
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 96

Near Real Time Machine Driven Signature Detection,

Generation and Collection

Edwin Ouma Ngwawe

School of Computing and Information Technology

Technical University of Kenya

Nairobi, Kenya

Email: edwin.ngwawe [AT] tukenya.ac.ke

Elisha Odira Abade

School of Computing and Informatics

University of Nairobi

Nairobi, Kenya

Abstract— One way to perpetrate a Denial of Service (DoS)

attack is to flood the network infrastructure with too much

unnecessary data such as Internet worms. Internet worms can

spread very fast and cause losses both in terms of lost business

opportunities as well as human resources required to alleviate the

caused damages. Ways of protecting against the Internet worms

include the anomaly based and signature based systems.

Signature based systems uses security signatures (patterns) that

match particular known attacks while anomaly based systems

rely on detecting anomalies with the background idea that

abnormal activity is malicious. With the increasing internet

speeds and growing amount and complexity of data across it, it is

necessary to have correspondingly fast ways of analyzing

network traffic in order to evaluate security scenarios in time.

Also the existence zero-day attacks (attacks whose characteristics

are still unknown) make relying on preconfigured signatures

unreliable. This study sought to find how to develop an accurate,

robust near real time machine driven Internet worm signature

detection, generation and collection system using big data

technologies. We set up Hadoop Ecosystem and analyze network

traffic content using Hadoop Map Reduce programming Model.

We were able to generate documented worm signatures. We also

realize that adding the number of nodes to the Hadoop cluster

first reduces the processing speeds due to overheads of load

distribution up to some optimal point beyond which adding more

nodes actually increases the overall speed of processing. The

robustness of the processing facility is also improved due to the

fact that HDFS replicates the files to be processed thus improving

availability.

Keywords- Signature real-time big-data polymorphic-worms,

Hadoop, MapReduce

I. INTRODUCTION

Malware such as Internet worms spreads very fast and
causes losses such as business disruptions as well as the human
efforts necessary to alleviate the damages. Systems like
Honeycomb [15], Autograph [13], EarlyBird [33], Polygraph
[12], Hamsa [16] and Lisabeth [6] can monitor network traffic
to identify new Internet worms and produce corresponding
worm signatures in a small scale networks. Such systems use
network traffic content analysis to generate signatures. The
increasing speeds of the internet as per IEEE report [10] and
the increasing number of devices being connected to the

internet (Internet of Things) leads to generation of large
volume of very high velocity and variety data. This presents
the four Vs: volume, velocity, variety, and veracity, which
characterize the big data [37].

While an ordinary desktop computer can generate
signatures for reasonably less amount of data with low velocity
and variety, it will start introducing delays as the data grows in
volume, velocity, variety and at the same time increased degree
of veracity is required, due to the limited computing resources.

While the term real-time is contextual, it can be defined as
the span of time within which an intervention to an activity will
be effective. Delays that is likely to be caused by single
desktop computers analyzing big data for security purposes
will hinder any possible intervention from being effective.

We therefore seek to experiment a way of using the existing
algorithms but with different approach in order to analyze the
big data in real-time and provide security signatures so it can
monitor a larger network or even the Internet as per the current
connectivity trends [30].

The remainder of this paper is organized as follows. Section II
describes existing work, in section III, we present our proposed
solution and present the evaluation of our system in section IV.
We then present our conclusion in section V and then
recommendation for future work in section VI.

II. EXISTING WORK

Intrusion detection systems can either be deployed at host
level or at network level [12]. Systems like ACARM-ng [5],
Taint check analysis [24], OSSEC [8], NIDES [1], eXpert-
BSM [18], Fail2Ban [11], SAMHAIN [38], Sagan [29],
Haystack [34] use traffic behavior at host level to evaluate
security scenario. Host level behavior cannot be used to take
care of attacks such as large-scale coordinated attacks [31].
Also single host based systems are not as robust [37].

Network based intrusion detection systems (NIDS) which
include systems like Snort [32], and Bro [26,27] are standalone
systems and will not scale well enough in the face of big data.

One more way of classifying intrusion detection systems is
by use of the working mechanism, which can either be
signature recognition or anomaly detection [39]. Signature

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 97

recognition systems such as the EarlyBird [33], HoneyComb
[15] and Autograph [13], Paragraph [23] use network traffic
content analysis to generate security signatures; however these
systems do not capture polymorphic worms, these are worms
that mutate at every instance to hide from detection. This was
shown by a research that led to construction of Polygraph [22],
however Polygraph was found to be so slow and was enhanced
into Hamsa [19]. Hamsa was again found to be less resilient to
targeted noise [28] by [6] and they enhanced Hamsa to
Lisabeth [6]. Lisabeth analyzes network traffic to identify new
Internet worms and generate the corresponding worm
signatures with resilience to poisoning attacks. Lisabeth is
currently central based and designed to run on a single
computer. This limits the processing power, meaning that for it
to process very large amount of complex data, it will have to be
deployed on a very high end computer. The current computing
trend is such that clusters of commodity computers are set up
to provide higher computing powers than can be realized with
any single high end computer [37].

Work has also been done to experiment and adopt big data
infrastructure to improve processing speeds in the face of big
data. These include the use of infrastructures such as
DBStream [41], Hadoop Map Reduce and Spark [42].
DBStraeam uses PostgreSQL engine to provide a platform for
large scale data analysis facility which can be used in network
monitoring as discussed in [41], however, the dependency on
PostgreSQL database engine makes parallelization impossible
on DBStream platform and acts as a bottleneck in processing
hence leading to longer processing time even or parallelizable
tasks. Still there is a need to further extend the work to more
flexible systems that adapt well for parallelization such as the
Spark or the Hadoop Map Reduce. Spark [42] is a large-scale
data processing platform which operates over Hadoop and
supports in-memory operations hence in some cases a single
Spark node can outperform a cluster of 10 Hadoop map reduce
nodes. [42]. However, the in-memory operation is risky in the
sense that the system memory state may be lost in event of a
system crash due to power failure of hardware failure thus
leading to loss of data. Hadoop Map Reduce therefore becomes
a better option since it persists its data to the disk.

We adopt Lisabeth System and experimentally deploy it in
Hadoop Map Reduce cluster environment.

III. PROPOSED SOLUTION

(i) Background to the proposed solution

We depend on the fact that all worms, whether polymorphic or

not must have some invariant bytes for them to successfully

achieve their goal.

Polymorphic Worm Structure

In a sample of polymorphic worm we can identify the

following components [12]:

(i) Protocol framework. To infect new hosts and

continue their spread, worms have to exploit a

given vulnerability. This vulnerability, in many

cases, is associated with a particular application

code and execution path in this code. This

execution path can be activated by few, or more

often one, types of particular protocol request.

(ii) Exploit bytes. These bytes are used by the worm to

exploit the vulnerability. They are necessary for

the correct execution of the attack.

(iii) Worm body. These bytes contain instructions

executed by the worm instances on new infected

victims. In polymorphic worms these bytes can

assume different values in each instance.

(iv) Polymorphic decryptor. The polymorphic decryptor

decodes the worm body and starts its execution.

(v) Others bytes. These bytes do not affect the

successfully execution of both the worm body

and exploit bytes.

Content-based signature generation approaches rely upon the

presence of invariant bytes in some of the identified

components. Some of these components, for their nature, offer

high chance of finding these invariant sequences which are

useful for the signature generation purpose.

(ii) The proposed approach

Our approach relies on invariant bytes as discussed in

section II (i) above. To allow a rapid spread of the worm, there
will be considerably many flows in which all the invariant
bytes occur. However, some of the invariant bytes should also
appear in innocuous flows in order to prevent poisoning attacks
[6, 21].

The fundamental principle is that given any suspicious
traffic pool M and innocuous traffic pool N, the goal is to find
a set S of signatures Si each of which covers many flows in M
but not as many flows N. So the false positive FPsi must be
low while the coverage, COVsi must be high.

We use Hadoop MapReduce programming model to
achieve this.

A. High Level Architecture

High level architecture of our prototype is very similar to the

Lisabeth architecture, from which it is derived, only that for

our system we tap traffic from several vantage points of

inspections across the Internet. This is shown in Figure 1.

B. The Signature Generation Process

We crawl the internet for innocuous data using web crawler

written in PHP. We use wireshark software to capture the

network packets. We then create Hadoop mapReduce

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 98

application [36,37] where the map section is written with the

help of jnetpcap Java library [35] to preprocesses the data

before feeding into the reduce section which now implements

the Lisabeth algorithm (Figure 2). The output of the map

phase involve the key being the source network and value

being the payload (content) of the particular network. We

then implement the reduce section to process this intermediary

output based on the key value pairs to give the signatures

specific to every network. We write the output in MySQL

database and expose an API so security systems in

corresponding networks can be programmed to automatically

poll the signature database for new signatures for automatic

self update.

The MapReduce

A MapReduce job is a unit of work that the client wants to be

performed in a map reduce framework. It consists of the input

data, the MapReduce program, and configuration information.

Hadoop runs the job by dividing it into tasks, of which there

are normally two types, map tasks and reduce tasks,

sometimes involves the combiner stage but not mandatory and

the combiner function needs not to be called for the

mapReduce application to execute successfully. The map and

reduce tasks are implemented as map and reduce methods in

Hadoop MapReduce. It has the following general form:

Map task: (K1, V1) → list(K2, V2)

Reduce task: (K2, list(V2)) → list(K3, V3)

In general, the map input key and value types (K1 and V1) are

different from the map output types (K2 and V2). However,

the reduce input must have the same types as the map output,

although the reduce output types may be different again (K3

and V3).

The HDFS System

HDFS is a file system designed for storing very large files

with streaming data access, patterns, running on clusters of

commodity hardware. HDFS has design features which make

it optimal for processing of very large data sets [38]. The

most important feature being the data file replication to ensure

redundancy hence availability and also the fact that it provides

a POSIX like interface hence which makes it easy to start

working with.

Figure 2. Lisabeth Algorithm

Figure 1. High Level Architecture

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 99

IV. SYSTEM EVALUATION

The research required two sets of data, namely the innocuous

network traffic, which is the network traffic as observed

during normal operation of a given network system and the

malicious network traffic, which is the network traffic that is

being suspected to be originating form an attacker.

Innocuous traffic was collected from HTTP traces of

controlled web crawlers. Malicious traffic was generated from

known worm samples in the lab. Two models of machine

driven signature detection, generation and collection systems

were then developed, one for centralized deployment in a

standalone machine (the regular Lisabeth) and one for

distributed deployment in Hadoop cluster which uses Hadoop

MapReduce programming model.

We set up a cluster with forty virtual machines of

specifications 10GB RAM, 1 processing cores and 100 GB

Hard Disk Drive running on 3 HP ProLiant DL380 Gen9

Servers with 2TB Hardisk Drives each, 128GB RAM and two

Intel® Xeon® E5-2600 16-core processors, running on

Ubuntu server operating system, and with each virtual

machine running 64-bit Centos 6.5 on top of virtualBox

hypervisor.

We use public IPs to achieve stable connectivity between the

VMs.

We deploy the local version on a virtual machine with 10GB

RAM, 4 processing cores and 100 GB.

The specifications of these virtual computers were held

constant across the study while the number of nodes from

which the signatures were generated was varied from one test

to the other in the cluster setup.

TABLE 1 RESULT

Number

of Nodes

System

Type

Time to

accomplish

processing

(seconds)

Average

CPU

Load

(%)

Average

Memory

Usage

(%)

1 Local 15 67 81

1 Cluster 25 100 89

5 Cluster 23 78 68

10 Cluster 20 65 61

15 Cluster 18 62 54

20 Cluster 15 54 49

25 Cluster 12 47 46

30 Cluster 10 39 44

35 Cluster 8 35 42

40 Cluster 7 32 41

Timing was done by flagging the start and stop finish time in a

file for every process.

We feed in 50GB of data and observe processing time, false

positives ratio, false negatives, and how computing recourses

are utilized during the processing. Results were recorded as

shown in Table 1.

Near real time speeds achievement

According to oxford English dictionary, real time is defined as

the exact time at which a particular activity takes place. Moore

[20] shows that detection and containment must be initiated

within minutes or seconds to prevent wide-spread infection in

a 24 hour period. According to Center for Applied Internet

Data Analysis [7], the Sapphire worm was able to spread so

quickly doubling the number of affected machines in every

eight seconds. We therefore consider a speed of less than eight

seconds to be within real-time frame, and anything around that

to be near real-time. From our results as shown in Figure 5, we

can only realize these speeds with thirty-five nodes and above.

As can be seen from the graph, below ten nodes, the cluster

seems to take longer than local processing. This may be

attributed to the overheads of load balancing in HDFS before

the number of nodes reaches some optimal level.

Resource Utilization

The graphs in Figures 6 and 7 shows that as number of nodes

are added to the cluster, we generally realize calm down in the

use of resources. At first the resource utilization seems to be

higher than for a local setup. This can be attributed to the

additional load due to the overheads as a result of load

balancing in the HDFS system and implies that the cluster

setup only becomes beneficial beyond some optimal number

of nodes in the cluster, in this case about ten nodes,

considering both CPU and memory usage hence as one sets up

a cluster, he need to take care of this optimal point beyond

which he will start realizing the benefits of a cluster.

Figure 5. Processing Time vs. Number of nodes

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 100

As can be seen from the linear graph, load is inversely

proportional to the number of processing nodes hence to ease

memory and CPU capping of the processing, one needs to add

processing nodes.

Accuracy

Accuracy is the degree with which a signature generation

system generates correct signatures when there is an attack

and generates no signatures when there is no attack. It is

defined by false positives ratios and false negatives ratios as

discussed below.

False Positives

False positive is the occurrence where by a signature generator

generates a signature when there is no attack, i.e. it reports that

there is signature (positive) when in actual sense there is no

signature hence a false report. False positives are calculated by

a ratio of the worm flows in the normal flows to the total

normal flows. Therefore we can afford to increase the size of

the normal flow in the cluster environments as long as we

increase the number of processing nodes and still afford

generation of signatures within a desired real time frame. This

results in a lower false positive ratio in comparison to original

Lisabeth [6], if all other factors are held constant.

False Negatives

False negative is the occurrence whereby a signature generator

fails to generate signatures when actually it is supposed to

generate some signature i.e. it reports that there is no

(negative) signature when actually there is a signature to be

generated hence a false report. Factoring in time, especially

real-time scenario, ordinary system will generate delay and

cause the polling mechanisms to miss the signature in time

during signature collection which will be equivalent to a false

negative hence our system will arguably have lower false

negative in the face of big data, if all other factors are held

constant.

cluster setup, if one node fails, the remaining nodes continue

accurate signatures within a very narrow span of time in the

face of big data where the standalone Lisabeth system will

System Robustness

Robustness is the ability of a computer system to cope with

errors during execution. In our case, we realize that our system

is able to work even if one node fails even though at reduced

overall performance. This means that signature generation

process can continue to take place as opposed to a centralized

system whereby when the only node running the entire system

breaks down, the whole system stops the operation thus

delicate. Also the data replication in HDFS system allows for

improvement of data availability as opposed to the standalone

system thus making it more robust.

V. CONCLUSSION

In this research, we have presented an reactive distributed

accurate and robust near real time machine driven signature

detection, generation and collection system for zero-day

polymorphic worms which can be used to implement a central

processing facility to inspect multiple points of a network or

Internet over big data infrastructure to improve network

security, especially to curb the denial of service attacks

through network flooding. According to our experiments the

prototype achieves significant improvements with respect to

speed of processing, accuracy, and robustness as compared to

Lisabeth [6], from which it is derived as the number of nodes

in a cluster deployment increases after some optimal number.

VI. RECOMMENDATIONS FOR FUTURE WORKS

Yes we were able to achieve near real time speed in the

context of worm spreading which requires around 8 seconds to

contain, however we realize that it may require too many

nodes to set up a facility that attains milliseconds time frame

for distributed monitoring which is the real time frame for

other applications such as missile control systems, we realize

that since map reduce processes data from the disk, it might

not be tenable through this direction. We are therefore

intending to develop a system restore mechanism for Spark

setup which can restore the memory state in event of system

crash which is the spark weakness as single node of spark can

Figure 6. Percentage CPU load vs. Number of nodes

Figure 7. Percentage Memory Usage vs. Number of nodes

Figure 7. Percentage CPU Load vs. Number of nodes

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 101

outperform 30 nodes of mapreduce. There is also a room for

deploying DBStream in an infrastructure that can provided

more parallelization than PostgreSQL database engine. This

can also improve performance as a single node of DBstream

can outperform 10 nodes of a Spark cluster or arguably 300

Hadoop MapReduce nodes cluster, therefore we are going on

with the work to test the outcome when these two other setups

are used. We are also considering using machine learning

algorithms in the context of anomaly detection to improve the

security on top of mere signature based methods since in some

cases an artificial intelligence algorithm can take less data to

evaluate a security scenario as opposed to structured

programming and hence worth exploring. Also the use of

machine learning algorithms and artificial intelligence for job

scheduling in big data processing is within the plans for our

future works.

VII. REFERENCES

[1] Anderson, D., Frivold, T. & Valdes, A., 1995. Next-generation

Intrusion Detection Expert System (NIDES), A summary.
[Online] Available at:
http://www.csl.sri.com/papers/4sri/4sri.pdf [Accessed 10 July
2016].

[2] Anne-Fleur, K. & Pete, M., 2016. Suricata. [Online] Available
at:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki
/Suricata [Accessed 10 July 2016].

[3] Anon., 2013. The 2013 IBM Security Intelligence Index.
[Online] Available at:

http://www.935.ibm.com/services/us/en/security/infographic/cy
bersecurityindex.html [Accessed 12 July 2016].

[4] Anon., 2015. Prelude Specifications. [Online] Available at:
https://www.prelude-
siem.org/projects/prelude/wiki/PreludeSpecifications [Accessed
10 July 2016].

[5] Bartłomiej, B., Bartosz, S., Mariusz, U. & Wojciech, W., 2012.
ACARM-ng: Next Generation Correlation Framework. In
Bartłomiej, B., Bartosz, S., Mariusz, U. & Wojciech, W.
Building a National Distributed e-Infrastructure–PL-Grid.
Berlin: Springer. pp.114-27.

[6] Cavallaro, L., Lanzi, A., Mayer, L. & Monga, M., 2008.
LISABETH: Automated Content-Based Signature Generator for
Zero-day Polymorphic Worms. Milan: University of Milan
University of Milan.

[7] Center for Applied Internet Data Analysis (CAIDA), 2003. The
Spread of the Sapphire/Slammer Worm. [Online] Available at:
HYPERLINK
"http://www.caida.org/publications/papers/2003/sapphire/"
http://www.caida.org/publications/papers/2003/sapphire/
[Accessed 14 June 2014].

[8] Daniel, B., 2015. Log Analysis using OSSEC. [Online] Available
at: " http://ossec.net/ossec-docs/auscert-2007-dcid.pdf
[Accessed 10 July 2016].

[9] Ditcheva, B. & Fowler, L., 2005. Signature-based Intrusion
Detection. [Online] University of North Carolina Available at
http://www.cs.unc.edu/~jeffay/courses/nidsS05/slides/6-Sig-
based-Detection.pdf [Accessed 29 June 2014].

[10] IEEE, 2014. Bandwidth Trends on the Internet… A Cable Data
Vendor’s Perspective. [Online] Available at:
http://www.ieee802.org/3/ad_hoc/bwa/public/sep11/cloonan_01
a_0911.pdf [Accessed 30 November 2014].

[11] Jaquier, C., 2013. Fail2Ban User Manual. [Online] Available at:
http://www.fail2ban.org/wiki/index.php/MANUAL_0_8
[Accessed 10 July 2016].

[12] Khan, M.A., 2016. A survey of security issues for cloud
computing. Journal of Network and Computer Applications.

[13] Kim, H.-A. & Karp, B., 2004. Autograph: Toward Automated,
Distributed Worm Signature Detection. In USENIX Security
Conference. Carlifonia, 2004.

[14] Kolesnikov, A. & Lee, W., 2004. Advanced Polymorphic
Worms: Evading IDS by Blending in with Normal Traffic.
Technical. Georgia : Georgia Tech College of Computing
Georgia Tech College of Computing.

[15] Kreibich, C. & Crowcroft, J., 2003. Honeycomb - Creating
Intrusion Detection Signatures Using Honeypots. In Second
Workshop on Hot Topics in Networks (Hotnets II). Boston ,
2003. Boston Publishers.

[16] Kruegel, C., 2005. Polymorphic Worm Detection Using
Structural Information of Executables. In International
Symposium on Recent Advances in Intrusion Detection (RAID).
Seatle, 2005. WA.

[17] Kruegel, C., Mutz, W., Robertson, F. & Valeur, F., 2003.
Bayesian event classification for intrusion detection. In 19th
Annual Computer Security Applications Conference. Las Vegas,
2003.

[18] Lindqvist, U. & Porras, P., 2001. eXpert-BSM: A Host-based
Intrusion Detection Solution for Sun Solaris*. In Proceedings of
the 17th Annual Computer Security Applications Conference.
New Orleans, Louisiana, 2001. IEEE Computer Society.

[19] Li, Z., 2006. Hamsa: Fast Signature Generation for Zero-day
Polymorphic Worms with Provable Attack Resilience. In IEEE
Symposium on Security and Privacy. California, 2006. Oakland.

[20] Moore, D., Shannon, C., Voelker, G.M. & Savage, S., 2003.
Internet Quarantine: Requirements for Containing Self-
Propagating Code. [Online] Available at:
http://cseweb.ucsd.edu/~savage/papers/Infocom03.pdf
[Accessed 14 June 2014].

[21] Nazario, J., 2004. Defense and Detection Strategies against
Internet Worms. Artech House.

[22] Newsome, J., Karp, B. & Song, D., 2005. Polygraph:
Automatically Generating Signatures for Polymorphic Worms.
In IEEE Symposium on Security and Privacy. carlifonia, 2005.
Carnegie Mellon University.

[23] Newsome, J., Karp, B. & Song, D., 2006. Paragraph: Thwarting
Signature Learning by Training Maliciously. In Ninth
International Symposium on Recent Advances in Intrusion
Detection (RAID 2006). Hamburg, 2006. Germany Pub.

[24] Newsome, J. & Song, D., 2005. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In 12th Annual Network and
Distributed System Security Symposium. Milan, 2005.
University of Milan.

[25] OSSEC Project Team, 2015. OSSEC Architecture (How it
Works). [Online] Available at:
http://ossec.github.io/docs/manual/ossec-
architecture.html?page_id=169 [Accessed 10 July 2016].

[26] Paxson, V., 1998. Bro: A System for Detecting Network
Intruders in Real-Time. In 7th USENIX Security Symposium.
San Antonio, 1998. Texas Publishers.

[27] Paxson, V., 1999. Bro: A System for Detecting Network
Intruders in Real-Time. Computer Networks, pp.2435–63.

[28] Perdisci, R., 2006. Misleading Worm Signature Generators
Using Deliberate Noise Injection. In 2006 IEEE Symposium on
Security and Privacy. Washington DC, 2006.

[29] Quadrant Information Security, 2015. The Sagan Log Analysis
Engine. [Online] Available at:
https://quadrantsec.com/sagan_log_analysis_engine/ [Accessed
10 July 2016].

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06 – Issue 02, March 2017

www.ijcit.com 102

[30] Rajan, S., Ginkel, W. & Sundaresan, N., 2013. Expanded Top
Ten Big Data Security and Privacy Challenges. Cloud Security
Alliance.

[31] Riquet, D., Grimaud, G. & Hauspie, M., 2012. Large-scale
coordinated attacks: Impact on the cloud security. In 2012 Sixth
International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing. Lille, 2012.

[32] Roesch, M., 1999. Snort - Lightweight Intrusion Detection for
Networks. In In LISA '99 : Proceedings of 13th USENIX
conference on System administration. Berkeley, 1999. USENIX
Association.

[33] Singh, S., Estan, C. & Varghese, G., 2003. The EarlyBird
System for Real-time Detection of Unknown Worms. San Diego:
University of California University of California.

[34] Smaha, S.E., 1991. Haystack: An intrusion detection system. In
IEEE Fourth Aerospace Computer Security Applications.
Orlando, FL, 1991.

[35] Sly Technologies, 2016. jNetPcap OpenSource DPI SDK.
[Online] Available at: http://jnetpcap.com/ [Accessed 30 April
2016].

[36] Tutorials Point (I) Pvt. Ltd, 2016. MapReduce Tutorial. [Online]
Available at:
https://www.tutorialspoint.com/map_reduce/map_reduce_tutoria
l.pdf [Accessed 30 April 2016].

[37] White, T., 2012. Hadoop: The Definitive Guide. In M. Loukides
& M. Blanchette, eds. Hadoop: The Definitive Guide. 3rd ed.
California: O’Reilly Media, Inc..

[38] Wichmann, R., 2006. The SAMHAIN file integrity / host-based
intrusion detection system. [Online] Available at: HYPERLINK
"http://www.la-samhna.de/samhain" http://www.la-
samhna.de/samhain [Accessed 10 July 2016].

[39] Zhang, W., Yang, Q. and Geng, Y. (2015) 'A Survey of
Anomaly Detection Methods in Networks' Jinan, China.

[40] Zou, C.C., Gao, L., Gong, W. & Towsley, D., 2003. Monitoring
and early warning for internet worms. In 10th ACM conference
on Computer and communications security. Washington D.C.,
2003. ACM Press.

[41] Baer, A., Casas, P., DÕAlconzo, A., Fiadino, P., Golab, L.,
Mellia, M. and Schikuta, E. (2016) 'DBStream: A Holistic
Approach to Large-Scale Network Traffic Monitoring and
Analysis', Computer Networks, April

[42] Chen, Z., Xu, G., Mahalingam, V., Ge, L., Nguyen, J., Yu, W.
and Lu, C. (2015) 'A Cloud Computing Based Network
Monitoring and Threat Detection System for Critical
Infrastructures', Big Data Research, November

http://jnetpcap.com/
https://www.tutorialspoint.com/map_reduce/map_reduce_tutorial.pdf
https://www.tutorialspoint.com/map_reduce/map_reduce_tutorial.pdf

