6th ed.). Jones & Bartlet Learning.

[50] Lohr, S. (2008). Goto: The Story of the Math Majors, Bridge
Players, Engineers, Chess Wizards, Maverick Scientists and
Iconoclasts--The Programmers who Created the Software
Revolution. Basic Books, 52.

[51] Alexandrescu, A. (2010). The D Programming Language (1st
ed.). Upper Saddle River, NJ: Addison-Wesley.

[52] Bright, W. (2011). D Programming Language Specification (e-
book ed.). Digital Mars.

[53] OpenEuphoria. (n.d.). Welcome to OpenEuphoria. Retrieved
from OpenEuphoria: http://openeuphoria.org

[54] Edwards, K. (2008, December 23). The A-Z of Programming
Languages: F#. Retrieved from networkworld.com:

http://www.networkworld.com/article/2271225/software/the-a-
z-of-programming-languages--f-.html

[55] Syme, D., & Adam Granicz, A. C. (2007). Expert F#. Apress.

[56] Petricek, T. (2009). Real World Functional Programming With
Examples in F# and C#. Manning Publications.

[57] Astborg, J. (2013). F# for Quantitative Finance. Packt
Publishing.

[58] American Heritage Dictionary of English Language. (2011).
FORTRAN. Retrieved from The Free Dictionary:
http://www.thefreedictionary.com/FORTRAN

[59] Goerz, M. (2014). Modern Fortran Reference Card. Retrieved
from http://michaelgoerz.net/refcards/fortran_refcard_a4.pdf

[60] Adams, V. P. (1981, October 5). Captain Grace M. Hopper: the
Mother of COBOL. InfoWorld, p. 33.

[61] Chapman, S. J. (2007). Fortran 95/2003 for Scientists and
Engineers (3rd ed.). McGraw-Hill.

[62] Pigott, D. (2006). FORTRAN - Backus et al high-level compiler
(Computer Language). Encyclopedia of Computer Languages.

[63] Schmager, F., Cameron, N., & Noble, J. (2010). GoHotDraw:
Evaluating the Go Programming Language with Design
Patterns. Evaluation and Usability of Programming Languages
and Tools. ACM.

[64] Balbaet, I. (2012). The Way to Go: A Thorough Introduction to
the Go Programming Language. iUniverse.

[65] Chisnalle, D. (2012). The Go Programming Language
Phrasebook. Addison-Wesley.

[66] Tang, P. (2010). Multi-core Parallel Programming in Go. Proc.
First International Conference on Advanced Computing and
Communications.

[67] Kienle, H. (2010, May-June). It's About Time to Take
JavaScript (More) Seriously. IEEE Software, pp. 60-62.

[68] Meyer, D. (2009, August 20). Google Apps Script gets green
light. Retrieved from CNet: http://news.cnet.com/8301-1001_3-
10314002-92.html

[69] Konig, D., King, P., Laforge, G., D'Archy, H., Champeau, C.,
Pragt, E., & Skeet, J. (2015). Groovy in action, Second Edition.
Manning.

[70] Stratchan, J. (2003, August 29). Groovy - the birth of a new
dynamic language for the Java Platform. Retrieved from
http://radio.weblogs.com/0112098/2003/08/29.html

[71] Peyton Jones, S. (2003). Haskell 98 Languages and Libraries:
The Revised Report. Cambridge University Press.

[72] Marlow, S. (2010). Haskell 2010 Language Report.

[73] Bird, R. (2014). Thinking Functionally with Haskell. Cambridge
University Press.

[74] Chaudhary, H. H. (2014, July 28). Cracking The Java
Programming Interview :: 2000+ Java Interview Que/Ans.
Retrieved from
https://books.google.fr/books?id=0rUtBAAAQBAJ&lpg=PA13
3&pg=PA133#v=onepage&q&f=true

[75] Bezanson, J., Karpinski, S., Shah, V., & Edelman, A. (n.d.).
Why we Created Julia. Retrieved June 16, 2017, from
JuliaLang.org.

[76] Krill, P. (2012, April 18). New Julia language seeks to be the C
for scientists. Retrieved from InfoWorld:
http://www.infoworld.com/d/application-development/new-
julia-language-seeks-be-the-c-scientists-190818

[77] Heiss, J. (2013, April). The Advent of Kotlin: A conversation
with Jetbrain's Andrey Breslay. Retrieved from Oracle
Technology Network:
http://www.oracle.com/technetwork/articles/java/breslav-
1932170.html

[78] Shafirov, M. (2012, May 17). Kotlin on Android. Now Official.
Retrieved from Oracle:

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 312

http://www.oracle.com/technetwork/articles/java/breslav-
1932170.html

[79] Waters, J. (2012, February 22). Kotlin Goes Open Source.
Retrieved from Enterprise Computing Group:
http://adtmag.com/articles/2012/02/22/kotlin-goes-open-
source.aspx

[80] Wrox. (2012). Beginning Perl 1st Edition. A beginner's tutorial
for those new to programming or just perl.

[81] Dominus, M. J. (2005). Higher Order Perl. Morgan Kaufmann.

[82] O'Reilly. (2012). Programming Perl 4th Edition. The Definitive
Perl refrence.

[83] Cooper, P. (2009). Beginning Ruby: From Novice to
Professional. Berkeley: APress.

[84] Metz, S. (2012, September 5). Practical Object-Oriented Design
in Ruby. p. 272.

[85] Microsoft. (2013, June 7). Visual Basic Language Specification
11.0. Retrieved from Microsoft Corporation:
http://www.microsoft.com/download/en/details.aspx?displaylan
g=en&id=15039

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 313

Developer

Compiler Linker File System

Compiler

Compiler Files

Link

Save OBJ Files

Link OBJ files

Load Files

Load OBJ files

Write EXE file

Figure 9. Sequence Diagram for Streak©

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 314

 Lexer
#buffer: String

#currentPosition: int

#currentToken: String

#filename: String

+BufferFile(file: File): void

#findNextToken(): String

#Terminator(c: char): Boolean

#WhiteSpace(c: char): boolean

 CLI
+print{message: String}: void

+print{message: String,

verbosity: int} void

 Parser
#assertToken(token: String):

boolean

#parseError(message: String): void

+parse(): void

ImportParser

InterfaceParser
-parseComment(): void

-parseOperations(): void

ClassParser
-parseComment(): void

-parseFields(): void

-parseOperations():

void

Figure 10. Streak©Class Hierarchy

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 315

APPENDIX: SAMPLE CODES IN STREAK©

A. Program to Post Increment any number

B. Program to Sum Numbers from 1 to 1000

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 316

C. Fibonacci Series

D. Post Decrement

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 317

E. Factorial Program using for loop statement

F. Program to print the length of a String

G. Testing Bitwise Operator

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 06, November 2017

www.ijcit.com 318

H. Program to print even numbers from 0 to 100 inclusive

