
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 05, September 2015

www.ijcit.com 772

Paper Title Low Cost and Low Power Floating-point

Fused Multiply-Add Unit Design with Proxy Bits and

Weighted 2-Level Booth Encoding

Hyunpil Kim

School of Electrical and Electronic Engineering

Yonsei University

Seoul, Korea

Email: loimst.kim [AT] gmail.com

Abstract—With the appearance of high performance mobile

devices, low cost and low power consumption have become

important issues in high performance processors. To meet the

needs, low cost and low power floating-point fused multiply-add

unit is proposed in this paper. According to the area and power

consumption analysis, the multiplication part in fused multiply-

add operation accounted for most power consumption and area.

Thus, the proposed floating-point fused multiply-add unit used a

new weighted 2-level Booth encoding algorithm to optimize the

multiplier. In additional, proxy bits, which can represent

redundant bits, from the cancellation in subtraction operation is

proposed. The aim of this paper was to be achieved by optimizing

a shifter, leading zero anticipator, and adder using the proxy bits.

The synthesis and power consumption analysis results show that

the proposed floating-point fused multiply-add unit reduced area

by 37.3%, and improves the latency by 10.8% compared to a

conventional floating-point fused multiply-add unit under no

clock constraints. In addition, the proposed floating-point fused

multiply-add unit reduced area and power consumption

compared to the conventional unit by 31.6% and 23.3%,

respectively under 2.5ns timing constraints. Therefore, the

proposed floating-point fused multiply-add unit will contribute to

server and mobile purpose processors’ high performance, low

power, and low cost requirements.. (Abstract)

Keywords- Floating-point unit, Fused multiply-add unit, Low

power, Low cost, Weighted 2-level Booth encoding, Proxy bits

I. INTRODUCTION (HEADING 1)

The floating-point unit (FPU) is was developed for
complex and precise point operations. It is larger, more
complex, and consumes more power than an integer arithmetic
unit consumes. As with any complex arithmetic operation, FPU
is used in various fields such as communication, multimedia,
and graphics. Recently, FPUs are not only used on server
processors requiring high performance but also mobile
processors requiring low cost and power consumption.
Therefore, FPUs that consume low power and to have low cost
and high performance are desirable.

IBM announced an FPU on the RISC System 6000 (IBM
RS/6000) chip in 1990 [1, 2]. Recognizing that there would be
scores of modern applications, IBM especially recursively
performed a floating-point multiplication immediately
followed by a floating-point addition as dot products. To
enhance these applications’ performance, IBM designed a new
FPU that merged a floating-point multiplier and a floating-
point adder into a single hardware. This FPU was called the
multiply-add fused (MAF) unit at first, and then the MAF came
to be called the fused multiply-add (FMA) unit by Thomas
Lang and Javier D. Bruguera in 2005 [3].

The FMA unit has several advantages due to the merger of
the floating-point multiplier and adder. First, the FMA unit can
improve the performance of an application that recursively
executes a multiplication followed by an addition. Second, the
FMA unit can perform both addition and multiplication
depending on a value of the input operands. Third, the FMA
unit is smaller than general FPUs. Most FPUs have a floating-
point adder and a floating-point multiplier in parallel, while the
FMA unit is a structure sharing the rounding, normalization,
and post-normalization module. Fourth, the FMA unit is
capable of using integer FMA units in its design.

However, the FMA unit has several disadvantages. First,
although an application may experience increased performance
when a program requires multiplications followed by additions,
others that involve single-instruction additions or single-
instruction multiplications without the crossover experience a
significant reduction in performance. Second, the additional
hardware module for the merge imposes extra latency on the
stand-alone instructions as compared to their original units.
Third, any internal module of the FMA unit requires more bit-
width and interconnection than that of modules found in
floating-point adder and multiplier.

Despite these disadvantages, the FMA unit has been used in
many applications, such as for DSP, graphics, and
communication processing. To accommodate these needs for
increased utilization of the FMA instruction, the FMA unit is
now employed in high performance processors such as HP’s

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 05, September 2015

www.ijcit.com 773

PA-8000, Hitachi’s SH-4, Intel’s Itanium, STI’s CELL,
Fujitsu’s SPARC64v9, and ARM’s VFPv4 and NEONv2.

After IBM first developed a FMA unit in 1990 [1, 2],
several related studies were published. The FMA unit has been
developed in order structure to support high performance [3-5]
multiple path [6], multiple precision [7], and a single
instruction multiple data (SIMD) [8]. Lately, there has been a
trend toward studying application-specific FMA [9-11] or a
FMA with a modified pipeline stage to improve program
throughput [12].

This paper proceeds from the viewpoint of the
implementation at the architectural level to reduce the power
consumption and area of FMA units. In chapter 2, the weighted
2-level Booth encoding and proxy bits, which are key ideas of
this paper are described. Then, the proposed FMA unit is
explained in chapter 3. Chapter 4 shows the results of the
implementation and power analysis. Findings on cost and
power reduction in comparison with the conventional FMA
unit are presented. Finally, chapter 5 summarizes the proposed
FMA unit and highlights the benefits and weakness.

II. MOTIVATION AND KEY IDEAS

To analyze power consumption and area, Lang’s FMA [5],
which has been the most commonly cited since 2000, is
designed with Verilog HDL and synthesized with Synopsys
Design Compiler and SAED 32nm Library. Fig.1 shows the
ratio of total power consumption. As seen in the figures, the
modules that consume the most power are, in order, the
multiplier (Booth encoder and CSA tree), shifters (align_shifter
and norm_shifter), and the final adder. The previous three
modules occupy the most area on the FMA unit. Peculiarly, the
Booth encoder and CSA tree for the floating-point
multiplication account for approximately 50% of the total area
and total power consumption, respectively. Therefore, there is a
need to optimize the multiplier and bit-width of the internal
data to achieve a low cost FMA with low power consumption.

A. Weighted 2-level Booth encoding

According to Swee and Hai, the radix-4 Booth multiplier
offers the best performance and area features [13]. However,
the advantage of a higher radix Booth multiplier is that the
number of partial products is reduced. The small number of
partial products is especially favorable when implementing a
pipeline multiplier. Another study [14] proposes an Itanium
processor that uses four clock cycles for the pipeline multiplier.
In such a case, large pipeline registers are required, because the
Wallace (or carry-save adder) tree is divided by the pipeline
registers.

Although a higher radix multiplier has advantages, there are
two main problems related to its implementation. First, extra
adder logics are required for a higher radix, unlike the radix-2
and radix-4. Second, larger input multiplexers (MUXs) are
required in a higher radix multiplier. These problems result in a
low performance and a high consumption of both resources and
power. We propose that using a higher radix to reduce the
number of partial products is the most beneficial strategy, and

that a new Booth encoding algorithm should be developed to
reduce the burden of the encoder from the higher radix. Here,
we propose a weighted two-level Booth algorithm.

First, the partial products of a given radix can be defined by
the following operation:

 𝑥𝑖+𝑘+𝑛+1, 𝑥𝑖+𝑘+𝑛 , … , 𝑥𝑖+𝑘−1 = (1)

−2𝑘+𝑛+1𝑥𝑖+𝑘+𝑛+1 + 2𝑘+𝑛𝑥𝑖+𝑘+𝑛 + ⋯ + 2𝑘𝑥𝑖+𝑘 + 2𝑘𝑥𝑖+𝑘−1

where n represents a 2n+1-base radix, k indicates the number
of encoding bits, and xi is binary. For example, the radix-4,
radix-8, and radix-16 partial products are respectively derived
by (2), (3), and (4) as follows:

 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1 = −21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1 (2)

 𝑥𝑖+2, 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1

= −22𝑥𝑖+2 + 21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1 (3)

 𝑥𝑖+3, 𝑥𝑖+2, 𝑥𝑖+1 , 𝑥𝑖 , 𝑥𝑖−1

= −23𝑥𝑖+3 + 22𝑥𝑖+2 + 21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1(4)

One of the most significant characteristics of this operation is
that the law of separation is adopted. For example, the radix-16
partial products are derived by the summation of the two-stage
radix-4 operations, that is,

 𝑥𝑖+3, 𝑥𝑖+2, 𝑥𝑖+1 + 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1

= −23𝑥𝑖+3 + 22𝑥𝑖+2 + 22𝑥𝑖+1 +(−21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1)

= −23𝑥𝑖+3 + 22𝑥𝑖+2 + 21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1 (5)

 𝑥𝑖+3, 𝑥𝑖+2, 𝑥𝑖+1 , 𝑥𝑖 , 𝑥𝑖−1

= 𝑥𝑖+3 , 𝑥𝑖+2, 𝑥𝑖+1 + 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1 . (6)

Fig. 1 Total power consumption ratio for the each module

1%

6%

22%

33%

3%

8%

7%

10%

10% Exp. calculation

Align_shifter

Booth encoder

CSA tree

LZA

Final adder

Nom_shifter

Dual adder

etc

B. Proxy bits

There are many redundant bits in floating-point arithmetic.
These redundant bits has little effect on the results. In floating-
point subtraction, the bits for the result out of the precision is
padded with zeros. Regardless of whether the loss of accuracy
is complete or partial, the phenomenon is called cancellation.
Most floating-point units, however, execute an addition or
subtraction for this cancellation by two times of the precision
plus 1. We think these bits for the cancellation is redundant.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 05, September 2015

www.ijcit.com 774

According to Seidel [6], pre-determined data ranges exist
that can perform different operations in parallel. These pre-
determined data ranges are classified into five distinct cases
that comply with the IEEE 754 double-precision standards. All
five cases are based on the differences in the exponents (d =
Aexp + Bexp – Cexp + bias). We analyzed indispensable bits
that directly affected the effective results of the FMA
operations for the five distinct and propose two proxy bits
which represent the redundant bits to reduce the executed bits.

In a floating-point arithmetic, the sticky bit is generated by
processing a logical OR function for the right-side bits of the
round bit during the normalization stage. Adopting the proxy
bits generates two sticky bits. The first sticky bit (S') is only
generated from the proxy bits in the normalization stage. The
second sticky (S'') is calculated from the remaining bits, which
are not processed in the general processing but are calculated
by the independent sticky-bit generator for the input data. In
the rounding stage, rounding is determined by the round bits,
S', S'', and the rounding mode. However, the round bit can be
influenced by the remaining bits when a carry propagation is
performed by the remaining bits. If a carry is propagated from
the least significant bits, the effective result will be reflected in
the rounding module through a compensating circuit.

When proxy bits are used, the five distinct cases of [6] are
described by the four cases shown in Fig. 2 because

cancellation is not necessary since the proxy is a representative
of the redundant bits. Each case is described below, and S' is
generated by a logical OR function for the proxy bits in each
case.

(a) The right-side bits of the proxy do not affect the
effective result, because the exponent difference between the
addend and multiplication is large. Thus, the right-side bits of
the proxy do not need to be added. S'' is generated from 105
bits of the multiplication result. In this case, the carry
propagation from the redundant bits is not generated.

(b) Addition is required between the aligned C and
multiplication result, but the right-side bits of the proxy do not
need to be added. Similar to case (a), S'' is generated from the
multiplication result, and the carry propagation from the
redundant bits is not generated.

(c) Addition is required between the aligned C and
multiplication results. S'' is generated from the aligned C and
multiplication results. A carry propagation is detected by LZA.

(d) The significand of the effective result is the most
significant 53 bits of the multiplication result, because the
exponent difference between the addend and multiplication is
large. However, S'' is generated from the aligned C and
multiplication results, and a carry propagation is detected by
LZA, in contrast to case (a).

The numbers of indispensable bits in cases (a), (b), (c), and
(d) shown in Fig. 2 are the most significant 56, 56, 57, and 57
bits, respectively.

III. THE PROPOSED FMA UNIT

Fig. 3 shows the architecture of the proposed FMA unit
which based on the dual path FMA and Lang’s FMA [5]. The
proposed FMA unit supports the double precision of the IEEE

Fig. 1 Proposed four distinct cases with proxy bits

(a) Difference of Cexp and ABexp ≥ 56

b0 …

53

C

extra bits … b160

106

R
S’ = | Proxy

…

53

extra 2bit … b160

Aligned C

AxB

(b) 0 ≤ Difference of Cexp and ABexp < 56

106

(c) −57 < Difference of Cexp and ABexp ≤ 0

R

106

…

Sign extension …

d ≥ -53 53

54

AxB

Aligned C

AxB

3

3 bits for R and Proxy

x…x …s

… =

54

AxB

(d) Difference of Cexp and ABexp < -57

R

S’ = | Proxy

S’ = | Proxy

Aligned C

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 05, September 2015

www.ijcit.com 775

754 standard. To achieve low cost and low power, a radix-16
multiplier with weighted two-level Booth encoding and proxy
bits instead of many redundant bits is used.

Generally, conventional FMA units use a 161-bit final
adder, a 161-bit LZA, and a 105-bit carry save adder (CSA)
tree. The proposed FMA unit with the proxy bits can reduce the
resources used in processing the redundant bits. For example,
the 57-bit CSA, final adder, normalization shifter, and 54-bit
LZA are used instead of the 161-bit module such as the CSA,
final adder, LZA, and normalization shifter of the baseline
FMA unit. Meanwhile, to compensate for the rounding error
caused by the proxy bits, a 52-bit LZA and a sticky-bit
generator are added. However, the resources added to these
modules are much smaller than the ones reduced by the proxy
bits, because the bit width of these modules (in which the area
is proportional to the bit width) are reduced by approximately
two-thirds. The proposed FMA unit also uses three input LZAs
to reduce the processing time [15].

In previous chapter, the five distinct cases are reduced to
four with proxy bits. These four distinct cases are described in
the proposed FMA unit as follows:

• Case (a): AC[160:108] is bypassed by the result of the

exponent calculation module if the difference in the exponent
between C and the multiplication result is much greater than
56. In this case, R is zero, and the rounding module rounds

according to the result of the sticky-bit generator and the round
mode.

• Case (b): The final adder adds AC[108:52],

SC[108:52], and SS[108:52] from the 57-bit CSA. The result

of the final adder is concatenated to the bypassed AC[160:108].
In this case, the 54-bit LZA calculates the position of the
leading one and transfers it to the normalization module. R and
S' are determined in the normalization module. The rounding
module determines the rounding using the round mode, R, S',
and S'', which are from the sticky-bit generator. The position of
the carry propagation is determined from the 52-bit LZA.

• Case (c): The final adder adds AC[108:52],

SC[108:52], and SS[108:52] from the 57-bit CSA. Unlike that
in case (b), AC[108:52] is not concatenated to the result of the
final adder. However, normalization and rounding are
processed, similar to that in case (b).

• Case (d): The final adder adds both SC[108:52] and

SS[108:52]. The value of AC is reflected in the rounding
module through the 52-bit LZA and sticky-bit generator.

The original sticky bit is generated by the logical OR
function of the LSBs from the result in the normalization
module. The S' bit shown in Fig. 2 is generated by the logical
OR function of the proxy bits. Thus, a sticky-bit error may be
generated by the other LSBs instead of the proxy bits. We
modified the sticky-bit generator to process the other LSBs and
placed it parallel to the LZA and the final adder. The sticky-bit
generator consists of an OR tree and generates the S'' from the
redundant bits that do not affect the effective result from the
align shifter and the CSA tree. The result (S'') from the sticky-

bit generator is used to compensate the error in the round
module using the logical OR with the S' bit. If an error is
generated by the proxy bit, the proposed FMA unit can
compensate the error using the sticky-bit generator.

Fig. 1 Architecture of the proposed FMA unit

Exponent

& Sign

Calculation

Booth

Encoding

CSA Tree161-bit Align Shifter

57bit CSA

57bit Parallel Prefix Adder

(Final Adder)

52bit

3-input

LZA

Normalization

Rounding

Post Normalization

Output Align

Corner Case

and

Exception

Processing

ABC

Rounding

Mode

11
11

11

54bit

3-input

LZA

A B C

sumcarry

Partial products

161-bit Aligned C (AC)

161-bit Sign Ex. Carry (SC)

161-bit Sign Ex. SUM (SS)

AC, SC, SS[160:108] AC, SC, SS[108:52] AC, SC, SS[51:0]

AC[160:108]

SC, SS[105:49]

MUX & Concatenator

Case (a)

Case (b) & Case (c)

Case (d)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 05, September 2015

www.ijcit.com 776

IV. RESULTS

The proposed floating-point FMA unit was compared to the
Lang’s FMA unit [5]. They were designed at the register-
transfer level using HDL Verilog, and simulated by NC-
Verilog of Cadence. The synthesis was carried out by the
Design Compiler of Synopsys in the SAED 32-nm library.

Fig. 1 Effect of the proposed FMA: normalized AD product to [5], where

W2LB is weighted 2 level Booth encoding.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ref. W2LB Proxy W2LB+Proxy

Ref. W2LB Proxy W2LB+Proxy

Fig. 4 depicts the area-delay (AD) product of Ref. 4 and the
proposed FMA unit of three version, which are normalized to
Ref. 4 to make it easy to compare the features of the FMA unit
at a glance. The proposed three version FMAs are adopted the
weighted 2 level Booth encoding, proxy bits, and both of all.
The AD product a figure of merit related to the cost efficiency
of a logic block and it is proportional to the power-delay (PD)
product. Generally, an increase in the logic block area causes
the latency to reduce and the power consumed to increase. In
other words, the latency is a trade-off relationship with area
and power consumption. Therefore, a lower AD product
indicate more efficient area and power consumption under
identical operating frequency. The proposed FMA units
adopted new Booth algorithm and proxy bits shows
approximately 40% more cost-efficient and power-efficient

than [5]. Since redundant bits are eliminated as using proxy
bits, these efficient features are induced without trade-off.

Table 1 lists the synthesis results for between Ref. 4 and the
proposed FMA unit under no clock constraints. In summary,
the proposed FMA unit is approximately 37% smaller, and we
observe an approximately 10% improvement in the
performance relative to the unit described in [5] because of use
of the modules adopted proxy bits. This is because the latencies
of the final adder, LZA, and normalization shifter are
proportional to their bit widths.

V. CONCLUSIONS

In this paper, an FMA-related architectural-level research
has been studied. To optimize the structure of multiplier, new
Booth algorithm is proposed. We observed many redundant
bits in FMA operations at the architectural level. We found that
two proxy bits could substitute for long redundant bits. The
proxy bits can improve the performance and reduce resources
and power consumption without trade-off among area, power
consumption, and latency. The proposed FMA unit has three
main advantages owing to the proxy bits. First, a low-cost
FMA unit with low power consumption can be designed by
eliminating the processing of redundant bits. Second, the
reduced bit width improves the performance. Third, parallelism
of the sticky-bit generation reduces the latency of the critical
path. We modified a conventional FMA unit using proxy bits.
Compared with conventional FMA unit, the proposed FMA
unit reduced the total area and latency by approximately 37.0%
and 10%, respectively. We expect the proposed FMA unit to
utilize in mobile or high performance processing unit for
floating-point.

REFERENCES

[1] E. Hokenek, R. K. Hokenek, P. W. Montoye, and Cook, "Second-
generation RISC floating point with multiply-add fused," IEEE Journal
of Solid-State Circuits, vol. 25, pp. 1207-1213, 1990.

[2] R. K. Montoye, E. Hokenek, and S. L. Runyon, "Design of the IBM
RISC System/6000 floating-point execution unit," IBM Journal of
Research and Development, vol. 34, pp. 59-70, 1990.

[3] J. D. Bruguera and T. Lang, "Floating-point fused multiply-add: reduced
latency for floating-point addition," in Computer Arithmetic, 2005.
ARITH-17 2005. 17th IEEE Symposium on, 2005, pp. 42-51.

[4] M. S. Schmookler and K. J. Nowka, "Leading zero anticipation and
detection-a comparison of methods," in Computer Arithmetic, 2001.
Proceedings. 15th IEEE Symposium on, 2001, pp. 7-12.

[5] T. Lang and J. D. Bruguera, "Floating-point multiply-add-fused with
reduced latency," Computers, IEEE Transactions on, vol. 53, pp. 988-
1003, 2004.

[6] P. M. Seidel, "Multiple path IEEE floating-point fused multiply-add," in
Circuits and Systems, 2003 IEEE 46th Midwest Symposium on, 2003,
pp. 1359-1362 Vol. 3.

[7] H. Libo, S. Li, D. Kui, and W. Zhiying, "A New Architecture For
Multiple-Precision Floating-Point Multiply-Add Fused Unit Design," in
Computer Arithmetic, 2007. ARITH '07. 18th IEEE Symposium on,
2007, pp. 69-76.

[8] H. Libo, M. Sheng, S. Li, W. Zhiying, and X. Nong, "Low-Cost
Binary128 Floating-Point FMA Unit Design with SIMD Support,"
Computers, IEEE Transactions on, vol. 61, pp. 745-751, 2012.

TABLE 1

SYNTHESIS RESULTS

[4] Proposed

Module
Latency

(ns)

Area

(um2)
Module

Latency

(ns)

Area

(um2)

Exponent

calculator
1.15 782

Exponent

calculator
1.15 782

Align shifter 0.78 3027 Align shifter 0.78 3027

Booth

encoder

no

critical

path

5374
Booth

encoder

no

critical

path

5633

CSA tree

no

critical

path

11382 CSA tree

no

critical

path

4770

Final adder

no

critical

path

3477

Final adder

no

critical

path

1042

Concatenator

no

critical

path

2503

LZA 3.98 2964 LZA 2.91 1046

Normalization 1.13 4429 Normalization 0.72 1312

Output align. 1.78 3928 Output align 2.31 1435

Total 8.82 34363 Total 7.87 21550

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 05, September 2015

www.ijcit.com 777

[9] K. Donghyun and K. Lee-Sup, "A Floating-Point Unit for 4D Vector
Inner Product with Reduced Latency," Computers, IEEE Transactions
on, vol. 58, pp. 890-901, 2009.

[10] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and Y.
Farouk, "A decimal floating-point fused-multiply-add unit," in Circuits
and Systems (MWSCAS), 2010 53rd IEEE International Midwest
Symposium on, 2010, pp. 529-532.

[11] S. Z. Gilani, K. Nam Sung, and M. Schulte, "Energy-efficient floating-
point arithmetic for software-defined radio architectures," in
Application-Specific Systems, Architectures and Processors (ASAP),
2011 IEEE International Conference on, 2011, pp. 122-129.

[12] S. Galal and M. Horowitz, "Latency Sensitive FMA Design," in
Computer Arithmetic (ARITH), 2011 20th IEEE Symposium on, 2011,
pp. 129-138.

[13] K. L. S. Swee and H. Lo Hai, "Performance comparison review of
Radix-based multiplier designs," in Intelligent and Advanced Systems
(ICIAS), 2012 4th International Conference on, 2012, pp. 854-859.

[14] R. Riedlinger, R. Arnold, L. Biro, B. Bowhill, J. Crop, K. Duda, et al.,
"A 32 nm, 3.1 Billion Transistor, 12 Wide Issue Itanium®
Processor for Mission-Critical Servers," Solid-State Circuits, IEEE
Journal of, vol. 47, pp. 177-193, 2012.

[15] X.-L. Mei, "Leading zero anticipation for latency improvement in
floating-point fused multiply-add units," in ASIC, 2005. ASICON 2005.
6th International Conference On, 2005, pp. 53-56.

