On the Chromatic Spectrum of Uniform C-Hypergraphs

Jie Xue, Ping Zhao*
School of Sciences
Linyi University
Linyi, Shandong, P. R. China
*Email: zhaopingly [AT] 163.com

Jie Zhang, Zirun Liu
School of Sciences
Linyi University
Linyi, Shandong, P. R. China

Abstract—Motivated by solving the problem proposed by Král, (Electronic J. Combin. 11#R19, 2004), we construct a family of uniform C-hypergraphs whose chromatic spectrum is a linear combination of the Stirling numbers of the second kind.

Keywords- C-hypergraph; chromatic spectrum; Stirling number of the second kind

I. INTRODUCTION

A mixed hypergraph on a finite set \(X \) is a triple \(H=(X,C,D) \), where \(C \) and \(D \) are families of subsets of \(X \). The members of \(C \) and \(D \) are called \(C \)-edges and \(D \)-edges, respectively. A mixed hypergraph with \(D=\emptyset \), denoted by \(H=(X,C) \), is called a \(C \)-hypergraph, and a hypergraph with \(C=\emptyset \), denoted by \(H=(X,D) \), is called a \(D \)-hypergraph. A mixed hypergraph is \(t \)-uniform if every edge contains \(t \) vertices.

A proper \(k \)-coloring of a mixed hypergraph \(H \) is a mapping from \(X \) into a set of \(k \) colors such that each \(C \)-edge has two vertices with a Common color and each \(D \)-edge has two vertices with \(\emptyset \) colors. A coloring may also be viewed as a partition (feasible partition) of \(X \), where the color classes (partition classes) are the sets of vertices assigned to the same color. A strict \(k \)-coloring is a proper \(k \)-coloring with \(k \) nonempty color classes, and a mixed hypergraph is \(k \)-colorable if it has a strict \(k \)-coloring. The maximum (resp. minimum) number of the colors in a strict coloring of \(H=(X,C,D) \) is the upper chromatic number (resp. lower chromatic number) of \(H \), denoted by \(\chi^ U(H) \) (resp. \(\chi^ L(H) \)).

The set of all the values \(k \) such that \(H \) has a strict \(k \)-coloring is called the feasible set of \(H \), denoted by \(F(H) \). For each \(k \), let \(r_k \) denote the number of feasible partitions of the vertex set. The vector \(R(H)=(r_1,r_2,\ldots,r_t) \) is called the chromatic spectrum of \(H \), where \(t \) is the upper chromatic number of \(H \). The study of the colorings of mixed hypergraphs has made a lot of progress since its inception [5]. For more information, see [4,6].

It is readily seen that \(H \) is a \(C \)-hypergraph if and only if \(1 \in F(H) \). Moreover, if \(r_i \neq 0 \), then \(r_i = 1 \). For the case \(1 \notin F(H) \), Jiang et al. [3] proved that for any finite set \(S \) of integers greater than 1, there exists a mixed hypergraph \(H \) such that \(F(H)=S \). Král [2] strengthened this result by showing that prescribing any positive integer \(r_i \), there exists a mixed hypergraph which has precisely \(r_i \) strict \(k \)-colorings for all \(k \in S \).

On the chromatic spectrum of \(C \)-hypergraphs

Let \(S(n,k) \) be the Stirling number of the second kind, i.e., the number of ways to partition a set of \(n \) elements into \(k \) nonempty subsets. Assume that \(H=(X,C) \) be a \(t \)-uniform \(C \)-hypergraph and \(e=(C_1,C_2,\ldots,C_t) \) a strict \(n \)-coloring of \(H \). Then for any \(t \leq k \leq n \), we can get \(S(n,k) \) strict \(k \)-colorings of \(H \) by union some color classes of \(e \), i.e., \(r_k \geq S(n,k) \). In this sense, the \(n \)-dimensional vector with the \(k \)-th entry being \(S(n,k) \) for \(t \leq k \leq n \) is a lower bound on the chromatic spectrum of \(C \)-hypergraphs with upper chromatic number \(n \). Zhang et al. [7] proved that this lower bound can be attained for 3-uniform \(C \)-hypergraphs. In this paper, we generalize it to \(t \)-uniform \(C \)-hypergraphs and get the following results.

Theorem 1.1 Let \(n_1 > \cdots > n_t \geq t \geq 3 \) be integers. Then for any positive integers \(m_1,\ldots,m_t \) and \(t_1 := m_0S(n_1,k)+m_1S(n_2,k)+\cdots+m_tS(n_t,k) \), \(k=t,\ldots,n_1 \), there exists a \(t \)-uniform \(C \)-hypergraph \(H \) with upper chromatic number \(n_1 \) and \(r_k = t_k \) for each \(k \in \{t,\ldots,n_1\} \), where \(r_k \) is the \(k \)-th entry of the chromatic spectrum of \(H \).
Theorem 1.2 For any integers $n \geq t \geq 3$, there exists a t-uniform C-hypergraph H satisfies that $\chi (H) = n$ and $R(H) = (r_1, r_2, \ldots, r_s, S_1(n, t), \ldots, S_t(n, n))$.

II. PROOF OF THE THEOREMS

For any positive integer n, let $[n]$ denote the set $\{1, \ldots, n\}$.

We first give the basic construction of t-uniform C-hypergraphs. For integers $s \geq 2$ and $n_1 \geq n_2 \geq \cdots \geq n_t \geq t$, let

\[
X_{n_1, \ldots, n_t} = \{(x_{11}, x_{12}, \ldots, x_{1s}) \mid x_{1i} \in [n_i], i \in [s] \},
\]
\[
C_{n_1, \ldots, n_t} = \{[\alpha_1, \ldots, \alpha_t] \mid \alpha_i \in X_{n_1, \ldots, n_t}, i \in [t] \}
\]

where $[\alpha_1, \ldots, \alpha_t] = (\alpha_{i1}, \ldots, \alpha_{it})$, and α_{ij} is the j-th component of α_i.

Moreover, for any $k \geq t$, we can get $S(n, k)$ strict k-colorings of H_{n_1, \ldots, n_t} from C_{n_1, \ldots, n_t}. Hence, H_{n_1, \ldots, n_t} has at least $S(n, k) + \cdots + S(n, k)$ strict k-colorings. In the following, we shall prove that H_{n_1, \ldots, n_t} has no other strict k-colorings, that is to say, $r_k = S(n, k) + \cdots + S(n, k)$ for every $k \leq n_1$.

Let $k \in \{1, \ldots, n_1\}$, $i \in [s]$ and $c = \{C_1, \ldots, C_k\}$ be one of the $S(n, k)$ strict k-colorings of H_{n_1, \ldots, n_t} getting from C_{n_1, \ldots, n_t}. Note that for each $j \in [n_i]$, there exists an integer in $[k]$, say l_{ij}, such that $X_{ij} \subseteq C_{l_{ij}}$. It suffices to prove that for any strict k-coloring $c = \{C_1, \ldots, C_k\}$ of H_{n_1, \ldots, n_t}, there exists an $i \in [s]$ such that $|c(X_{ij})| = 1$ holds for each $j \in [n_i]$.

Lemma 2.1 Let $c = \{C_1, \ldots, C_k\}$ be a strict k-coloring of H_{n_1, \ldots, n_t} with $k \geq t$. For each $i \in [s]$, if $|c(X_{ij})| = 1$ for some $j \in [n_i]$, then for each $h \in [n_i]$, $|c(X_{ih})| = 1$.

Proof Without loss of generality, suppose $X_{i1} \subseteq C_1$.

We claim that for each $j \in [n_i] \setminus \{i\}$, there exists an integer in $[k] \setminus \{i\}$, say l_j, such that $X_{ij} \subseteq C_{l_j} \cup C_i$. Suppose for a contradiction that $X_{ij} \cap C_i \neq \emptyset$ and $X_{ij} \cap C_j \neq \emptyset$ for some $j \in [n_i] \setminus \{i\}$ and $p, q \in [k] \setminus \{i\}$ with $p \neq q$. Without loss of generality, suppose $p = 2, q = 3$. Pick $(j_1, j_2, \ldots, j_t) \in C_i$ and $\alpha_i \in C_i$ for each $h \in \{4, \ldots, t\}$. Note that $(1, i_2, \ldots, i_t) \in C_i$. Then $(1, i_2, \ldots, i_t), (j_1, i_2, \ldots, i_t), (j, j_1, \ldots, j_t), \alpha_i, \ldots, \alpha_t$ is an edge and is polychromatic, a contradiction. Hence, our claim is valid.

Suppose $X_{i1} \subseteq C_1 \cup C_p$ and $X_{i1} \cap C_j \neq \emptyset, X_{i1} \cap C_p \neq \emptyset$ for some $a \in [n_i \setminus \{i\}] \setminus \{j\}$ and $p \in [k] \setminus \{i\}$. Without loss of generality, suppose $p = 2$ and pick $(a,i_2, \ldots, i_t) \in C_1 \cup (a, j_2, \ldots, j_t) \in C_2$. Note that $k \geq t$. Assume that $X_{i1} \subseteq C_1 \cup C_j$ and $X_{i1} \cap C_p \neq \emptyset$ where $q \in [n_i \setminus \{a, j\}]$. Pick $\alpha_j \in C_j, h \in \{4, \ldots, t\}$. If $(q, j_2, \ldots, j_t) \in C_j$, then the edge $(q, i_2, \ldots, i_t), (a, j_2, \ldots, j_t), (j_1, j_2, \ldots, j_t), \alpha_j, \ldots, \alpha_t$ is polychromatic, a contradiction; or the edge $(q, i_2, \ldots, i_t), (a, j_2, \ldots, j_t), (q, j_1, \ldots, j_t), \alpha_j, \ldots, \alpha_t$ is polychromatic if $(q, j_1, \ldots, j_t) \in C_j$, also a contradiction. Hence, $(a, i_2, \ldots, i_t), (q, j_1, \ldots, j_t), (q, j_2, \ldots, j_t), \alpha_j, \ldots, \alpha_t$ is polychromatic if $p \in C_j$; or the edge $(a, i_2, \ldots, i_t), (q, j_1, \ldots, j_t), (q, k_2, \ldots, k_t), \beta, \alpha_j, \ldots, \alpha_t$ is polychromatic if $p \notin C_j$, a contradiction. Therefore, for each $h \in [n_i \setminus \{a, j\}], |c(X_{ih})| = 1$, as desired.

In the following, we shall prove that under any strict coloring of H_{n_1, \ldots, n_t} with at least t colors, there exists a X_{ij} which is contained in one color class.

Lemma 2.2 Let $c = \{C_1, C_2, \ldots, C_t\}$ be a strict t-coloring of H_{n_1, \ldots, n_t} with $k \geq t$. Then there exist integers $i \in [s]$ and $j \in [n_i]$ such that $|c(X_{ij})| = 1$.

Proof We prove it by induction on s. Let $s = 2$. Suppose for a contradiction that there exist $i \in [n_1]$ and $j \in [n_i]$ such that $X_{ij} \subseteq C_i$ and $X_{ij} \subseteq C_j$ for every $i \in [k]$. Without loss of generality, suppose $i = j = 1$. $(1, l_1) \in C_1, (1, l_2) \in C_2, (a_1) \notin C_1$. Pick $\alpha_{a_1} \in C_1, 3 \leq h \leq t - 1$. Since $(\alpha_1, (1, l_2), (a_1), \alpha_{a_1}, \ldots, \alpha_{a_1})$ is an edge, $(a_1) \in C_1 \cup \cdots \cup C_{a_1}$. Pick $(p, q) \in C_1$. Assume that $(a_1) \in C_1$. Then since $(\alpha_1, (1, l_2), (a_1), \alpha_{a_1}, \ldots, \alpha_{a_1}) \notin C_1$ and $(\alpha_1, (1, l_2), (a_1), \alpha_{a_1}, \ldots, \alpha_{a_1})$ are edges, one gets that $(1, q) \in C_1$ for some $h \in [t - 1] \setminus \{2\}$. If $h = 1$, then the edge $(\alpha_1, (1, l_2), (a_1), \alpha_{a_1}, \ldots, \alpha_{a_1})$ is polychromatic; if $h \neq 1$, then the edge $(\alpha_1, (1, l_2), (a_1), \alpha_{a_1}, \ldots, \alpha_{a_1})$ is polychromatic, a contradiction. Assume that $(a_1) \in C_1$ for some $h \in \{3, \ldots, t - 1\}$. Then the edge $(\alpha_1, (1, l_2), (a_1), \alpha_{a_1}, \ldots, \alpha_{a_1}, (p, q))$ is polychromatic, a contradiction. It follows that the conclusion holds.
is true for the case of \(s = 2 \). Assume that the conclusion is also true for the case of \(s - 1 \).

Let \(X' = (x_1, x_2, x_3, \ldots, x_n) \mid \forall x_i \in [n], x_j \in [s]\{1]\) \}. Then \(\phi: X' \rightarrow X_{n-s-n}, (x_1, x_2, x_3, \ldots, x_n) \mapsto (x_1, x_2, \ldots, x_n) \) is an isomorphism from \(H' = H_{n-s-n}[X'] \) to \(H_{n-s-n} \).

Note that the restriction of any strict coloring of \(H_{n-s-n} \) on \(X' \) corresponds to a strict \(k_i \)-coloring of \(H_{n-s-n} \). We focus on the colors of the vertices of \(X' \) and get the following three possible cases.

Case 1 \(k_i = 1 \).

That is to say \(X' \subseteq C_i \) for some \(h \in [k_i] \). Without loss of generality, suppose \(X' \subseteq C_i \). Pick \(a_1 = (a_1, a_2, \ldots, a_n) \in C_i \) for each \(i \in [r]\{1\} \). If there exist two distinct integers in \([r]\{1\} \), say \(p, q \), such that \(a_{pq} = a_{pq} \), then

\[
\{(a_{12}, a_{22}, a_{32}, \ldots, a_{n2}, a_1) \mid i \in [r]\{1, j\}\}
\]

is an edge and is polychromatic, a contradiction. Hence, \(a_{pq} \neq a_{pq} \) if \(p \neq q \). For each \(j \in [r]\{1, 2\} \) from the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid j \in [1, j]\},
\]

we have \((a_{12}, a_{22}, \ldots, a_{n2}) \in C_j \). Then from the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [r]\{1\}\}
\]

we have \((a_{12}, a_{22}, \ldots, a_{n2}) \in C_2 \). For each \(\alpha = (a_1, x_2, \ldots, x_n) \in X_{1+i} \), from the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid j \in [1, 2, j]\},
\]

we have \(\alpha \in C_j \) for all \(j \in [r]\{1, 2\} \). Then \(\alpha \in C_2 \) since

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [r]\{1, 2\}\}
\]

is an edge. Therefore, \(X_{1+i} \subseteq C_2 \) as desired.

Case 2 \(2 \leq k_i \leq t - 1 \).

Without loss of generality, suppose \(X' \subseteq C_1 \cup \ldots \cup C_t \). \(X' \cap C_i \neq \emptyset \) for all \(i \in [k_i] \). Pick \(a_i = (a_{i1}, a_{i2}, a_{i3}, \ldots, a_{in}) \in C_i \) for \(i = 1, \ldots, k_i \) and \(\beta_i = (b_{i1}, \ldots, b_{in}) \in C_i \), \(j = k_i + 1, \ldots, t \). Then

\[
(b_2, b_2, b_3, \ldots, b_n) \in C_1 \cup \ldots \cup C_t
\]

for all \(j \in [r]\{k_i\} \).

Case 2.1 \((b_2, b_2, b_3, \ldots, b_n) \in C_1 \). If \(a_{pq} = b_{pq} \) for some \(p \in [k_i]\{1\} \) and \(q \in [r]\{k_i\} \), then

\[
\{(b_1, b_2, b_2, b_3, \ldots, b_n) \mid i \in [k_i]\{1\}, j \in [r]\{k_i\}\}
\]

is an edge and is polychromatic, a contradiction. Hence, \(a_{pq} \neq b_{pq} \) for all \(i \in [k_i]\{1\} \) and \(j \in [r]\{k_i\} \).

For each \(p \in [k_i]\{2\} \), since

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{p\}, j \in [r]\{k_i\}\}
\]

is an edge, \((a_{12}, a_{22}, \ldots, a_{n2}) \notin C_p \); and for each \(q \in [r\{1\}\{k_i\} \), from the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

we get that \((a_{12}, a_{22}, \ldots, a_{n2}) \notin C_q \). Then the edges

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

and

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

imply that \((a_{12}, a_{22}, \ldots, a_{n2}) \in C_i \). Pick \(\eta = (a_{12}, \ldots, x_n) \in X_{1+i} \). Since

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

is an edge, \((a_{12}, a_{22}, \ldots, a_{n2}) \in C_p \) for all \(p \in [k_i]\{1\} \); since

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

is an edge, \(\eta \notin C_q \) for each \(q \in [r]\{k_i\} \). Then the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1, l\}, j \in [r]\{k_i\} \}
\]

implies that \(\eta \notin C_i \). Therefore, \(X_{1+i} \subseteq C_2 \) as desired.

Case 2.2 \((b_2, b_2, b_3, \ldots, b_n) \in C_1 \) for some \(h \in [k_i]\{1\} \). If \(a_{pq} = b_{pq} \) for some \(p \in [k_i]\{h\} \) and \(q \in [r]\{k_i\} \), then

\[
\{(b_1, b_2, b_3, \ldots, b_n) \mid i \in [k_i]\{h\}, j \in [r]\{k_i\} \}
\]

is an edge and is polychromatic. Hence, \(a_{pq} \neq b_{pq} \) for all \(i \in [k_i]\{h\} \) and \(j \in [r]\{k_i\} \).

For each \(p \in [k_i]\{1, h\} \), since

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{p\}, j \in [r]\{k_i\} \}
\]

is an edge, \((a_{12}, a_{22}, \ldots, a_{n2}) \notin C_p \) for each \(p \in [k_i]\{1, h\} \); and from the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

we get that \((a_{12}, a_{22}, \ldots, a_{n2}) \notin C_q \). Then the edges

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

and

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1\}, j \in [r\{1\}\{k_i\} \}
\]

imply that \(\eta \notin C_q \) for each \(q \in [r]\{k_i\} \). Then the edge

\[
\{(a_{12}, a_{22}, \ldots, a_{n2}) \mid i \in [k_i]\{1, h\}, j \in [r]\{k_i\} \}
\]

implies that \(\eta \notin C_i \). Therefore, \(X_{1+i} \subseteq C_2 \), as desired.

Case 3 \(t \leq k_i \leq k \).

By induction, it is true for \(H'[X'] \). That is to say, there exists an \(j \in [s]\{1\} \) such that for each \(j \in [n] \), \(X_{ij} \subseteq C_j \) for some \(l_j \in [k_i] \), where \(X' = X' \cap X_j \).

Case 3.1 \(i = 2 \).
Without loss of generality, suppose \(X_{x_j} \subseteq C_j, j = 1, \ldots, t \).

For each \(j \in [r]\setminus\{1\} \) and \((i, j, x_1, \ldots, x_r) \in X_{n_i} \), since \(\{(i, j, x_1, \ldots, x_r) \mid i \in [r]\setminus\{p\}\}, p \in [r]\setminus\{1, j\} \) are edges, one has \((i, j, x_1, \ldots, x_r) \in C_i \cup C_j \). Similarly, we have \((i, j, x_1, \ldots, x_r) \in C_i \cup C_j \) for any \(i, j \in [r] \) and \((i, j, x_1, \ldots, x_r) \in X_{n_i} \), as desired.

Therefore, \(-C \mid \iota \subseteq \{1, 2\} \). Then we may similarly get \(\iota \subseteq C_i \), as desired.

Case 3.2 \(i \in [s]\setminus\{1, 2\} \).

Suppose \(i \geq 3 \) and \(X_{x_i} \subseteq C_i, i = 1, \ldots, t \). Pick \(\eta = (x_i, x_1, x_2, x_3, \ldots, x_r) \in X_{x_i} \). Then \(\eta \not\in C_i \) for each \(j \in [r]\setminus\{1\} \), since \(\{\eta, (x_i, x_1, x_2, x_3, \ldots, x_r) \mid i \in [r]\setminus\{j\}\} \) is an edge. From the edge \(\{\eta, (x_i, x_1, x_2, x_3, \ldots, x_r) \mid i \in [t-1]\} \), we have \(\eta \in C_i \), which implies that \(X_{x_i} \subseteq C_i \).

Assume that \((1, 2, 1, \ldots, 1) \in C_i \). Then we may similarly get

\[X_{x_i} \subseteq C_i \], as desired.

Proof of Theorem 1.2 For integer \(n \) at least three, let \(X = X_n, C = \{(1,1), (1,2), \ldots, (1,t)\} \) be \(C \cup C \). Note that \(H_{n/} \) is a spanning sub-hypergraph of \(H \) and \(\chi_i \) is a strict \(n \)-coloring of \(H \). But the edge \(\{(1,1), \ldots, (1,t)\} \) is isomorphic under \(\chi_i \). Hence, \(\chi_i \) is not a strict coloring of \(H \). Therefore, for any \(k \geq t \), \(H \) has \(S(n,k) \) strict \(k \)-colorings getting from \(\chi_i \). It follows that \(H \) is a \(1 \)-uniform \(C \)-hypergraph with upper chromatic number \(n \) and \(r_k = S(n,k) \) for any \(t \leq k \leq n \), as desired.

ACKNOWLEDGMENT

This research is supported by NSF of Shandong Province (ZR2013AL009, 2014ZR019GU), AMEP of Linyi University, and national college students' innovation and entrepreneurship training program (201410452001).

REFERENCES