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Abstract— One way to perpetrate a Denial of Service (DoS) 

attack is to flood the network infrastructure with too much 

unnecessary data such as Internet worms. Internet worms can 

spread very fast and cause losses both in terms of lost business 

opportunities as well as human resources required to alleviate the 

caused damages. Ways of protecting against the Internet worms 

include the anomaly based and signature based systems. 

Signature based systems uses security signatures (patterns) that 

match particular known attacks while anomaly based systems 

rely on detecting anomalies with the background idea that 

abnormal activity is malicious.  With the increasing internet 

speeds and growing amount and complexity of data across it, it is 

necessary to have correspondingly fast ways of analyzing 

network traffic in order to evaluate security scenarios in time. 

Also the existence zero-day attacks (attacks whose characteristics 

are still unknown) make relying on preconfigured signatures 

unreliable. This study sought to find how to develop an accurate, 

robust near real time machine driven Internet worm signature 

detection, generation and collection system using big data 

technologies. We set up Hadoop Ecosystem and analyze network 

traffic content using Hadoop Map Reduce programming Model. 

We were able to generate documented worm signatures. We also 

realize that adding the number of nodes to the Hadoop cluster 

first reduces the processing speeds due to overheads of load 

distribution up to some optimal point beyond which adding more 

nodes actually increases the overall speed of processing. The 

robustness of the processing facility is also improved due to the 

fact that HDFS replicates the files to be processed thus improving 

availability. 

Keywords- Signature real-time big-data polymorphic-worms, 

Hadoop, MapReduce 

 

I.  INTRODUCTION  

Malware such as Internet worms spreads very fast and 
causes losses such as business disruptions as well as the human 
efforts necessary to alleviate the damages.  Systems like 
Honeycomb [15], Autograph [13], EarlyBird [33], Polygraph 
[12], Hamsa [16] and Lisabeth [6] can monitor network traffic 
to identify new Internet worms and produce corresponding 
worm signatures in a small scale networks.  Such systems use 
network traffic content analysis to generate signatures. The 
increasing speeds of the internet as per IEEE report [10] and 
the increasing number of devices being connected to the 

internet (Internet of Things) leads to generation of large 
volume of very high velocity and variety data.  This presents 
the four Vs: volume, velocity, variety, and veracity, which 
characterize the big data [37]. 

While an ordinary desktop computer can generate 
signatures for reasonably less amount of data with low velocity 
and variety, it will start introducing delays as the data grows in 
volume, velocity, variety and at the same time increased degree 
of veracity is required, due to the limited computing resources.  

While the term real-time is contextual, it can be defined as 
the span of time within which an intervention to an activity will 
be effective. Delays that is likely to be caused by single 
desktop computers analyzing big data for security purposes 
will hinder any possible intervention from being effective. 

We therefore seek to experiment a way of using the existing 
algorithms but with different approach in order to analyze the 
big data in real-time and provide security signatures so it can 
monitor a larger network or even the Internet as per the current 
connectivity trends [30].  

The remainder of this paper is organized as follows. Section II 
describes existing work, in section III, we present our proposed 
solution and present the evaluation of our system in section IV. 
We then present our conclusion in section V and then 
recommendation for future work in section VI. 

II. EXISTING WORK 

Intrusion detection systems can either be deployed at host 
level or at network level [12]. Systems like ACARM-ng [5], 
Taint check analysis [24], OSSEC [8], NIDES [1], eXpert-
BSM [18], Fail2Ban [11], SAMHAIN [38], Sagan [29], 
Haystack [34] use traffic behavior at host level to evaluate 
security scenario. Host level behavior cannot be used to take 
care of attacks such as large-scale coordinated attacks [31]. 
Also single host based systems are not as robust [37]. 

Network based intrusion detection systems (NIDS) which 
include systems like Snort [32], and Bro [26,27] are standalone 
systems and will not scale well enough in the face of big data. 

One more way of classifying intrusion detection systems is 
by use of the working mechanism, which can either be 
signature recognition or anomaly detection [39]. Signature 
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recognition systems such as the EarlyBird [33], HoneyComb 
[15] and Autograph [13], Paragraph [23] use network traffic 
content analysis to generate security signatures; however these 
systems do not capture polymorphic worms, these are worms 
that mutate at every instance to hide from detection. This was 
shown by a research that led to construction of Polygraph [22], 
however Polygraph was found to be so slow and was enhanced 
into Hamsa [19]. Hamsa was again found to be less resilient to 
targeted noise [28] by [6] and they enhanced Hamsa to 
Lisabeth [6].  Lisabeth analyzes network traffic to identify new 
Internet worms and generate the corresponding worm 
signatures with resilience to poisoning attacks. Lisabeth is 
currently central based and designed to run on a single 
computer. This limits the processing power, meaning that for it 
to process very large amount of complex data, it will have to be 
deployed on a very high end computer. The current computing 
trend is such that clusters of commodity computers are set up 
to provide higher computing powers than can be realized with 
any single high end computer [37].  

Work has also been done to experiment and adopt big data 
infrastructure to improve processing speeds in the face of big 
data. These include the use of infrastructures such as 
DBStream [41], Hadoop Map Reduce and Spark [42]. 
DBStraeam uses PostgreSQL engine to provide a platform for 
large scale data  analysis facility which can be used in network 
monitoring as discussed in [41], however, the dependency on 
PostgreSQL database engine makes parallelization impossible 
on DBStream platform and acts as a bottleneck in processing 
hence leading to longer processing time even or parallelizable 
tasks. Still there is a need to further extend the work to more 
flexible systems that adapt well for parallelization such as the 
Spark or the Hadoop Map Reduce. Spark [42] is a large-scale 
data processing platform which operates over Hadoop and 
supports in-memory operations hence in some cases a single 
Spark node can outperform a cluster of 10 Hadoop map reduce 
nodes. [42]. However, the in-memory operation is risky in the 
sense that the system memory state may be lost in event of a 
system crash due to power failure of hardware failure thus 
leading to loss of data. Hadoop Map Reduce therefore becomes 
a better option since it persists its data to the disk. 

We adopt Lisabeth System and experimentally deploy it in 
Hadoop Map Reduce cluster environment.  

III. PROPOSED SOLUTION 

(i) Background to the proposed solution 

 

We depend on the fact that all worms, whether polymorphic or 

not must have some invariant bytes for them to successfully 

achieve their goal.  

 

Polymorphic Worm Structure 

In a sample of polymorphic worm we can identify the 

following components [12]: 

(i) Protocol framework. To infect new hosts and 

continue their spread, worms have to exploit a 

given vulnerability. This vulnerability, in many 

cases, is associated with a particular application 

code and execution path in this code. This 

execution path can be activated by few, or more 

often one, types of particular protocol request. 

(ii) Exploit bytes. These bytes are used by the worm to 

exploit the vulnerability. They are necessary for 

the correct execution of the attack. 

(iii) Worm body. These bytes contain instructions 

executed by the worm instances on new infected 

victims. In polymorphic worms these bytes can 

assume different values in each instance. 

(iv) Polymorphic decryptor. The polymorphic decryptor 

decodes the worm body and starts its execution. 

(v) Others bytes. These bytes do not affect the 

successfully execution of both the worm body 

and exploit bytes. 

Content-based signature generation approaches rely upon the 

presence of invariant bytes in some of the identified 

components. Some of these components, for their nature, offer 

high chance of finding these invariant sequences which are 

useful for the signature generation purpose. 

 

(ii) The proposed approach 

 
Our approach relies on invariant bytes as discussed in 

section II (i) above. To allow a rapid spread of the worm, there 
will be considerably many flows in which all the invariant 
bytes occur. However, some of the invariant bytes should also 
appear in innocuous flows in order to prevent poisoning attacks 
[6, 21]. 

The fundamental principle is that given any suspicious 
traffic pool M and innocuous traffic pool N, the goal is to find 
a set S of signatures Si each of which covers many flows in M 
but not as many flows N. So the false positive FPsi must be 
low while the coverage, COVsi must be high. 

 

 

 

 

We use Hadoop MapReduce programming model to 
achieve this. 

A. High Level Architecture 

High level architecture of our prototype is very similar to the 

Lisabeth architecture, from which it is derived, only that for 

our system we tap traffic from several vantage points of 

inspections across the Internet. This is shown in Figure 1. 

B. The Signature Generation Process 

 

We crawl the internet for innocuous data using web crawler 

written in PHP. We use wireshark software to capture the 

network packets. We then create Hadoop  mapReduce  
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application [36,37] where the map section is written  with the 

help of jnetpcap Java library  [35] to preprocesses the data 

before feeding into the reduce section which now implements 

the Lisabeth algorithm (Figure 2). The output of the map 

phase involve the key being the source network and value 

being the payload (content) of the  particular network. We 

then implement the reduce section to process this intermediary 

output based on the key value pairs to give the signatures 

specific to every network. We write the output in MySQL 

database and expose an API so security systems in 

corresponding networks can be programmed to automatically 

poll the signature database for new signatures for automatic 

self update. 

 

The MapReduce 

A MapReduce job is a unit of work that the client wants to be 

performed in a map reduce framework. It consists of the input 

data, the MapReduce program, and configuration information. 

Hadoop runs the job by dividing it into tasks, of which there 

are normally two types, map tasks and reduce tasks, 

sometimes involves the combiner stage but not mandatory and 

the combiner function needs not to be called for the 

mapReduce application to execute successfully.  The map and 

reduce tasks are implemented as map and reduce methods in 

Hadoop MapReduce. It has the following general form: 

Map task: (K1, V1) → list(K2, V2) 

Reduce task: (K2, list(V2)) → list(K3, V3) 

In general, the map input key and value types (K1 and V1) are 

different from the map output types (K2 and V2). However, 

the reduce input must have the same types as the map output, 

although the reduce output types may be different again (K3 

and V3). 

 

The HDFS System  

HDFS is a file system designed for storing very large files 

with streaming data access, patterns, running on clusters of 

commodity hardware. HDFS has design features which make 

it optimal for processing of very large data sets [38].  The 

most important feature being the data file replication to ensure 

redundancy hence availability and also the fact that it provides 

a POSIX like interface hence which makes it easy to start 

working with. 

 

 

 

 

 

 

 

Figure 2. Lisabeth Algorithm 

 

Figure 1.  High Level Architecture 
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IV. SYSTEM EVALUATION 

The  research required two sets of data, namely the innocuous 

network traffic, which is the network traffic as observed 

during normal operation of a given network system and the 

malicious network traffic, which is the network traffic that is 

being suspected to be originating form an attacker. 

Innocuous traffic was collected from HTTP traces of 

controlled web crawlers. Malicious traffic was generated from 

known worm samples in the lab. Two models of machine 

driven signature detection, generation and collection systems 

were then developed, one for centralized deployment in a 

standalone machine (the regular Lisabeth) and one for 

distributed deployment in Hadoop cluster which uses Hadoop 

MapReduce programming model.  

We set up a cluster with forty virtual machines of 

specifications 10GB RAM, 1 processing cores and 100 GB 

Hard Disk Drive running on 3 HP ProLiant DL380 Gen9 

Servers with 2TB Hardisk Drives each, 128GB RAM and two 

Intel® Xeon® E5-2600 16-core processors, running on 

Ubuntu server operating system, and with each virtual 

machine running 64-bit Centos 6.5 on top of virtualBox 

hypervisor. 

We use public IPs to achieve stable connectivity between the 

VMs. 

We deploy the local version on a virtual machine with 10GB 

RAM, 4 processing cores and 100 GB. 

The specifications of these virtual computers were held 

constant across the study while the number of nodes from 

which the signatures were generated was varied from one test 

to the other in the cluster setup. 

 

TABLE 1 RESULT 

Number 

of Nodes 

System 

Type 

Time to 

accomplish 

processing 

(seconds) 

Average 

CPU 

Load 

(%) 

Average 

Memory 

Usage 

(%) 

1 Local 15 67 81 

1 Cluster 25 100 89 

5 Cluster 23 78 68 

10 Cluster 20 65 61 

15 Cluster 18 62 54 

20 Cluster 15 54 49 

25 Cluster 12 47 46 

30 Cluster 10 39 44 

35 Cluster 8 35 42 

40 Cluster 7 32 41 

 

Timing was done by flagging the start and stop finish time in a 

file for every process. 

We feed in 50GB of data and observe processing time, false 

positives ratio, false negatives, and how computing recourses 

are utilized during the processing. Results were recorded as 

shown in Table 1. 

 

Near real time speeds achievement 

According to oxford English dictionary, real time is defined as 

the exact time at which a particular activity takes place. Moore 

[20] shows that detection and containment must be initiated 

within minutes or seconds to prevent wide-spread infection in 

a 24 hour period. According to Center for Applied Internet 

Data Analysis [7], the Sapphire worm was able to spread so 

quickly doubling the number of affected machines in every 

eight seconds. We therefore consider a speed of less than eight 

seconds to be within real-time frame, and anything around that 

to be near real-time. From our results as shown in Figure 5, we 

can only realize these speeds with thirty-five nodes and above. 

As can be seen from the graph, below ten nodes, the cluster 

seems to take longer than local processing. This may be 

attributed to the overheads of load balancing in HDFS before 

the number of nodes reaches some optimal level. 

 

Resource Utilization 

The graphs in Figures 6 and 7 shows that as number of nodes 

are added to the cluster, we generally realize calm down in the 

use of resources. At first the resource utilization seems to be 

higher than for a local setup. This can be attributed to the 

additional load due to the overheads as a result of load 

balancing in the HDFS system and implies that the cluster 

setup only becomes beneficial beyond some optimal number 

of nodes in the cluster, in this case about ten nodes, 

considering both CPU and memory usage hence as one sets up 

a cluster, he need to take care of this optimal point beyond 

which he will start realizing the benefits of a cluster. 

 

 

 
 

 

 

Figure 5.  Processing Time  vs. Number of nodes 
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As can be seen from the linear graph, load is inversely 

proportional to the number of processing nodes hence to ease 

memory and CPU capping of the processing, one needs to add 

processing nodes. 

 

Accuracy 

Accuracy is the degree with which a signature generation 

system generates correct signatures when there is an attack 

and generates no signatures when there is no attack. It is 

defined by false positives ratios and false negatives ratios as 

discussed below.  

 

False Positives 

False positive is the occurrence where by a signature generator 

generates a signature when there is no attack, i.e. it reports that 

there is signature (positive) when in actual sense there is no 

signature hence a false report. False positives are calculated by 

a ratio of the worm flows in the normal flows to the total 

normal flows. Therefore we can afford to increase the size of 

the normal flow in the cluster environments as long as we 

increase the number of processing nodes and still afford 

generation of signatures within a desired real time frame. This 

results in a lower false positive ratio in comparison to original 

Lisabeth [6], if all other factors are held constant.   

 

False Negatives 

False negative is the occurrence whereby a signature generator 

fails to generate signatures when actually it is supposed to 

generate some signature i.e. it reports that there is no 

(negative) signature when actually there is a signature to be 

generated hence a false report. Factoring in time, especially 

real-time scenario, ordinary system will generate delay and 

cause the polling mechanisms to miss the signature in time 

during signature collection which will be equivalent to a false 

negative hence our system will arguably have lower false 

negative in the face of big data, if all other factors are held 

constant.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster setup, if one node fails, the remaining nodes continue  

accurate signatures within a very narrow span of time in the 

face of big data where the standalone Lisabeth system will  

 

 

 

System Robustness 

Robustness is the ability of a computer system to cope with 

errors during execution. In our case, we realize that our system 

is able to work even if one node fails even though at reduced 

overall performance. This means that signature generation 

process can continue to take place as opposed to a centralized 

system whereby when the only node running the entire system 

breaks down, the whole system stops the operation thus 

delicate. Also the data replication in HDFS system allows for 

improvement of data availability as opposed to the standalone 

system thus making it more robust. 

 

V. CONCLUSSION  

In this research, we have presented an reactive distributed 

accurate and robust near real time machine driven signature 

detection, generation and collection system for zero-day 

polymorphic worms which can be used to implement a central 

processing facility to inspect multiple points of a network or 

Internet over big data infrastructure to improve network 

security, especially to curb the denial of service attacks 

through network flooding. According to our experiments the 

prototype achieves significant improvements with respect to 

speed of processing, accuracy, and robustness as compared to 

Lisabeth [6], from which it is derived as the number of nodes 

in a cluster deployment increases after some optimal number. 

 

VI. RECOMMENDATIONS FOR FUTURE WORKS 

Yes we were able to achieve near real time speed in the 

context of worm spreading which requires around 8 seconds to 

contain, however we realize that it may require too many 

nodes to set up a facility that attains milliseconds time frame 

for distributed monitoring which is the real time frame for 

other applications such as missile control systems, we realize 

that since map reduce processes data from the disk, it might 

not be tenable through this direction. We are therefore 

intending to develop a system restore mechanism for Spark 

setup which can restore the memory state in event of system 

crash which is the spark weakness  as single node of spark can 

Figure 6.  Percentage CPU load  vs. Number of nodes 

 

Figure 7.  Percentage Memory Usage  vs. Number of nodes 

 

 

 

 

 

Figure 7.  Percentage CPU  Load  vs. Number of  nodes 
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outperform 30 nodes of mapreduce. There is also a room for 

deploying DBStream in an infrastructure that can provided 

more parallelization than PostgreSQL database engine. This 

can also improve performance as a single node of DBstream 

can outperform 10 nodes of a Spark cluster or arguably 300 

Hadoop MapReduce nodes cluster, therefore we are going on 

with the work to test the outcome when these two other setups 

are used. We are also considering using machine learning 

algorithms in the context of anomaly detection to improve the 

security on top of mere signature based methods since in some 

cases an artificial intelligence algorithm can take less data to 

evaluate a security scenario as opposed to structured 

programming and hence worth exploring. Also the use of 

machine learning algorithms and artificial intelligence for job 

scheduling in big data processing is within the plans for our 

future works. 
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