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Abstract—With the appearance of high performance mobile 

devices, low cost and low power consumption have become 

important issues in high performance processors. To meet the 

needs, low cost and low power floating-point fused multiply-add 

unit is proposed in this paper. According to the area and power 

consumption analysis, the multiplication part in fused multiply-

add operation accounted for most power consumption and area. 

Thus, the proposed floating-point fused multiply-add unit used a 

new weighted 2-level Booth encoding algorithm to optimize the 

multiplier. In additional, proxy bits, which can represent 

redundant bits, from the cancellation in subtraction operation is 

proposed. The aim of this paper was to be achieved by optimizing 

a shifter, leading zero anticipator, and adder using the proxy bits. 

The synthesis and power consumption analysis results show that 

the proposed floating-point fused multiply-add unit reduced area 

by 37.3%, and improves the latency by 10.8% compared to a 

conventional floating-point fused multiply-add unit under no 

clock constraints. In addition, the proposed floating-point fused 

multiply-add unit reduced area and power consumption 

compared to the conventional unit by 31.6% and 23.3%, 

respectively under 2.5ns timing constraints. Therefore, the 

proposed floating-point fused multiply-add unit will contribute to 

server and mobile purpose processors’ high performance, low 

power, and low cost requirements.. (Abstract) 

Keywords- Floating-point unit, Fused multiply-add unit, Low 

power, Low cost, Weighted 2-level Booth encoding, Proxy bits 

I.  INTRODUCTION (HEADING 1) 

The floating-point unit (FPU) is was developed for 
complex and precise point operations. It is larger, more 
complex, and consumes more power than an integer arithmetic 
unit consumes. As with any complex arithmetic operation, FPU 
is used in various fields such as communication, multimedia, 
and graphics. Recently, FPUs are not only used on server 
processors requiring high performance but also mobile 
processors requiring low cost and power consumption. 
Therefore, FPUs that consume low power and to have low cost 
and high performance are desirable. 

IBM announced an FPU on the RISC System 6000 (IBM 
RS/6000) chip in 1990 [1, 2]. Recognizing that there would be 
scores of modern applications, IBM especially recursively 
performed a floating-point multiplication immediately 
followed by a floating-point addition as dot products. To 
enhance these applications’ performance, IBM designed a new 
FPU that merged a floating-point multiplier and a floating-
point adder into a single hardware. This FPU was called the 
multiply-add fused (MAF) unit at first, and then the MAF came 
to be called the fused multiply-add (FMA) unit by Thomas 
Lang and Javier D. Bruguera in 2005 [3].  

The FMA unit has several advantages due to the merger of 
the floating-point multiplier and adder. First, the FMA unit can 
improve the performance of an application that recursively 
executes a multiplication followed by an addition. Second, the 
FMA unit can perform both addition and multiplication 
depending on a value of the input operands. Third, the FMA 
unit is smaller than general FPUs. Most FPUs have a floating-
point adder and a floating-point multiplier in parallel, while the 
FMA unit is a structure sharing the rounding, normalization, 
and post-normalization module. Fourth, the FMA unit is 
capable of using integer FMA units in its design. 

However, the FMA unit has several disadvantages. First, 
although an application may experience increased performance 
when a program requires multiplications followed by additions, 
others that involve single-instruction additions or single-
instruction multiplications without the crossover experience a 
significant reduction in performance. Second, the additional 
hardware module for the merge imposes extra latency on the 
stand-alone instructions as compared to their original units. 
Third, any internal module of the FMA unit requires more bit-
width and interconnection than that of modules found in 
floating-point adder and multiplier. 

Despite these disadvantages, the FMA unit has been used in 
many applications, such as for DSP, graphics, and 
communication processing. To accommodate these needs for 
increased utilization of the FMA instruction, the FMA unit is 
now employed in high performance processors such as HP’s 
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PA-8000, Hitachi’s SH-4, Intel’s Itanium, STI’s CELL, 
Fujitsu’s SPARC64v9, and ARM’s VFPv4 and NEONv2. 

After IBM first developed a FMA unit in 1990 [1, 2], 
several related studies were published. The FMA unit has been 
developed in order structure to support high performance [3-5] 
multiple path [6], multiple precision [7], and a single 
instruction multiple data (SIMD) [8]. Lately, there has been a 
trend toward studying application-specific FMA [9-11] or a 
FMA with a modified pipeline stage to improve program 
throughput [12].  

This paper proceeds from the viewpoint of the 
implementation at the architectural level to reduce the power 
consumption and area of FMA units. In chapter 2, the weighted 
2-level Booth encoding and proxy bits, which are key ideas of 
this paper are described. Then, the proposed FMA unit is 
explained in chapter 3. Chapter 4 shows the results of the 
implementation and power analysis. Findings on cost and 
power reduction in comparison with the conventional FMA 
unit are presented. Finally, chapter 5 summarizes the proposed 
FMA unit and highlights the benefits and weakness. 

II. MOTIVATION AND KEY IDEAS 

To analyze power consumption and area, Lang’s FMA [5], 
which has been the most commonly cited since 2000, is 
designed with Verilog HDL and synthesized with Synopsys 
Design Compiler and SAED 32nm Library. Fig.1 shows the 
ratio of total power consumption. As seen in the figures, the 
modules that consume the most power are, in order, the 
multiplier (Booth encoder and CSA tree), shifters (align_shifter 
and norm_shifter), and the final adder. The previous three 
modules occupy the most area on the FMA unit. Peculiarly, the 
Booth encoder and CSA tree for the floating-point 
multiplication account for approximately 50% of the total area 
and total power consumption, respectively. Therefore, there is a 
need to optimize the multiplier and bit-width of the internal 
data to achieve a low cost FMA with low power consumption. 

A. Weighted 2-level Booth encoding 

According to Swee and Hai, the radix-4 Booth multiplier 
offers the best performance and area features [13]. However, 
the advantage of a higher radix Booth multiplier is that the 
number of partial products is reduced. The small number of 
partial products is especially favorable when implementing a 
pipeline multiplier. Another study [14] proposes an Itanium 
processor that uses four clock cycles for the pipeline multiplier. 
In such a case, large pipeline registers are required, because the 
Wallace (or carry-save adder) tree is divided by the pipeline 
registers. 

Although a higher radix multiplier has advantages, there are 
two main problems related to its implementation. First, extra 
adder logics are required for a higher radix, unlike the radix-2 
and radix-4. Second, larger input multiplexers (MUXs) are 
required in a higher radix multiplier. These problems result in a 
low performance and a high consumption of both resources and 
power. We propose that using a higher radix to reduce the 
number of partial products is the most beneficial strategy, and 

that a new Booth encoding algorithm should be developed to 
reduce the burden of the encoder from the higher radix. Here, 
we propose a weighted two-level Booth algorithm.  

First, the partial products of a given radix can be defined by 
the following operation: 

 𝑥𝑖+𝑘+𝑛+1, 𝑥𝑖+𝑘+𝑛 , … , 𝑥𝑖+𝑘−1 =   (1) 

−2𝑘+𝑛+1𝑥𝑖+𝑘+𝑛+1 + 2𝑘+𝑛𝑥𝑖+𝑘+𝑛 + ⋯ + 2𝑘𝑥𝑖+𝑘 + 2𝑘𝑥𝑖+𝑘−1   

where n represents a 2n+1-base radix, k indicates the number 
of encoding bits, and xi is binary. For example, the radix-4, 
radix-8, and radix-16 partial products are respectively derived 
by (2), (3), and (4) as follows: 

 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1 = −21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1   (2) 

 𝑥𝑖+2, 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1  

= −22𝑥𝑖+2 + 21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1    (3) 

 𝑥𝑖+3, 𝑥𝑖+2, 𝑥𝑖+1 , 𝑥𝑖 , 𝑥𝑖−1  

= −23𝑥𝑖+3 + 22𝑥𝑖+2 + 21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1(4) 

One of the most significant characteristics of this operation is 
that the law of separation is adopted. For example, the radix-16 
partial products are derived by the summation of the two-stage 
radix-4 operations, that is,  

 𝑥𝑖+3, 𝑥𝑖+2, 𝑥𝑖+1 +  𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1  

= −23𝑥𝑖+3 + 22𝑥𝑖+2 + 22𝑥𝑖+1 +( −21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1) 

= −23𝑥𝑖+3 + 22𝑥𝑖+2 + 21𝑥𝑖+1 + 20𝑥𝑖 + 20𝑥𝑖−1     (5) 

 𝑥𝑖+3, 𝑥𝑖+2, 𝑥𝑖+1 , 𝑥𝑖 , 𝑥𝑖−1  

=  𝑥𝑖+3 , 𝑥𝑖+2, 𝑥𝑖+1 +  𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1 .         (6) 

 

 

 
Fig. 1 Total power consumption ratio for the each module 
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B. Proxy bits 

There are many redundant bits in floating-point arithmetic. 
These redundant bits has little effect on the results. In floating-
point subtraction, the bits for the result out of the precision is 
padded with zeros. Regardless of whether the loss of accuracy 
is complete or partial, the phenomenon is called cancellation. 
Most floating-point units, however, execute an addition or 
subtraction for this cancellation by two times of the precision 
plus 1. We think these bits for the cancellation is redundant. 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 05, September 2015 

 

www.ijcit.com    774 

According to Seidel [6], pre-determined data ranges exist 
that can perform different operations in parallel. These pre-
determined data ranges are classified into five distinct cases 
that comply with the IEEE 754 double-precision standards. All 
five cases are based on the differences in the exponents (d = 
Aexp + Bexp – Cexp + bias). We analyzed indispensable bits 
that directly affected the effective results of the FMA 
operations for the five distinct and propose two proxy bits 
which represent the redundant bits to reduce the executed bits. 

In a floating-point arithmetic, the sticky bit is generated by 
processing a logical OR function for the right-side bits of the 
round bit during the normalization stage. Adopting the proxy 
bits generates two sticky bits. The first sticky bit (S') is only 
generated from the proxy bits in the normalization stage. The 
second sticky (S'') is calculated from the remaining bits, which 
are not processed in the general processing but are calculated 
by the independent sticky-bit generator for the input data. In 
the rounding stage, rounding is determined by the round bits, 
S', S'', and the rounding mode. However, the round bit can be 
influenced by the remaining bits when a carry propagation is 
performed by the remaining bits. If a carry is propagated from 
the least significant bits, the effective result will be reflected in 
the rounding module through a compensating circuit.  

When proxy bits are used, the five distinct cases of [6] are 
described by the four cases shown in Fig. 2 because 

cancellation is not necessary since the proxy is a representative 
of the redundant bits. Each case is described below, and S' is 
generated by a logical OR function for the proxy bits in each 
case. 

(a) The right-side bits of the proxy do not affect the 
effective result, because the exponent difference between the 
addend and multiplication is large. Thus, the right-side bits of 
the proxy do not need to be added. S'' is generated from 105 
bits of the multiplication result. In this case, the carry 
propagation from the redundant bits is not generated.  

(b) Addition is required between the aligned C and 
multiplication result, but the right-side bits of the proxy do not 
need to be added. Similar to case (a), S'' is generated from the 
multiplication result, and the carry propagation from the 
redundant bits is not generated.  

(c) Addition is required between the aligned C and 
multiplication results. S'' is generated from the aligned C and 
multiplication results. A carry propagation is detected by LZA.  

(d) The significand of the effective result is the most 
significant 53 bits of the multiplication result, because the 
exponent difference between the addend and multiplication is 
large. However, S'' is generated from the aligned C and 
multiplication results, and a carry propagation is detected by 
LZA, in contrast to case (a). 

The numbers of indispensable bits in cases (a), (b), (c), and 
(d) shown in Fig. 2 are the most significant 56, 56, 57, and 57 
bits, respectively. 

III. THE PROPOSED FMA UNIT 

Fig. 3 shows the architecture of the proposed FMA unit 
which based on the dual path FMA and Lang’s FMA [5]. The 
proposed FMA unit supports the double precision of the IEEE 

 

 
Fig. 1 Proposed four distinct cases with proxy bits 
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754 standard. To achieve low cost and low power, a radix-16 
multiplier with weighted two-level Booth encoding and proxy 
bits instead of many redundant bits is used.  

Generally, conventional FMA units use a 161-bit final 
adder, a 161-bit LZA, and a 105-bit carry save adder (CSA) 
tree. The proposed FMA unit with the proxy bits can reduce the 
resources used in processing the redundant bits. For example, 
the 57-bit CSA, final adder, normalization shifter, and 54-bit 
LZA are used instead of the 161-bit module such as the CSA, 
final adder, LZA, and normalization shifter of the baseline 
FMA unit. Meanwhile, to compensate for the rounding error 
caused by the proxy bits, a 52-bit LZA and a sticky-bit 
generator are added. However, the resources added to these 
modules are much smaller than the ones reduced by the proxy 
bits, because the bit width of these modules (in which the area 
is proportional to the bit width) are reduced by approximately 
two-thirds. The proposed FMA unit also uses three input LZAs 
to reduce the processing time [15]. 

In previous chapter, the five distinct cases are reduced to 
four with proxy bits. These four distinct cases are described in 
the proposed FMA unit as follows: 

• Case (a): AC[160:108] is bypassed by the result of the 

exponent calculation module if the difference in the exponent 
between C and the multiplication result is much greater than 
56. In this case, R is zero, and the rounding module rounds 

according to the result of the sticky-bit generator and the round 
mode.  

• Case (b): The final adder adds AC[108:52], 

SC[108:52], and SS[108:52] from the 57-bit CSA. The result 

of the final adder is concatenated to the bypassed AC[160:108]. 
In this case, the 54-bit LZA calculates the position of the 
leading one and transfers it to the normalization module. R and 
S' are determined in the normalization module. The rounding 
module determines the rounding using the round mode, R, S', 
and S'', which are from the sticky-bit generator. The position of 
the carry propagation is determined from the 52-bit LZA. 

• Case (c): The final adder adds AC[108:52], 

SC[108:52], and SS[108:52] from the 57-bit CSA. Unlike that 
in case (b), AC[108:52] is not concatenated to the result of the 
final adder. However, normalization and rounding are 
processed, similar to that in case (b). 

• Case (d): The final adder adds both SC[108:52] and 

SS[108:52]. The value of AC is reflected in the rounding 
module through the 52-bit LZA and sticky-bit generator. 

The original sticky bit is generated by the logical OR 
function of the LSBs from the result in the normalization 
module. The S' bit shown in Fig. 2 is generated by the logical 
OR function of the proxy bits. Thus, a sticky-bit error may be 
generated by the other LSBs instead of the proxy bits. We 
modified the sticky-bit generator to process the other LSBs and 
placed it parallel to the LZA and the final adder. The sticky-bit 
generator consists of an OR tree and generates the S'' from the 
redundant bits that do not affect the effective result from the 
align shifter and the CSA tree. The result (S'') from the sticky-

bit generator is used to compensate the error in the round 
module using the logical OR with the S' bit. If an error is 
generated by the proxy bit, the proposed FMA unit can 
compensate the error using the sticky-bit generator. 

 
Fig. 1 Architecture of the proposed FMA unit 
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IV. RESULTS 

The proposed floating-point FMA unit was compared to the 
Lang’s FMA unit [5]. They were designed at the register-
transfer level using HDL Verilog, and simulated by NC-
Verilog of Cadence. The synthesis was carried out by the 
Design Compiler of Synopsys in the SAED 32-nm library. 

 

 
Fig. 1 Effect of the proposed FMA: normalized AD product to [5], where 

W2LB is weighted 2 level Booth encoding. 
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Fig. 4 depicts the area-delay (AD) product of Ref. 4 and the 
proposed FMA unit of three version, which are normalized to 
Ref. 4 to make it easy to compare the features of the FMA unit 
at a glance. The proposed three version FMAs are adopted the 
weighted 2 level Booth encoding, proxy bits, and both of all.  
The AD product a figure of merit related to the cost efficiency 
of a logic block and it is proportional to the power-delay (PD) 
product. Generally, an increase in the logic block area causes 
the latency to reduce and the power consumed to increase. In 
other words, the latency is a trade-off relationship with area 
and power consumption. Therefore, a lower AD product 
indicate more efficient area and power consumption under 
identical operating frequency. The proposed FMA units 
adopted new Booth algorithm and proxy bits shows 
approximately 40% more cost-efficient and power-efficient 

than [5]. Since redundant bits are eliminated as using proxy 
bits, these efficient features are induced without trade-off. 

Table 1 lists the synthesis results for between Ref. 4 and the 
proposed FMA unit under no clock constraints. In summary, 
the proposed FMA unit is approximately 37% smaller, and we 
observe an approximately 10% improvement in the 
performance relative to the unit described in [5] because of use 
of the modules adopted proxy bits. This is because the latencies 
of the final adder, LZA, and normalization shifter are 
proportional to their bit widths. 

V. CONCLUSIONS 

In this paper, an FMA-related architectural-level research 
has been studied. To optimize the structure of multiplier, new 
Booth algorithm is proposed. We observed many redundant 
bits in FMA operations at the architectural level. We found that 
two proxy bits could substitute for long redundant bits. The 
proxy bits can improve the performance and reduce resources 
and power consumption without trade-off among area, power 
consumption, and latency. The proposed FMA unit has three 
main advantages owing to the proxy bits. First, a low-cost 
FMA unit with low power consumption can be designed by 
eliminating the processing of redundant bits. Second, the 
reduced bit width improves the performance. Third, parallelism 
of the sticky-bit generation reduces the latency of the critical 
path. We modified a conventional FMA unit using proxy bits. 
Compared with conventional FMA unit, the proposed FMA 
unit reduced the total area and latency by approximately 37.0% 
and 10%, respectively. We expect the proposed FMA unit to 
utilize in mobile or high performance processing unit for 
floating-point. 
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