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Abstract—In this paper we give a new semiprimality test and we 

construct a new formula for (2) ( )N , the function that counts the 

number of semiprimes not exceeding a given number N . We also 

present new formulas to identify the thn  semiprime and the next 

semiprime to a given number. The new formulas are based on the 

knowledge of the primes less than or equal to the cube roots of 

 3
3

1 2: , ....
N

N P P P N


 . 
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I.  INTRODUCTION 

Securing data remains a concern for every individual and 
every organization on the globe. In telecommunication, 
cryptography is one of the studies that permit the secure 
transfer of information [1] over the Internet. Prime numbers 
have special properties that make them of fundamental 
importance in cryptography. The core of the Internet security is 
based on protocols, such as SSL and TSL [2] released in 1994 
and persist as the basis for securing different aspects of today's 
Internet [3]. 

The Rivest-Shamir-Adleman encryption method [4], 
released in 1978, uses asymmetric keys for exchanging data. A 

secret key kS  and a public key kP  are generated by the 

recipient with the following property: A message enciphered 

by kP  can only be deciphered by kS  and vice versa. The 

public key is publicly transmitted to the sender and used to 
encipher data that only the recipient can decipher. RSA is 
based on generating two large prime numbers, say P  and Q  

and its security is enforced by the fact that albeit the fact that 
the product of these two primes n P Q   is published, it is of 

enormous difficulty to factorize n . 

A semiprime or (2 almost prime) or (pq number) is a 
natural number that is a product of 2 primes not necessary 
distinct. The semiprime is either a square of prime or square 
free. Also the square of any prime number is a semiprime 
number. 

Mathematicians have been interested in many aspects of the 
semiprime numbers. In [5] authors derive a probabilistic 

function ( )g y  for a number y  to be semiprime and an 

asymptotic formula for counting ( )g y  when y  is very large. 

In [6] authors are interested in factorizing semiprimes and use 

an approximation to ( )n  the function that counts the prime 

numbers n . 

While mathematicians have achieved many important 
results concerning distribution of prime numbers, many are 
interested in semiprime properties as to counting prime and 
semiprime numbers not exceeding a given number.  

From [7, 8, 9], the formula for (2) ( )N  that counts the 

semiprime numbers not exceeding N  is given by (1). 

 

 
(2)

1

( ) 1
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i i
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This formula is based on the primes 1P , 2P , … 

 N
P N


 . 

Our contribution is of several folds. First, we present a 
formula to test the semiprimality of a given integer, this 

formula is used to build a new function (2) ( )N  that counts the 

semiprimes not exceeding a given integer N  using 

only
 3

3
1 2, ,....

N
P P P N


 . Second, we present an explicit 

formula that identifies the 
thn  semiprime number. And finally 

we give a formula that finds the next semiprime to any given 
number.  

II. SEMIPRIMALITY TEST 

With the same complexity ( )O x  as the Sieve of 

Eratosthenes to test a primality of a given number x , we 

employ the Euclidean Algorithm and the fact that every prime 

number greater than 3 has the form 6 1k   and without 
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previous knowledge about any prime, we can test the primality 
of 8x   using the following procedure: 

Define the following functions 

0

1
( )

2 2 2 3 3

x x x x
T x

        
           

         

  (2) 

6

1

1

1
( )

6 1 6 1

6

x

k

x x
T x

k kx

 
 
  



 
 

   
           
   

    (3) 

6

2

1

1
( )

6 1 6 1

6

x

k

x x
T x

k kx

 
 
  



 
 

   
           
   

   (4) 

0 1 2( )
3

T T T
T x

  
  
 

    (5) 

Where x    and x    are the floor and the ceiling functions 

of the real number x  respectively. 

We have the following theorem which is analog to that 
appeared in [10] with slight modification and the details of the 
proof are exactly the same. 

Theorem 1:   Given any positive integer 7x  , then 

1. x  is prime if and only if  ( ) 1T x   

2. x  is composite if and only if ( ) 0T x   

3. For 7x   
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x T j T j

    
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counts the number of primes not exceeding x . 

Now we proof the following Lemma: 

Lemma 1:   If N  is a positive integer with at least 3 

factors, then there exists a prime p  such that: 

3p N and p  divides N  

Proof. If N  has at least 3 factors then it can be represented 

as: . .N a b c with the assumption 1 a b c   , we deduce 

that 
3N a  or 3a N  . 

By the fundamental theorem of arithmetic,   a prime 

number p  such that p  divides a . That means 3p a N  , 

but p  divides a  and a  divides N , hence p  divides N  with 

the property 3p N . 

Lemma 1:  tells that, if N  is not divisible by any prime 
3p N , then N  has at most 2 prime factors, i.e., N is prime 

or semiprime . Using the proposed primality test defined by 

( )T x we construct the semiprimality test as follows: 

For 8x  , define the functions 1( )K x  and 2 ( )K x  as 

follows: 

1( )K x  =

 3
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 3

3
1

1
1

( )

x

i i i i

x x x
T

p p px





 
 



     
      
          

   (8) 

Where ( )x  is the classical prime counting function 

presented in (6), ( )T x  is the same as in Theorem 1. Obviously 

( )T x  is independent of any previous knowledge of the prime 

numbers. 

Lemma 2:   If 1( ) 0K x  ,  then x  is divisible by some 

prime 3
ip x  . 

Proof. For 1( ) 0K x  , we have 0
i i

x x

p p

  
   

   

 for some 

ip , then x  is divisible by ip  for some 3
ip x . 

Lemma 3:   If 1( ) 1K x   ,then x  has at most 2 prime 

factors exceeding 3 x . 

Proof. If 1( ) 1K x  , then 1
i i

x x

p p

  
   

   

 for all 

3
ip x  therefore by Lemma 1:  , x  is not divisible by any 

prime ip  
3 ,x  therefore x  has at most two prime factors 

exceeding 
3 .x  

Lemma 4:   If ( ) 0T x   and 1( ) 1K x  , then x  is 

semiprime and 2 ( ) 0K x  . 

Proof. If 1( ) 1K x   , then x  has at most 2 prime factors but 

( ) 0T x   which means that x  is composite, hence x  has 

exactly two prime factors and both factors are greater than 
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3 x  and 1 0
i i

x x

p p

  
    

   

 for each prime 3
ip x , 

therefore 2 ( ) 0K x  . 

Lemma 5:   If ( ) 0T x   and 1( ) 0K x   , then x  is a 

semiprime number if and only if 2 ( ) 1K x  . 

 

Figure 1: MATLAB code for the computation of 1K  and 2K  

 

Proof. If ( ) 0T x   and 1( ) 0K x   then x  divides a 

prime 3p N , but x  is semiprime that means x pq  and q  

is prime number hence for prime ip p  and x pq  we have: 

1 1 1
i i i
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Consequently, 2 ( ) 1K x   because at least one of the terms 

is not zero. 

Conversely, if 2 ( ) 1K x   then 1
i i i
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T
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 is not 

zero for some i  and then ix p q  and 1
i

x
T

p
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   
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for some 

prime 3
ip x  then ( ) 1i

i

p q
T T q

p

  
    
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 hence q  is a prime 

number and x  is a semiprime number. 

Figure 1 shows the MATLAB code for the computation of 

1K  and 2K . 

We are now in a position to prove the following theorem 
that characterizes the semiprime numbers. 

Theorem 2:   (Semiprimality Test): Given any 
positive integer  7x  , then x  is semiprime if 

and only if: 

1. ( ) 0T x   and 1( ) 1K x    

  or  

2. ( ) 0T x  , 1( ) 0K x   and 2 ( ) 1K x   

Proof. If x  is semiprime, then x pq  where p  and q  are 

two primes. If p  and q  both are greater than 3 x  then 

( ) 0T x   and  
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if x p q   where 'p  and 'q  are two primes such that 

3'p x 
 

 and 3'q x 
 

 then ( ) 0T x   and 
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' ' ' ' ' '
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The converse can be proved by the same arguments. 

Corollary 1 A positive integer 7x   is 

semiprime if and only if 

1 2( ) ( ) ( ) 1K x K x T x   . 

Proof. A direct consequence of the previous theorem and 
lemmas. 

III. SEMIPRIME COUNTING FUNCTION 

 

Notice that the triple 1 2( ( ), ( ), ( ))T x K x K x  have only the 

following 4 possible cases only: 

Case 1. 1 2( ( ), ( ), ( )) (1,1,0)T x K x K x  indicates that 

x  is prime number. 

Case 2. 1 2( ( ), ( ), ( )) (0,1,0)T x K x K x   indicates that 

x  is semiprime in the form x pq  where p  and 

q  are primes that 3 2x p x    
   

 and 

2q x 
 

. 
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Case 3. 1 2( ( ), ( ), ( )) (0,0,1)T x K x K x   indicates that 

x  is semiprime in the form x pq  where p  and 

q  are primes such that 3p x 
 

 and 

3 2

3

x x
q x

p x

   
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. 

Case 4. 1 2( ( ), ( ), ( )) (0,0,0)T x K x K x  indicates that 

x  has at least 3 prime factors . 

Using the previous observations, lemmas as well as 
Theorem 2:   and corollary, we prove the following theorem 
that includes a function that counts all semiprimes not 
exceeding a given number N . 

Theorem 3:   For 8N  then, 

(2)

1 2

8

( ) 2 ( ( ) ( ) ( ))
N

x

N K x K x T x


    (9) 

is a function that counts all semiprimes not exceeding N . 

Figure 2 shows the MATLAB code for 
2  2 computation. 

 

Figure 2: MATLAB code for
2  

 

IV. 
thN SEMIPRIME FORMULA  

 

The first few semiprimes in ascending order are 
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Knowing that the bound of the 
thn  prime is 2 lognP n n  

[11], we can say that the 
thn   semiprime 2nsp   

4 lognP n n . 

Theorem 4:   For  8x   and  2n  , nsp  the 
thn  
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The formula in full is given by: 
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( , )

01

x nn
G n x

x nn x

 
       

 

we compute 

4 ln 4 ln

(2)

(2)
8 8

(2) (2)

(2) (2)

1

(2)

1

(2) (2)

2
8 8 ( , ( ))

% 1 ( )

8 ( , (8)) ( , (9))

( , (10)) ... ( , ( )) ....

( , ( 1))

........ ( , ( ) ( , ( 1) ...

8 1 1 1 ...1

n n

x x

n

n

n n

n
G n x

n x

G n G n

G n G n P

G n P

G n P G n P




 

 



 

      

 





 
   

  

  

   

 

   

     

 

0 0 0 ... nsp   

 

where the last 1 in the summation is the value of 
(2)

1( , ( ))nG n sp  and then followed by 

(2)( , ( ) ( , ) 0nG n sp G n n    followed by zeroes for the rest 

terms of the summation, hence   

4 ln 4 ln

2

(2)
8 8

2
8 ( , ( )) 8

1 ( )

n n n n

n

x x

n
sp G n x

n x




      

 

 
     

  
 
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As an example, computing the 5th
 semiprime number gives 

5 8 1 1 1 1 1 1 14sp          as shown in Table 1. 

2 (8) 2   

2 (9) 3   

2(10) 4   

2 (11) 4   

2(12) 4   

2 (13) 4   

2 (14) 5   

2(5, (8)) 1G    

2(5, (9)) 1G    

2(5, (10)) 1G    

2(5, (11)) 1G    

2(5, (12)) 1G    

2(5, (13)) 1G    

2(5, (14)) 0G    

Table 1:  Computing the 5th
 semiprime 

 

Figure 3 shows the MATLAB code for the 
thn  semiprime 

computation. 

 

 

Figure 3: MATLAB code for nsp  

 

V. NEXT SEMIPRINE 

 

In our previous work [10], we introduced a formula that 
finds the next prime to a given number. In this section, we use 
an enhancement formula to find the next prime to a given 
number and we introduce a formula to compute the next 
semiprime to any given number.  

Recall that the integer 8x   is a semiprime number if and 

only if 1 2( ) ( ) ( ) 1K x K x T x    and if x  is not semiprime 

then 1 2( ) ( ) ( ) 0K x K x T x   . 

 

Now we introduce an algorithm that computes the next 
semiprime to any given positive integer N . 

Theorem 5:   If N  is any positive integer greater 

than 8 then the next semiprime to N is given by:  

 1 2

1 1

( ) 1 1 ( ) ( ) ( )
x N iN

i x N

NextSP N N T x K x K x
 

  

 
      

 
     (10) 

where 1 2( ), ( ), ( )T x K x K x  are the functions defined in Section 

2. 

Proof. We compute the summation: 

1 2

1 1

( ) 1

1 2

1 1

1 2

( ) 1

( ) 1

1 ( )

(1 ( ) ( ) ( ))

(1 ( ) ( ) ( ))

(1 ( ) ( ) ( ))

(1) (0)

x N iN

i x N

NextSP N N x N i

i x N

x N iN

i NextSP N N x N

NextP N N N

i i NextP N N

T x K x K x

T x K x K x

T x K x K x

NextS

 

  

   

  

 

   

 

  

 
   

 
 

 
     

 
 

 
   

 
 

 



 

 

 

 

( ) 1P N N 

 

hense  

1 2

1 1

( ) 1 (1 ( ) ( ) ( ))
x N iN

i x N

NextSP N N T x K x K x
 

  

 
      

 
   

x  2 ( )x  Time in seconds 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

100000000 

4 

34 

299 

2625 

23378 

210035 

1904324 

17427258 

0.00 

0.01 

0.1 

3.0 

50 

1091 

22333 

508840 

Table 2: Testing on 
(2) ( )x  

 

VI. RESULTS 

 

We implemented the proposed functions using MATLAB 
and complete the testing on an Intel Core i7-6700K with 8M 
cache and a clock speed of 4.0GHz. Table 2 shows the results 

related to 2 ( )x  for some selected values of x .  

We have also computed few 
thn  semiprimes as shown in 

Table 3. 
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n  nsp  Time in seconds 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

5000 

10000 

314 

669 

1003 

1355 

1735 

2098 

2474 

2866 

3202 

3595 

19643 

40882 

0.07 

0.24 

0.49 

0.86 

1.22 

1.89 

2.39 

3.40 

3.78 

4.91 

105.72 

579.01 

Table 3: Testing on 
thn  semiprimes 

 

And finally we show the next semiprimes to some selected 
integers in Table 4. 

 

n  ( )NextSP n  Time in seconds 

100 

200 

300 

400 

500 

1000 

5000 

10000 

106 

201 

301 

403 

501 

1003 

5001 

10001 

0.01 

0.02 

0.04 

0.07 

0.09 

0.31 

5.92 

22.38 

Table 4: Testing on ( )NextSP n  semiprimes 

VII. CONCLUSION 

In this work, we presented new formulas for semiprimes. 

First, (2) ( )n  that counts the number of semiprimes not 

exceeding a given number n . Our proposed formula requires 

knowing only the primes that are less or equal 3 n  while 

existing formulas require at least knowing the primes that are 

less or equal 2 n . We also present a new formula to identify 

the 
thn  semiprime and finally, a new formula that gives the 

next semiprime to any integer.  
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