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Abstract—Pollard’s Rho method is well–known as an efficient 

method for solving discrete logarithm problems such as the ellip-

tic curve discrete logarithm problem (ECDLP). It consists of two 

parts: a random walk and collision detection. This paper propos-

es associative rational points for accelerating the random walk 

procedure. In detail, it considers two associative rational points 

𝑻𝒊+𝟏
+ =Ti −Wiand 𝑻𝒊+𝟏

− =Ti −Wi, where Ti and Wi are rational points. 

In order to make the random walk more efficient, random ra-

tional points should be efficiently generated to which associative 

rational points has a contribution.𝑻𝒊+𝟏
+ and 𝑻𝒊+𝟏

− are obtained by 

less computational cost than that of two elliptic curve additions. 

In order to show the contribution of the proposed idea, this paper 

experiments with small ECDLPs as examples. 

Keywords--- elliptic curve cryptography, elliptic curve discrete loga-

rithm problem, Pollard’s rho method, random walk 

I. INTRODUCTION 

The security of elliptic curve cryptography (ECC) is guaran-

teed by the difficulty of the elliptic curve discrete logarithm 

problem (ECDLP). Let E be an elliptic curve defined over a 

certain finite field F and let Q be a rational point of order r in 

E. For a scalar 0 ≤ s < r, ECC often calculates a scalar multip-

lication R = [s]Q in the procedures of encryption and decryp-

tion. In practice, it is said that r, that is the order of the cyclic 

group generated by Q, needs to be more than 160. The scalar 

multiplication [s]Q is efficiently calculated by the binary me-

thod or the improved non–adjacent form (NAF) method [1]; 

however, its inverse problem of calculating the scalar s from Q 
and R is difficult. 

In general, the security of cryptography is evaluated by attack-

ing the cryptography, such as factoring for RSA cryptography. 

In the case of ECC, Pollard’s rho method [2] is well known as 

one of the most practical attacking methods. It is basically a 

collision–detection type method. It generates a lot of random 

rational points that is often called a random walk, then detects 

a collision from the generated points. In order to improve the 

rho method, some efficient approaches such as grouping, the 

Montgomery trick, parallelization, and distinguished points 

have been proposed. The grouping technique contributes to 

reduce the size of ECDLP, the Montgomery trick reduces the 

number of inversions required for random walks, the rho me-

thod is efficiently parallelized, and distinguished points reduc-

es the number of stored points  for detecting a collision [3]. 

They are well known as efficient techniques; however, in or-

der to more strictly evaluate the security of ECC, many re-

searchers are still struggling to find more improvements. 

This paper proposes associative rational points that slightly 

improves Pollard’s rho method on ECDLP. Since the random 

walk procedure calculates a lot of elliptic curve additions such 

as Ti+Wi, where Ti and Wi are rational points, it needs a lot of 

inversions in the base field. Then, in addition to the Mont-

gomery trick, the idea furthermore reduces the number of re-

quired inversions. It considers two associative rational points 

𝑇𝑖+1
+ = Ti − Wi and 𝑇𝑖+1

− = Ti − Wi. In general, two elliptic curve 

additions need two inversions in the base field; however, for 

calculating the two associative rational points𝑇𝑖+1
+  and 𝑇𝑖+1

− it is 

enough to calculate only one inversion (xTi − xWi)−1, where xTi 

and xWi are x– coordinates of Ti and Wi, respectively. This effi-

ciency is obtained from a typical feature of elliptic curve sub-

traction. In addition to the Montgomery trick, the idea contri-

butes to slightly improving a collision–based attack on 

ECDLP such as Pollard’s rho method. In order to show the 

efficiency of the proposed idea, this paper attacks small 

ECDLPs as examples. 

This work is a theoretically generalized version of our pre-

vious work presented at ISCIT2014 [4]. In what follows, Fp, 

Fpm, and E(Fpm) respectively denote a prime field whose mod-

ular number is a prime number p, m–th extension field over 

Fp, and the elliptic curve defined over Fpm. 
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II. FUNDAMENTALS 

This section briefly reviews elliptic curve for cryptography 

and the basics of Pollard’s rho method [2]. 

A. Elliptic curve 

Let us consider an elliptic curve E as 

 E(x,y) : y2 = x3 + ax + b, b ∈ Fp. (1) 

The solutions of Eq.(1) are called rational points on the curve. 

In the case that the definition field is Fpm, the set of rational 

points on the curve E including the infinity point O is denoted 

by E(Fpm). It forms an additive group for the following elliptic 

curve addition (ECA). 

For two rational points R1(x1,y1), R2(x2,y2) ∈ E(Fpm), the ellip-

tic curve addition R3(x3,y3) = R1 + R2 is given as follows. This 

operation is called elliptic curve addition. 

  

𝜆 =

 
 
 

 
 

𝑦2−𝑦1

𝑥2−𝑥1
𝑅1 ≠ 𝑅2and 𝑥1 ≠ 𝑥2

3𝑥1
2+𝑎

2𝑦1
𝑅1 = 𝑅2and 𝑦1 ≠ 0

𝜙 otherwise

 ,(2a) 

 𝑥3
𝑦3
 =  

 𝜆2−𝑥1−𝑥2
 𝑥1−𝑥3 𝜆−𝑥1−𝑦1

 if𝜆 = 𝜙

Ο otherwise

 (2b)  

As shown above, an ECA needs fundamental arithmetic oper-

ations in the definition field such as multiplication and inver-

sion (division). Among the arithmetic operations, it is said that 

an inversion is the most time–consuming. 

B. Pollard’s rho method 

This paper applies the proposed idea to the well–known 

Pollard’s rho method on ECDLP. Let G be a cyclic subgroup 

of order rin E(Fpm). According to the Lagrange 

theorem,rdivides the order of E(Fpm). Then, an ECDLP is a 

problem to solve the scalar s from two rational points Qand R 
∈ G such that R = [s]Q, where 0 ≤ s<r. Based on only their 

xand ycoordinates, Pollard’s rho method tries to find the scalar 

susing Alg. 1 [2]. 

 

Algorithm 1: Pollard’s Rho Method 
Input: Q, R = [s]Q ∈ G, 0 ≤ s < r. 

Output: s. 

1  for i = 0 to N − 1 do 

2   Ti ← [ui]Q + [vi]R, 

 where ui and vi are random numbers less than r. 

3  for i = N to r − 1 do 

4   l ← 𝜂𝑁 𝑇𝑖−1 . 

5  𝑢𝑖  ← 𝑢𝑖−1 + 𝑢𝑙 , 𝑣𝑖  ← 𝑣𝑖−1 + 𝑣𝑙 ,𝑇𝑖  ← 𝑇𝑖−1 + 𝑇𝑙 . 
6   if Ti = Tj (0 ≤ j < i),then exit this loop. 

7s ← (uj − ui) · (vi − vj)−1 (mod r). 

 

Let xT be the x–coordinate of rational point T. First, Steps 1 to 

2 prepare N random rational points T0, ··· ,TN−1 with Q and R. 

Then, Steps 3 to 6 iteratively generate a lot of random rational 

points Ti by using the precomputed random walk table, where 

ηN is a hash function such as ηN(T) := xTmodN. It is enough 

that ηN uniquely determines a certain integer from 0 to N − 1 
corresponding to the input. 

According to the birthday paradox,  𝜋𝑟/2random points ave-

ragely make a collision at Step 7, then the collision leads to 

the scalar s as Step 8. In detail, the following relations hold 

when Ti = Tj. 

[ui]Q + [vi]R = [uj]Q + [vj]R,  

[ui + vis]Q = [uj + vjs]Q. (3a) 

    

ui + vis ≡ uj + vjs mod r,   

s ≡ (uj − ui) · (vi − vj)−1 mod r.   (3b) 

 
According to the elliptic curve addition Eqs.(2), rho method 

needs 6 additions, 3 multiplications and an inversion in Fpm to 

obtain a random rational point Ti. Then, this paper proposes an 

idea to efficiently obtain another random point called associa-

tive point at each iteration in order to accelerate the random 

walk procedure. 

III. PROPOSAL OF ASSOCIATIVE POINT 

This paper proposed to calculate the associative point Ti
− in 

addition to Tifor each iteration in Alg. 1 as follows: 

 Ti = 𝑇𝑖
+= Ti−1 + Tl = Ti−1 +  𝑥𝑇𝑙 ,𝑦𝑇𝑙

 , (4a) 

 Ti
−= Ti−1 − Tl = Ti−1 + 𝑥𝑇𝑙 ,−𝑦𝑇𝑙

 . (4b) 

Calculating these two points separately by Eqs.(2) doubles the 

computational cost; however, the associative point Ti
− elimi-

nates the work of one inversion by simultaneously computing 

them. In detail, since the x–coordinates shown inEqs.(4) are 

equal, the inverses 𝑥𝑇𝑖−1
− 𝑥𝑇𝑙 

−1
 for Eq.(2a)become the same as 

each other. Since the inversion is the most time–consuming 

operation among the fundamental arithmetic operations in Fpm, 

applying the associative rational point leads to the acceleration 

of the random walk. 

Applying the associative rational point that is the proposal of 

this paper, our improvement of the rho method is given by 

Alg.2. An important point is that the index l for Tl in the ran-

dom walk table is determined by𝑇𝑖−1
+  in this algorithm. 

In other words, 𝑇𝑖−1
− does not affect the selection of Tl. 
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Algorithm 2: Proposed random walk using associative ration-

al points 
Input: Q,R = [s]Q ∈ G, 0 ≤ s < r. 

Output: s. 

1for i = 0 to N − 1 do 

2 𝑇𝑖
+← [ui]Q + [vi]R,  

 where ui and vi are random numbers less than r. 

3  for i = 0 to N − 1 do 

4         l ← 𝜂𝑁 𝑇𝑖−1
+  . 

5𝑢𝑖
+  ← 𝑢𝑖−1 + 𝑢𝑙 ,𝑣𝑖

+  ← 𝑣𝑖−1 + 𝑣𝑙 ,𝑇𝑖
+  ← 𝑇𝑖−1 + 𝑇𝑙 . 

6𝑢𝑖
−  ← 𝑢𝑖−1 − 𝑢𝑙 ,𝑣𝑖

−  ← 𝑣𝑖−1 − 𝑣𝑙 ,𝑇𝑖
−  ← 𝑇𝑖−1 − 𝑇𝑙 . 

7if a collision occurs such as 

𝑇𝑖
+ = 𝑇𝑗

−(0 ≤ j < i)†, then exit this loop. 

8 s ←  𝑢𝑗
− − 𝑢𝑖

+ ∙  𝑣𝑖
+ − 𝑣𝑗

− 
−1

†. 

† When𝑇𝑖
+

= 𝑇𝑗
+

as another case, ←  𝑢𝑗
+ − 𝑢𝑖

+ ∙  𝑣𝑖
+ − 𝑣𝑗

+ 
−1

. 

IV. EXPERIMENTAL RESULTS 

Tables IV and V show small experimental results of the pro-

posed method compared with the original rho method corres-

ponding to the parameter settings given in Table II and Table 

III, respectively. In this simulation, let G be a cyclic subgroup 

in E(Fp) that is defined over a prime field Fp. Note that A, M, 

and I respectively denote the calculation costs of an addition, a 

multiplication, and an inversion in Fp. 

According to the results, the computation time for solving an 

ECDLP on G were averagely reduced by about 33%. As an 

important point, the total numbers of the generated random 

points between the original rho and proposed method are al-

most the same. 

V. ALGORITHMIC COOPERATIVENESS FOR 

OTHER TECHNIQUES 

This section discusses some other efficient techniques and 

their cooperativeness with the proposed idea. 

 

Table I 

EXPERIMENTAL ENVIRONMENT 

CPU Intel Core i7–870 2.93GHz† 

OS Windows 7 Professional (64–bit) 

GCC ver. 4.5.0 

GMP ver. 6.0.0 
† The CPU had 4 cores but this experiment used only 1 core. 

Table II 

PARAMETERS 

E(x,y) y2 = x3 +7 

p 298464723373 (39 bits) 

r 298464176149 (39 bits) 

 

Table III 

PARAMETERS 

E(x,y) y2 = x3 +17 

p 3055438451161 (42 bits) 

r 3055436701561 (42 bits) 

 

A. Montgomery trick 

The Montgomery trick is well used for reducing the number of 

inefficient arithmetic operations such as inversion. Consider 

the calculation of a−1, b−1, and c−1. They are of course obtained 

by three inversions; however, if a multiplication is much more 

efficient than an inversion, the following calculation is better 

for obtaining them. 

Mab = ab, Mabc = cMab, Iabc = Mabc−1, (5a) 

c−1= IabcMab, Iab = cIabc, (5b) 

b−1= aMab, a−1= bIab. (5c) 

In general, when we calculate n inverses, the Montgomery 

trick just requires one inversion and 3n multiplications. Ap-

plying our technique in addition to the Montgomery trick, the 

number of inversions and multiplications required for the ran-

dom walk are twice more reduced. 

B. Grouping 

Suppose that the rational points on a target ECDLP are di-

vided into groups such that each group has n rational points. If 

the n rational points in each group are connected to each other 

by a certain efficient mapping together with an explicit scalar 

multiplication, the average number for findinga collision be-

comes much smaller as  𝜋𝑟/2𝑛. 

As an example, the negation mapping is well known. Let Neg 
(·) be the negation mapping, an arbitrary rational point 

R(xR,yR) of order r satisfies the following relation. 

 Neg(R) = −R = (xR,−yR) = [r − 1]R. (6) 

In case of the negation mapping, the number n of points in 

each group is equal to 2. In other words, R and N(R) = −R 
constitute a group. Thus, the grouping technique reduces the 

size of ECDLP. It is easily found the proposed idea, that is 

associative points, is cooperative to the grouping technique. It 

is also noted that the grouping technique needs to determine a 

representative among the rational points in the group; howev-

er, the determination does not cause a large overhead in gen-

eral. 
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The GLV technique [5] is available for the grouping. The 

combination of grouping and representative determination can 

cause fruitless cycle. As an example on the negation mapping, 

when 𝑇𝜂𝑁  𝑇𝑖+1 
is occasionally equal to 𝑇𝜂𝑁  𝑇𝑖 

, a fruitless cycle 

of cycle 2 occurs as follows. 

 𝑇𝑖+1 = 𝑇𝑖 + 𝑇𝜂𝑁  𝑇𝑖 
, (7a) 

 𝑇𝑖+2 = Neg Neg 𝑇𝑖+1  + 𝑇𝜂𝑁  𝑇𝑖+1 
= 𝑇𝑖 . (7b) 

Eqs.(7) find a collision such as Ti+2 = Ti; however, they cannot 

solve the discrete logarithm problem. Thus, detecting and then 

escaping such a fruitless cycle are problems in practice and 

need additional care [6]. 

 

C. Parallelization 

The rho method is efficient for parallel computing. When 

there are k calculation cores, running k random walks in paral-

lel leads to finding a collision k times faster for which a pre-

computed random walk table needs to be shared in every ran-

dom walk process. In the cases of Alg.1 and Alg.2, the pre-

computed random walk table means the N rational points T0 to 

TN−1 by which the following random rational points TN and so 

on are iteratively generated. Just changing the initial points for 

the k random walks efficiently generates random rational 

points, where the initial point corresponds to TN in the cases of 

Alg.1 and Alg.2. 

It is found that the associative point is cooperative to the pa-

rallelization. The reason why the random walks running in 

parallel need to share one random walk table comes from 

adapting the distinguished point technique descried below. 

D. Distinguished point 

In practice, a collision–based attack needs a large storage 

space if all of the generated random points are kept in the sto-

rage. Correspondingly, the time for detecting a collision also 

becomes large. Suppose that a collision Ti = Tj,i ≠ j occurs in 

the procedure. Then, their following points also give collisions 

as 

 𝑇𝑖+𝑡 = 𝑇𝑗+𝑡 , 𝑡 ≥  0. (8) 

Based on this property, the number of random points to be 

stored in the storage can be reduced. In detail, even if Ti and Tj 

such that Ti = Tj,i ≠ j are not stored in the storage, a certain pair 

 

Table IV 

EXPERIMENTAL RESULTS OF THE PROPOSED METHOD WITH THE PARAMETERS SHOWN IN Table II 

 original rho method  proposed method 

Calculation cost for generating two random points† 16A +6M +2I  14A +6M + I 

# of the expected random points for a collision  𝜋𝑟/2 ≈ 684535  

# of the generated points until a collision†† 688597  684014 

Calculation time for solving an ECDLP†† 0.91 sec.  0.58 sec. 

†: For the proposed method, it denotes the calculation cost for generating𝑇𝑖
+

and its associative 𝑇𝑖
−

. 

††: They are respectively the average number and calculation time by solving 1000 ECDLPs with 1000 random scalars. 

Table V 

EXPERIMENTAL RESULTS OF THE PROPOSED METHOD WITH THE PARAMETERS SHOWN IN Table III 

 original rho method proposed method 

Calculation cost for generating two random points† 16A +6M +2I 14A +6M + I 

# of the expected random points for a collision  𝜋𝑟/2 ≈ 2190769 

# of the generated points until a collision†† 2,182,561 2,166,959 

Calculation time for solving an ECDLP†† 3.15sec. 2.13sec. 

†: For the proposed method, it denotes the calculation cost for generating𝑇𝑖
+

and its associative𝑇𝑖
−

. 

††: They are respectively the average number and calculation time by solving 1000 ECDLPs with 1000 random scalars. 
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of their following points will be stored and give a collision as 

Eq.(8).In order to distinguish a rational point that is to be 

stored, a positive integer parameter θ is introduced. As an ex-

ample, if the x–coordinate of the point is divisible by θ on a 

usual integer division, the point is stored. When θ is equal to 

10, the number of stored points will be reduced by 1/10 
times. This technique is less cooperative to the proposed asso-

ciative point as the parameter θ becomes larger. 

According to the proposed algorithm Alg.2, the index l for Tl 

is determined by𝑇𝑖−1
+ as Step 4. In other words, itsassociative 

point𝑇𝑖−1
− does not affect to the selection ofTl. Thus, when a 

collision such as𝑇𝑖
+= 𝑇𝑖

−has occurred but not been stored as 

distinguished points, it comes to nothing as if no collisions 

have occurred. It is because the following points do not keep 

on collisions such as Eq.(8). In detail, it is easily found that 

 𝑇𝑖+𝑡
+ ≠ 𝑇𝑗+𝑡

− , 𝑡 ≥  0. (9) 

Thus, as the parameter θ for distinguishing points becomes 

larger, the efficiency of the proposed idea, that is associative 

points, becomes smaller. 

VI. CONCLUSION 

This paper has proposed associative rational points in order to 

improve collision–based attacks such as Pollard’s rho method 

on the elliptic curve discrete logarithm problem (ECDLP). 

Then, the efficiency of the proposal was evaluated experimen-

tally. It was shown that it achieved a 33% reduction of calcu-

lation time for solving an ECDLP. 

The distinguished point technique that substantially reduces 

the number of points stored in memory to find a collision is 

the most important tool for targeting large ECDLPs; however, 

the proposed idea does not cooperatively work with this tech-

nique as it is. To overcome this inconvenience will be an im-

portant future work. 
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