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I. INTRODUCTION 

Throughout this paper, we assume that the alphabet   is 

the Galois field )(qGF , where   is the prime power. A linear 

code over )(qGF  is just a subspace of   , the space of all 

  tuples with components from  . An       linear code over 

)(qGF is a   dimensional subspace of   . Thus a subset   

of    is a linear code if and only if (1) ,Cvu  for all

Cvu , , and (2) ,Cau for all ,Cu Fa . Since a 

linear code is a vector sub-space it can be given by a basis. 

The matrix whose rows are the basis vectors is called a 

generator matrix. For an acquaintance with coding theory at a 

basic level the reader may please consult        .  
A very important concept in coding is the weight of a 

vector  . By definition, this is the number of non-zero 

components   has and is denoted by       The minimum 

weight of a code, denoted by   is the weight of a non-zero 

vector of smallest weight in the code. A well-known theorem 

says that if   is the minimum weight of a code  , then   can 

correct    
   

 
  or fewer errors, and conversely. A       

linear code with minimum weight   is often called a         
code. In this paper, we intend to explore the       error-

correcting linear codes over      .  

Two linear codes over )(qGF  are called equivalent if one 

can be obtained from the other by a combination of operations 

of the following types: 

a) permutation of the positions of the code; 

b) multiplication of the symbols appearing in a fixed 

position by a non-zero scalar. 

It is well known [2] that two nk   matrices generate 

equivalent linear ],[ kn codes over )(qGF if one matrix can 

be obtained from the other by a sequence of operations of the 

following types. 

1) permutation of the rows; 

2) multiplication of a row by a non-zero scalar; 

3) addition of a scalar multiple of one row to another; 

4) permutation of the columns; 

5) multiplication of any column by a non-zero scalar. 

It is also worth knowing [2] that if G is a generator matrix 

of a ],[ kn code, then by performing operations of types (1), 

(2), (3), (4) and (5), G  can be transformed to standard form 

]|[ AI k , where kI is the kk  identity matrix, A is the 

)( knk  matrix. In this paper, we intend to explore the 

]4,6[  error-correcting linear codes over )7(GF up to 

equivalence. 
. 

II. NONEXISTENCE OF A [6,4] ERROR CORRECTING LINEAR 

CODE OVER )( pGF  IF 4p  

In this section, we will show that there exist no       error 
correcting code over fields of order 2, 3 or 4. 

Theorem (2.1) There exists no       one error correcting 

binary, ternary or quaternary code. 

Proof. Let M be a generator matrix of a ]4,6[ codeC . Then 
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where )( pGFaij   for each ,i j and ,p ,41  i

21  j , 41  p . 

If the code is to be error correcting, the minimum weight d

should be at least 3 . Hence 0ija for each i and ,j

,41  i 21  j . One then obtains the following 

equivalence diagram where ir and ic denote the 
thi row and 

thi column respectively. 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 06 – Issue 01, January 2017 

 

www.ijcit.com    20 
 












0

0

0

1

M

0

0

1

0

0

1

0

0

1

0

0

0

41

31

21

11

a

a

a

a










42

32

22

12

a

a

a

a

 


4
1

413
1

312
1

211
1

11 ,,, rararara
 









 

0

0

0

1

11a

0

0

0

1

21

a

0

0

0

1

31

a
1

41

0

0

0

a

 

1

1

1

1

  



















42

1

41

32

1

31

22

1

21

12

1

11

aa

aa

aa

aa

   441331221111 ,,, cacacaca
 










0

0

0

1

 

0

0

1

0

 

0

1

0

0

 

1

0

0

0

 

1

1

1

1

  



















42

1

41

32

1

31

22

1

21

12

1

11

aa

aa

aa

aa

   
  42

1
4114

1
3113

1
2112

1
11 ,,, aadaacaabaaa

 










0

0

0

1

 

0

0

1

0

 

0

1

0

0

 

1

0

0

0

 

1

1

1

1

 










d

c

b

a

   


6
1ca










0

0

0

1

 

0

0

1

0

 

0

1

0

0

 

1

0

0

0

 

1

1

1

1

 

















da

ca

ba

1

1

1

1

 
  dazcaybax 111 ,,










0

0

0

1

 

0

0

1

0

 

0

1

0

0

 

1

0

0

0

 

1

1

1

1

 










z

y

x

1

G . 

If code C  is to be error correcting, all four of zyx ,,,1 must 

be distinct as otherwise using linear combinations of rows of 

G , we can easily show that code C contains vector of weight 

two. Now all four of zyx ,,,1 can not be distinct if 4p . 

Thus there exists no ]4,6[  one error correcting binary, ternary 

or quaternary code. ■. 

 

III. EXISTENCE OF A [6, 4] ERROR CORRECTING LINEAR 

CODE OVER  GF(P)  IF     

By singleton bound 1 knd for an ],,[ dkn code. 

If ,1 knd we call the code a maximum distance 

separable code or MDS code for short. Hence for a ]4,6[

code, 3d is the maximum minimum weight that is 

attainable. On the other hand, to be 1  error correcting, the 

minimum weight of a linear code should be at least 3 . Hence 

an 1  error correcting ]4,6[ code, if it exists, has to be a 

]3,4,6[ MDS code.The next theorem shows that there do 

always exist an 1 error correcting ]4,6[ code over )( pGF  

where 5p . 

Theorem (3.1). Let )( pGF be a field of order p where

5p . Then there do always exist a ]4,6[ error-correcting 

code over )( pGF . 

Proof. Let M be a generator matrix of a ]4,6[ code over 

)( pGF , 5p . Then 
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where )( pGFaij   for each i and ,j ,51  i 21  j . 

Using the equivalence diagram as in Theorem 1.2  above, we 

get that M is equivalent to  

G
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Since 5p , exist nonzero )(,, pGFzyx  such that x,1 ,
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which are dependent. Hence the minimum weight of the code 

generated by G or M is .3 ■ 

 

Next we show that all the 1 error correcting ]4,6[ codes over 

)7(GF are equivalent. 

 
Theorem (3.2) An 1 error correcting ]4,6[  code over 

)7(GF is equivalent to the code with the following generator 

matrix G where 
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Proof. Let M be a generator matrix of a ]4,6[  error-

correcting code C over )7(GF  . Then by our earlier 

discussion in Theorem (2.1), M must be equivalent to 
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where zyx ,,,1 are all nonzero, distinct and belong to 

}6,5,4,3,2{ . Notice that there are 6  permutations of yx,

and z namely, zxyyzxyxzxzyxyz ,,,, and zyx and each 

yields a matrix as follows: 
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Below we show that 2G is equivalent to 1G . 
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Using similar transpositions of rows and columns, one can 

show that the remaining G s are also equivalent to .1G  Notice 

that G 1G . 
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Each of the ten combinations above could yield a generator 

matrix of a ]4,6[ code over )7(GF , namely 
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We will now show that the codes generated by these ten 

matrices are equivalent. Towards that goal we produce the 

transitional diagrams below by applying the equivalence 

operations )4(),3(),2(),1( and )5( , mentioned in the 

Introduction section above. Notice that ir and ic denote the 

thi row and 
thi column respectively, ir and ic denote the 

multiplication of 
thi row and 

thi column respectively, 

),( ji rrswap and ),( ji ccswap denote the permutations of 

thi and 
thj rows and columns respectively. Finaly, 

jii rrr   denotes the addition of a scalar multiple of one 

row, namely jr , to another, namely ir . 
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Thus 3G is equivalent to 27 ,GG and 10G . 
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Thus 3G is equivalent to 541 ,, GGG and 9G . 
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Since 8G is equivalent to 7G and 7G is equivalent to ,3G we 

obtain the equivalence between 8G and 3G .  

Finally, we show that 6G and 8G are equivalent. 
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IV. WEIGHT DISTRIBUTION OF A       LINEAR CODE OVER 

      

We begin with the following theorem [3]. 

Theorem (4.1) Let C be a ],,[ dkn MDS code over 

)(qGF with 1 knd . Then ,10 A ,0iA
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where iA  is the number of code-words of weight i . 

Applying this theorem on a [6,4] code C we obtain, ,10 A
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It is well-known [1] that if C is an MDS code, so is 
C . 

Hence the minimum distance of 
C is 5126  . Then 
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Thus we have the following theorem. 

 

Theorem (4.2). A ]4,6[  error correcting code C over 

)7(GF has the following weight distribution. 

 

 Weight   Number of Words 

0    1  

3        

4        

5        

        

 

 

 

 

 

 

On the other hand, the 2 error correcting ]5,2,6[ code 

C has the following weight distribution. 

 

Weight   Number of Words 

0    1  

5    36  

6    12  
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