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Abstract---- The present study focuses on treating the missing 

values in the split- plot design. Three methods have been used to 

treat the missing values: Coons, Haseman and Gaylor, and 

Rubin method. To make preference among these methods some 

statistical measurements have been used, which are absolute 

error (AE), mean squares error (MSE) and Akaike information 

criterion (AIC). From the practical work it is concluded that:  

In the case of one missing value was obtained the same 

estimates for missing value. As in cases of two and three missing 

values show that the best method for estimating missing values 

is Coons method. 
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I. INTRODUCTION  

 

      In designed experiments sometimes it is so happens that 

the observations on some experimental units are not 

available. For example in an industrial experiment, the 

observations are misplaced or cannot be collected; in a 

medical experiment, patients may with draw from the 

treatment programmer or the experimenter may fail to record 

the results. Similarly in an agricultural experiment the plants 

may be eaten away are animals. 

In all situations the resulting data are called non- orthogonal 

[7]. One of the first papers on the subject of estimating the 

missing yield was published by Allan and Wishart (1930) 

[10]. Yates (1933) showed that by choosing values that 

minimize the residual sum of squares, one can obtain the 

correct least squares estimates of all estimable parameters as 

well as the correct residual sum of squares[1][3].Bartlett 

(1937), Anderson (1946) and Coons (1957) has used the 

analysis of covariance model to analyze the experiments with 

missing data[9]. 

       Rubin (1972) used non- iterative technique to estimate 

missing values and in a way that using least squares and 

make the sum of squares error equal to zero.  

Haseman and Gaylor (1973) described a simple non- iterative 

technique to estimate missing values by solving a set of 

simulations linear equations that can be written directly. 

     Recently Subramani  and Ponnuswamy (1989) have 

discussed the non-iterative least squares estimation of 

missing values in experimental designs and presented  

randomized block designs and latin square designs[7]. Bhatra 

(2013) studied the estimation of m missing observations by 

specifying the positions and by not positions of the missing 

values are presented in case of a randomize block design [1]. 

Three methods have been used to treat the missing values: 

Coons, Haseman and Gaylor, and Rubin method. To make 

preference among these methods some statistical 

measurements have been used, which are absolute error (AE) 

mean square error (MSE) and Akaike information 

criterion (AIC). 

 

II. SPLIT- PLOT DESIGN  

 

     Split –plot designs were originally developed by Fisher 

(1925) for use in agricultural experiments [5].The split -plot 

design usually used because of some limitation in space or to 

facilitate treatment application. The two factors are divided 

into a main plot effect and a sub- plot effect. The precision is 

greater of the sub- plot factor than it is for the main- plot 

factor. If one factor is more important to the researcher, and 

if the experiment can facilitate it, then the sub- plot factor 

should be used for this factor. 

The mathematical model for split- plot design is [11]:  

 

 𝑦𝑖𝑗𝑘   = 𝜇 + 𝛼𝑖 + 𝜌𝑘 + 𝛽𝑗 +  𝛼𝛽 𝑖𝑗 + 𝛿𝑖𝑘 + 𝜀𝑖𝑗𝑘        (1) 

 

𝑖 = 1,2, … . . , 𝑎
𝑗 = 1,2, … . . , 𝑏
𝑘 = 1,2, … . , 𝑟

 

Where: 

𝑦𝑖𝑗𝑘  : The value of any observation 

 𝜇:  General mean 

 𝛼𝑖 :  Effect of main- plot factor (A) 

 𝜌𝑘 :  Effect of block 

 𝛽𝑗 :  Effect of sub- plot factor (B) 

 (𝛼𝛽)𝑖𝑗  : Effect of the interaction between A and B 

 𝛿𝑖𝑘  : Error of main plot 

 𝜀𝑖𝑗𝑘 :  Error of sub plot 

The analysis of variance for

 

split- plot design is: 
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Sum square of total: 

 

 𝑆𝑆𝑇 =    𝑌𝑖𝑗𝑘
2𝑟

𝑘=1
𝑏
𝑗=1

𝑎
𝑖=1 −

𝑌…
2

𝑎𝑏𝑟
                       (2) 

 

 

Sum square of block: 

 

 𝑆𝑆𝑏𝑙𝑜𝑐𝑘 =
 𝑌..𝑘

2

𝑎𝑏
−

𝑌…
2

𝑎𝑏𝑟
                                          (3) 

 

Sum square of factor A (main- plot): 

 

 𝑆𝑆𝐴 =
 𝑌𝑖..

2

𝑏𝑟
−

𝑌…
2

𝑎𝑏𝑟
                                                  (4) 

 

Sum square of error A: 

 

 𝑆𝑆𝐸(𝑎) =
 𝑌𝑖.𝑘

2

𝑏
−

𝑌…
2

𝑎𝑏𝑟
− 𝑆𝑆𝐴 −  𝑆𝑆𝑏𝑙𝑜𝑐𝑘              (5) 

 

Sum square of factor B (sub- plot): 

 

 𝑆𝑆𝐵 =
 𝑌.𝑗 ..

2

𝑎𝑟
−

𝑌…
2

𝑎𝑏𝑟
                                                  (6) 

 

Sum square of interaction effect AB: 

 

 𝑆𝑆𝐴𝐵 =
 𝑌𝑖𝑗 .

2

𝑟
−

𝑌…
2

𝑎𝑏𝑟
− 𝑆𝑆𝐴 −  𝑆𝑆𝐵                       (7) 

  

Sum square of error B: 

 

 𝑆𝑆𝐸(𝑏) = 𝑆𝑆𝑇 − 𝑆𝑆𝑏𝑙𝑜𝑐𝑘 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵 − 𝑆𝑆𝐸(𝑎)   (8) 

 

 Each has an associated degree of freedom. Mean squares are 

defined as sums of squares divided by degrees of freedom, 

the analysis of variance as shown in table(1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE1: ANOVA FOR SPLIT- PLOT DESIGN 

 

(F.Cal) 

 
(M.S.) (S.S.) (d.f.) (S.O.V.) 

)(aMSE

MSblock
Fcal 

)(aMSE

MSA
Fcal 

 

 
𝑆𝑆𝑏𝑙𝑜𝑐𝑘

𝑟 − 1
 

𝑆𝑆𝐴

𝑎 − 1
 

𝑆𝑆𝐸(𝑎)

 𝑎 − 1 (𝑟 − 1)
 

 

𝑆𝑆𝑏𝑙𝑜𝑐𝑘 

𝑆𝑆𝐴 
 

𝑆𝑆𝐸(𝑎) 

 

r-1 

a-1 

 

(a-1)(r-1) 

Blocks 

A 

Error(a)  

)(bMSE

MSB
Fcal 

)(bMSE

MSAB
Fcal 

 

𝑆𝑆𝐵

𝑏 − 1
 

𝑆𝑆𝐴𝐵

 𝑎 − 1  𝑏 − 1 
 

𝑆𝑆𝐸(𝑏)

𝑎 𝑏 − 1 (𝑟 − 1)
 

 

𝑆𝑆𝐵 

𝑆𝑆𝐴𝐵. 
 

𝑆𝑆𝐸(𝑏) 

 

 

 

b-1 

(a-1)(b-1) 

 

a(b-1)(r-1) 

 

 

𝑩 

𝐴𝐵 
 

𝐸𝑟𝑟𝑜𝑟(𝑏) 

 

 𝑆𝑆𝑇   abr-1 Total  

 

III. METHODS OF ESTIMATING MISSING 

VALUES 

 

A. Coons Method 

        Coons (1957) was used analysis of covariance model  to  

analyze  the experiments with missing values .the technique 

employs the computational procedures of a covariance 

analysis using a dummying X covariance as follows: 

In the case of one missing value: 

To estimate of missing value by covariance analysis 

conducting the following steps [9], [5]:  

1) Consider the original data as the dependent 

variable y of the covariance analysis and inset the 

value of zero in the cell which has the missing 

observation. 

2) Define a variable x where: 

 𝑋 = 0       𝑖𝑓      𝑌 ≠ 0 

 𝑋 = −𝑛      𝑖𝑓    𝑌 = 0  
 Where: n is the total number of observation in the 

experiment including the missing value. 

3) Carry out the analysis of covariance. 

4) Compute the estimate of the regression coefficient: 

 

 𝛽 𝐸 =
𝐸𝑋𝑌

𝐸𝑋𝑋
                                                       (9) 

And multiply by n to estimate the missing value: 

 𝑋 = 𝑛𝛽 𝐸                                                       (10) 

     In the case of more than one missing value: 

1) Put 𝑌 = 0 for all missing values. 

2) Define a variable 𝑋𝑚  where: 

 𝑋𝑚 = 0          𝑖𝑓𝑓      𝑌 ≠ 0 

 𝑋𝑚 = −𝑛      𝑖𝑓𝑓      𝑌 = 0  
3) With more than one missing observation a multiple 

covariance analysis is required. 
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The computations required to obtain the sum of 

products  𝑋𝑚𝑋𝑛  and  𝑋𝑚𝑌, since each 𝑋𝑚  is 

associated with a single missing value and therefore 

has only one non-zero cell. 

In computing  𝑋𝑚𝑋𝑛 , two situations may be 

encountered. 

a)  The two missing values associated with 𝑋𝑚  

and 𝑋𝑛  occur in the same level of the given 

source of variation. 

  𝑋𝑚𝑋𝑛 = 𝑛(Degree of freedom for the given 

source of variation) 

b) The two missing values occur in the different 

levels of the given source of variation. 

 𝑋𝑚𝑋𝑛 = −𝑛(Degree of freedom for the given 

source of variation) 

4)  Compute the estimates of the regression 

coefficients  ( 𝛽 1𝐸  , 𝛽 2𝐸  ,…, 𝛽 𝑚𝐸  )  by solving m 

equations: 

 

   

𝐸𝑋1𝑋1
𝛽 1𝐸 + 𝐸𝑋1𝑋2

𝛽 2𝐸 + ⋯+ 𝐸𝑋1𝑋𝑚𝛽
 
𝑚𝐸 = 𝐸𝑋1𝑌   

.

.

.
𝐸𝑋𝑚𝑋1

𝛽 1𝐸 + 𝐸𝑋𝑚𝑋2
𝛽 2𝐸 + ⋯+ 𝐸𝑋𝑚𝑋𝑚𝛽

 
𝑚𝐸 = 𝐸𝑋𝑚𝑌   

 
 

 
 

    (11) 

 

We estimate the missing values by the following formula: 

 

𝑋𝑖 = 𝑛𝛽 𝑖𝐸     , 𝑖 = 1,2,3, … ,𝑚                                  (12)  

 

 

B. Haseman and Gaylar Method 

 

     Haseman and Gaylor (1973) suggested a non- iterative 

technique to estimate m missing values by solving m of 

simulations linear equations, the formula as follows[6]: 

 

   𝑟 − 1  𝑏 − 1 𝑌𝑕 +  𝑌𝑔
𝑚
𝑔≠𝑕  𝜓𝑔𝑕(𝐴3 − 𝑟𝜓𝑔𝑕 𝐴1 −

𝑏𝜓𝑔𝑕 𝐴2 =  𝑟𝑇𝑕 𝐴1 + 𝑏𝑇𝑕 𝐴2 − 𝑇𝑕(𝐴3)           (13) 

 

Where: 

 

 𝑟 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 
 𝑏 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑎𝑐𝑡𝑜𝑟. 
 

𝜓𝑔𝑕 𝐴1 =  

1, 𝐼𝑓𝑌𝑕  𝑎𝑛𝑑 𝑌𝑔  𝑎𝑟𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑙𝑒𝑣𝑒𝑙𝑠 

𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟 𝐵, 𝑏𝑢𝑡 𝑓𝑟𝑜𝑚 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 
𝑓𝑎𝑐𝑡𝑜𝑟 𝐴 𝑎𝑛𝑑 𝑖𝑛 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑏𝑙𝑜𝑐𝑘.

  0, Otherwise.                                                   

  

 

 

𝜓𝑔𝑕 𝐴2 =  

1, 𝐼𝑓𝑌𝑕  𝑎𝑛𝑑 𝑌𝑔𝑎𝑟𝑒 𝑜𝑓a particular

 level for the factors A and B.
0, 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.                                   

  

 

 

 𝜓𝑔𝑕 𝐴3 =  

1, 𝐼𝑓𝑌𝑕  𝑎𝑛𝑑 𝑌𝑔  𝑎𝑟𝑒 𝑜𝑓𝑡𝑕𝑒 𝑠𝑎𝑚𝑒          

𝑙𝑒𝑣𝑒𝑙 𝑓𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 𝐴.                                
0, 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.                                             

  

 

𝑇𝑕 𝐴1 = Total for main unit containing the missing value. 
 

 

 𝑇𝑕 𝐴2 = Total of all sub units that receive the treatment 

 combination 𝑎𝑖𝑏𝑗  .                              

 

 𝑇𝑕 𝐴3 =  Total of all observations that receive 

 the ith level of A.                             
 

C. Rubin Method 

      In (1972) Rubin used non- iterative technique to estimate 

missing values and in a way that using least squares and 

make the sum of squares error equal to zero [2]. 

 

 X = −PR−1                                                            (14) 

 

Where: 

 𝑃, 𝑋 = Vector (1 × 𝑚). 
𝑅 = 𝑁𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥  𝑚 × 𝑚 .  
 

𝑒𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 −
𝑌𝑖𝑗 .

𝑏
−

𝑌.𝑗𝑘

𝑟
+

𝑌.𝑗 .

𝑏𝑟
                                    (15) 

 

𝑟𝑘𝑘 = 1 −
1

𝑏
−

1

𝑟
+

1

𝑏𝑟
                                                (16) 

 

 𝑟𝑘𝑘 =
1

𝑏𝑟
                                                                   (17) 

 

 

IV. STATISTICAL MEASUREMENTS 

     After estimating missing values, the missing values are 

replaced by the estimated values and the usual computations 

procedures of the analysis of variance is applied to the 

augmented data set with some modifications subtract one 

from the error degree of freedom for each missing value.  

Some statistical measurements have been used, which are: 

mean squares error (MSE) is calculated as shown in equation 

(8) and table (1).  

And absolute error (AE) is the absolute of the difference 

between estimated value and real value, and calculated as 

follows:   

 

  𝐴𝐸 =  𝑦𝑖 − 𝑦𝑖                                                        (18) 

Where:   

 𝑦𝑖 : Real value. 

 𝑦𝑖  : Estimated value. 
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And Akaike information criterion (AIC) is a measure of the 

relative quality of statistical methods for a given set of data, 

is calculated as follows:   

 

)1(2ln 2  knAIC                                  (19)                                                    

Where:   
2 : Mean square of error.  

 𝑘 : Number of variables in the model. 

 𝑛 : Total number of observations.  

 

 

V. THE PRACTICAL PART 

 

A. Data Description 

      Data on height (cm) of eucalyptus plants from a field trial 

under split- plot design with two treatments, three blocks 

given in (Jayaraman). Let A denoted the main- plot factor 

(pit size) and B, the sub plot factor (fertilizer treatments), 

then the resulting data is as follows [8]: 

Missing values in the experiment are not missing originally, 

but I assumed it was missing. 

 

 
TABLE 2: DATA EXPERIMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Before analyzing the data, should be verified from the 

distribution of the data. To test the normal property was used 

the histogram, as shown in figure (1) as follows. 

 

 

 

 

 

 

 

 
 

FIGURE 1: HISTOGRAM FOR DATA  

 

70605040302010

4

3

2

1

0

y

Fr
e

q
u

e
n

c
y

Mean 38.74

StDev 15.31

N 24

Histogram of y
Normal 

 
 

     The above chart in figure (1), explained that the data 

experiment distributed normal distribution, and to test the 

homogeneity the hypothesis is given by: 

 

 𝐻0: 𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙                           
𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙𝑒         

        (20) 

 

      The value of Bartlett's test equal to (2.57) with p- value 

(0.92), for test the p- value is greater than the value of level 

of significant ( 05.0 ), this means cannot reject the null 

hypothesis and there is no problem of homogeneity of 

variance. 

Carry out the analysis of variance which is given in table (3): 
 

 

 

TABLE 3: ANOVA FOR DATA EXPERERIMENT. 

 

 

 

       Three methods have been used to treat the missing 

values: Coons, Haseman and Gaylor, and Rubin method. To 

make preference among these methods some statistical 

measurements have been used, which are absolute error 

(AE), mean squares error (MSE) and Akaike information 

criterion (AIC). 

 

 

 

 

A 

 

B 

Blocks 

I                 II                 III 

Total 

𝒂𝟏 

 

 𝑏1 

𝑏2 

𝑏3 

𝑏4 

  

      25.38           61.35          37.00 

      46.56           66.73          28.00 

      66.22           35.70          35.7 

      30.68          58.96           21.58 

 

 

123.73 

141.29 

137.62 

111.22 

Total    168.84         222.74         122.28   513.86 

𝒂𝟐 

 

 𝑏1 

𝑏2 

𝑏3 

𝑏4 

  

      19.26            55.8          57.6 

      19.96            33.96        31.7 

      22.22            58.4          51.96 

     16.82             45.6          26.55 

 

   

 132.66 

85.62 

132.6 

88.97 

 

Total 

 78.26             193.76       167.83   439.85 

 

247.1              416.5        290.11 

   

 953.71 

(F.Tab.) 

𝜶 =
𝟎. 𝟎𝟓 

 

(F.Cal

) 

 

(M.S.) 
 

(S.S.) 

 

(d.f.) 

 

(S.O.V.) 

 
 

4.75 

 
 

0.39 

 

969.25 

228.35 

580.67 

1938.5 

228.35 

1161.34 

2 

1 

2 

 

Blocks 

A 

Error(a)  

 

3.49 

3.49 

 

1.01 

0.81 

 

162.61 

129.40 

160.68 

 

 

487.82 

388.21 

1928.15 

 

 

3 

3 

12 

 

𝑩 

𝐴𝐵 

𝐸𝑟𝑟𝑜𝑟(𝑏) 

 

  23                    6132.37 Total  
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B. Estimating Missing Value 

 

Case 1: One Missing Value 

      In the table (2) assume that 𝑦122  is the observation. Let 

𝑋1be the corresponding observed value but is unknown. Now 

we estimate the missing value 𝑋1 based on the following 

methods: 

 

1. Coons Method 

     Let n equal the total number of observations in the 
experiment including the missing one. Consider the original 
data as the depended variable Y of the covariance analysis 
and insert the value of zero in the cell which has the missing 
observation. Set up a concomitant variable X which takes 
the value of –n in the cell corresponding to the substituted 
zero value and the value of zero elsewhere.  

TABLE 4: ANCOVA FOR CACE 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    By using equation (9), we get 

 

   𝛽 𝐸 =
𝐸𝑋𝑌

𝐸𝑋𝑋
=  2.216 

   A missing value is estimated by equation (10): 

   

 𝑋 = 24 2.216 = 53.19  

 

2. Haseman and Gaylar Method 

 

By equation (13), we get                                         

     3 − 1  4 − 1 𝑋 = 3 156.01 + 4 74.56 − 447.13  

     𝑋 = 53.19 

 

3. Rubin Method 

 

By equation (16) and (17) we get  

 

 𝑃 = 0 −
156.01

4
−

74.56

3
+

447.13

12
= −26.595 

 𝒓 = 1 −
1

4
−

1

3
+

1

12
= 0.5 

 By equation (14), we get  

 𝑋 =
−(−26.595)

0.5
= 53.19 

The usual analysis of variance is calculated as show in table 

(5). 

 
TABLE 5: THE ANALYSIS AFTER ESTIMATING MISSING VALUE  

 

 

Methods 

 

Estimate of 

missing value 

 

AE 

 

MSE 

 

AIC 

 

Coons 

 

53.19 

 

 

8.16 

 

166.95 

 

132.82 

 

H&G 

 

53.19 

 

 

8.16 

 

166.95 

 

132.82 

 

Rubin 

 

53.19 

 

8.16 

 

 

166.95 

 

132.82 

 

      By using the above mentioned methods the missing 

values were estimated to compression among these methods 

by relating on AE, MSE and AIC of the estimated value in 

order to ascertain its proximity to the real value.  

For one missing value all of the three methods indicated 

above produce the same result.   

 

Case 2: Two Missing Values   

     That 𝑦122   and   𝑦213  are the observations. Let 𝑋1  and 𝑋2  
be the corresponding observed values but are unknown. Now 

we estimate the missing values  𝑋1 and 𝑋2based on the 

following methods: 

 

1. Coons Method 

       A multiple covariance analysis is used to handle the 

problem of two missing values. Assign the value of zero to 

the two missing values (𝑦122= 0) and (𝑦213= 0). Set up two 

concomitant variables 𝑋1 and 𝑋2for each missing values. 

Each of 𝑋1 = 0 in all cells except in that cell corresponding 

to   , in that one cell 𝑋1 = −𝑛. Similarly, each of  𝑋2 = 0 in 

all 𝑋2 = −𝑛. The computation of a multiple covariance is 

given in table (6). 

 
TABLE 6: ANCOVA WITH TWO MISSING VALUES 

 

S.O.V d.f  𝑋1𝑌  𝑋2𝑌  𝑋1𝑋2  𝑋𝑚
2  

 

Block 

A 

E(a) 

 

2 

1 

2 

 

-219.93 

-64.88 

178.13 

 

131.84 

64.88 

-28.73 

 

-24 

-24 

24 

 

48 

24 

48 

 

B 

AB 

E(b) 

 

3 

3 

12 

 

188.66 

109.12 

638.28 

 

34.22 

129.8 

497.36 

 

-24 

24 

0 

 

72 

72 

288 

Total 23 829.38 829.38 -24 552 

 

By using equation (11), we get 

 288 𝛽 1𝐸 + 0𝛽 2𝐸 = 638.28 

 0 𝛽 1𝐸 + 288 𝛽 2𝐸 = 497.36 

S.O.V d.f  𝑋𝑌  𝑋2 

Block 

A 

E(a) 

 

2 

1 

2 

-162.33 

-7.28 

120.53 

48 

24 

48 

B 

AB 

E(b) 

3 

3 

12 

240.26 

200.64 

638.28 

72 

72 

288 

Total 23  552 
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𝛽 1
𝛽 2
 =  

288 0
0 288

 
−1

 
638.28
497.36

  

 

 
𝛽 1
𝛽 2
 =  

2.215
1.726

  

 

  
𝛽 1
𝛽 2
 =  

2.215
1.726

  

Missing values are estimated by equation (12): 

 

  
𝑋1

𝑋2
 =  

53.16
41.424

  

 

2. Haseman and Gaylar Method 

 

By equation (13), we get                    

   6𝑋1 + 𝑋2 = 319.14 

  𝑋1 + 6𝑋2 = 248.68 

 

  
𝑋1

𝑋2
 =  

6 1
1 6

 
−1

 
319.14
248.68

  

 

   
𝑋1

𝑋2
 =  

47.61
33.51

                                                                                                                                                 

     

3. Rubin Method 

 

By equation (16) and (17), we get  

 

 𝑝1 = 0 −
156.01

4
−

74.56

3
+

447.13

12
= −26.595 

 𝑝2 = 0 −
110.23

4
−

75.06

3
+

382.25

12
= −20.72 

 

 𝒓𝒌𝒌 = 1 −
1

4
−

1

3
+

1

12
= 0.5 

 𝒓𝒌𝒌 =
1

12
= 0.083 

 

 𝑝 = (−26.595 −20.72) 

 

 𝑅 =  
0.5 0.083

0.083 0.5
  

Missing values are estimated by equation (14): 

 

  
𝑋1

𝑋2
 =  

47.62
33.53

    

 

 

 

 

 

 

 

 

 

 

TABLE 7: THE ANALYSIS AFTER ESTIMATING TWO MISSING 

VALUES 

 

 

Methods 

 

Estimate of 

missing value 

 

AE 

 

MSE 

 

AIC 

 

 

 

Coons 

 

53.16 

 

41.42 

8.19 

 

16.18 

 

170.59 

 

133.340 

 

H&G 

 

47.61 

 

33.51 

13.74 

 

24.09 

 

175.29 

 

133.995 

 

Rubin 

 

47.62 

 

33.53 

13.73 

 

24.07 

 

175.27 

 

133.992 

 

  

     The analysis in table (7) showed that the (MSE) and 

(AIC) of the Coons method less than the (MSE) and (AIC) of 

the H&G and the Rubin method, and estimated values of 

Coons method are closer to the real values. 

 

Case 3: Three Missing Values  

      Assume that  𝑦122  , 𝑦213  and  𝑦231  are the observations. 

Let  𝑋1 , 𝑋2 and 𝑋3be the corresponding observed values but 

are unknown. 

 We estimate the missing values 𝑋1 , 𝑋2  and 𝑋3 based on the 

following methods: 

 

1. Coons Method  

      A multiple covariance analysis is used to handle the 

problem of two missing values. Assign the value of zero to 

the two missing values (𝑦122= 0) ,  (𝑦213= 0) and (𝑦231). Set 

up three concomitant variables 𝑋1 , 𝑋2and  𝑋3 for each 

missing values. The computation of a multiple covariance is 

given in table (8). 

 
TABLE 8: ANCOVA WITH THREE MISSING VALUES 

 
S.O.V  𝑋1𝑌  𝑋2𝑌  𝑋3𝑌  𝑋1𝑋2  𝑋1𝑋3  𝑋2𝑋3  𝑋𝑚

2  

 

Block 

A 

E(a) 

 

242.15  

-87.1 

200.35 

 

109.63 

87.1 

-50.95 

 

132.52 

87.1 

251.3   

 

-24 

-24 

24 

 

-24 

-24 

24 

 

-24 

-24 

24 

 

48 

24 

48 

 

B 

AB 

E(b) 

 

166.44 

131.34 

638.28 

 

12 

107.58 

541.8 

 

-184.84 

21.86 

499.22 

 

-24 

24 

0 

 

-24 

24 

0 

 

-24 

24 

0 

 

72 

72 

288 

Total 807.16 807.16 807.16 -24 -24 -24 552 

 

By using equation (11): 

 

 288 𝛽 1𝐸 + 0 + 0 = 638.28 

 0 + 288 𝛽 2𝐸 + 0 = 541.8 

 0 + 0 + 288 𝛽 3𝐸 = 499.22 
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𝛽 1
𝛽 2
𝛽 3

 =  
288 0 0

0 288 0
0 0 288

 

−1

 
638.28
541.8

499.22
  

 

  

𝛽 1
𝛽 2
𝛽 3

 =  
2.216
1.881
1.733

  

 

Missing values are estimated by equation (12): 

 

  
𝑋1

𝑋2

𝑋3

 =  
53.19
45.15
41.60

  

 

2. Haseman and Gaylar Method 

 

By equation (13), we get      

                           

  6𝑋1 + 𝑋2 + 𝑋3 = 319.14   
  𝑋1 + 6𝑋2 + 𝑋3 = 270.90 

  𝑋1 + 𝑋2 + 6𝑋3 = 249.61 

 

  
𝑋1

𝑋2

𝑋3

 =  
6 1 1
1 6 1
1 1 6

 

−1

 
319.14
270.90
249.61

  

 

  
𝑋1

𝑋2

𝑋3

 =  
42.84
33.19
28.93

  

 

3. Rubin Method 

By equation (16) and (17), we get  

 

 𝑝1 = 0 −
156.01

4
−

74.56

3
+

447.13

12
= −26.595 

 𝑝2 = 0 −
110.23

4
−

75.06

3
+

360.03

12
= −22.575 

 

  𝑝3 = 0 −
56.04

4
−

110.38

3
+

360.03

12
= −20.8 

 

 𝒓𝒌𝒌 = 1 −
1

4
−

1

3
+

1

12
= 0.5 

 

 𝒓𝒌𝒌 =
1

12
= 0.083 

 

 𝑝 = (−26.595 −22.575 −20.8) 

 

 𝑅 =  
0.5 0.083 0.083

0.5 0.083
0.5

  

Missing values are estimated by equation (14): 

 

  
𝑋1

𝑋2

𝑋3

 =  
42.87
33.23
28.97

  

 

TABLE 9: THE ANALYSIS AFTER ESTIMATING THREE MISSING 

VALUES 

 

 

Methods 

 

Estimates of 

missing values 

 

AE 

 

MSE 

 

AIC 

 

Coons 

53.19 

45.15 

41.60 

8.16 

12.45 

19.38 

 

185.67 

 

135.375 

 

H&G 

42.84 

33.19 

28.93 

18.51 

24.41 

6.71 

 

191.46 

 

136.112 

 

Rubin 

42.87 

33.23 

28.97 

18.48 

24.37 

6.75 

 

191.36 

 

136.099 

  

       The analysis in table (9) showed that the (MSE) and 

(AIC) of the Coons method less than the (MSE) and (AIC) of 

the H&G and the Rubin method, and estimated values of 

Coons method are closer to the real values. 

 

VI. CONCLUSIONS 

 

      The results of the study of estimating missing values are 

summarized and tabulated in tables (5, 7, and 9)) which 

contain the MSE, AE and AIC, we have observed that:  

 

1.  In the case of one missing value was obtained the same 

estimates for missing value.  

 

2. The results of application in cases of two and three missing 

values show that the best method for estimating missing 

values is Coons method, because it is minimum mean squares 

error, minimum absolute mean square error and minimum 

Akiakes information criterion.  

3.  Increase the number of missing values leads to increased 

difference between estimated values given by different 

methods. 
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