
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 03, May 2015

www.ijcit.com 536

A Recursive Branch and Bound Algorithm for

Feature Selection

Xifeng Tong

Northeast Petroleum University

Daqing, P.R. China

Email: csxftong [AT] 163.com

Shizhong Ma
Northeast Petroleum University

Daqing, P.R. China

Abstract—Feature selection is a basic problem in pattern

recognition application. The branch and bound (BB) algorithm is

the only feature selection algorithm that provides global optimal

results. All BB algorithms in literature are currently non-

recursive algorithms, and their corresponding program code is

highly complex. In this study, a recursive BB algorithm, which is

easy to program and debug, is designed and implemented. Given

that all nodes of a BB tree are built in RAM, the algorithm is

unsuitable for high-dimensional features. An improved recursive

algorithm that saves each tree node to a hard disk file is also

designed and implemented to address the said shortcoming. The

number of tree nodes has no limitation, which is suitable for

application with high-dimension features. The program code of

this algorithm is included in this paper.

Keywords-feature selection; branch and bound algorithm;

recursive algorithm

I. INTRODUCTION

 The feature selection procedure in a pattern recognition
application involves selecting a subset of m features from a
given set of D features with maximum results derived from a
criterion function [1]. Feature selection can decrease feature
dimensions with comparatively good classification results,
which is a necessity in many pattern recognition applications.
Different search strategies indicate that feature selection
algorithms can be classified into three major categories [2],
including (1) feature selection with global optimal results,
such as exhaustive search and branch and bound (BB)
algorithms [3][4]; (2) feature selection with a random search
strategy; and (3) feature selection with a heuristic search
strategy. The global optimal solution in an exhaustive search
algorithm is determined by searching all possible feature
combinations, which requires high computational time cost.
BB algorithms usually require lower computational time cost
than the exhaustive search algorithm because they discard
several branches under a certain condition. In general, the
feature selection with a random search strategy is combined
with simulated annealing, genetic algorithm, tabu search, etc.
These algorithms can typically obtain suboptimal feature
combinations. However, they can decrease the search space
that lowers computational time cost. The feature selection with
a heuristic search strategy includes sequential forward

selection, sequential backward selection, and floating
sequential search methods [5][6]. These algorithms involve
low computational time cost, but only suboptimal
combinations of features can be obtained.

Although the BB algorithm can obtain optimal results, most
algorithms in previous literature are non-recursive [1][3][7],
and the program codes are excessively long for programming
and debugging. This paper presents a recursive BB algorithm
for feature selection with a shorter code length and is easy to
debug.

II. BRANCH AND BOUND SEARCH

 The criterion function Cfunc() in a BB algorithm satisfies

the monotonicity condition. For two feature subsets S1 and S2,

if S1 is a subset of S2, then Cfunc(S1) < Cfunc(S2). Figure 1

shows an example that explains the monotonicity condition: a

BB example selects two features from five features. X denotes

all five features, and the tag of each node denotes the feature

to be discarded.

Theoretically, fetching d features from D features can be

conducted in
D

dC ways. The corresponding BB tree has

D

dC leaf nodes. Given the monotonicity of the criterion

function in practice, if the criterion function value of a non-leaf

node is less than that of another leaf node, all node descendants

of the non-leaf node will be discarded. For example, if the

criterion function value of node B is less than that of node A in

Figure 1, then all node B descendants are discarded from the

search space. Therefore, the search space is less than
D

dC .

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 03, May 2015

www.ijcit.com 537

B

X

3 4 443

3

2

321

4 5 54 5 4 5 5 5

A

 Figure 1. BB search diagram.

III. PROPOSED RECURSIVE BRANCH AND BOUND

ALGORITHM

 Figure 1 shows the existing relationships between number
of children and sequence numbers for the tree nodes. Assume
that p is a node and q is the father of p, then variable cld_s of
the p node is used to denote the count of node q’s children.
Assume that variable cld_c of p is the sequence number of p in
all children nodes of q, then the count of node p’s children is
cld_s+1- cld_c. We also assume that the level sequence
number of the root node is 1. If the level sequence number of a
node is lv, then the level sequence numbers of children nodes
of p are all lv+1. Assume that D features exist and the
sequence number of node p in D features is m, then the
sequence number in the feature set of each child of node p are
m+1, m+2, m+3, ..., m+cld_s+1-cld_c. Assume that the search
sequence is from top to bottom and from right to left, then a
recursive BB algorithm is described as follows. Stack[1000]
refers to a stack for saving node information, whereas stack_pt
is the top pointer of the stack in the following algorithm.

#define M 7 //number of features in total
#define N 2 //number of features remained
typedef struct TNode
{
 int data;
 double v;
 struct TNode * childs[N+1];
} TNode, * Tree;

int stack[1000], stack_pt;
void CTree(Tree &T, int lv, int fea_c, int cld_s, int cld_c)
{
 int i;
 if(lv>M-N+1)
 {
 T=NULL;
 return;
 }
 T=(Tree)malloc(sizeof(TNode));
 T->data=fea_c;
 for(i=1;i<=cld_s+1-cld_c;i++)
 CTree(T->childs[i-1],lv+1,fea_c+i,cld_s+1-cld_c,i);
 for(i=cld_s+2-cld_c;i<=N+1;i++)
 T->childs[i-1]=NULL;
}

void OutResult3(Tree T)
{
 if(T==NULL)
 return;
 stack[stack_pt++]=T->data;
 T->v=Cfunc(stack);
 if(T->v <m_bound && max_flag==1)
 return;
 if(T->childs[0]==NULL)
 {
 if(T->v >m_bound)
 {
 m_bound=T->v;
 max_flag=1;
 }
 for(int j=1;j<stack_pt;j++)
 printf("%d ",stack[j]);

 printf("%f \n",T->v);
 }
 for(int i=N;i>=0;i--)
 OutResult3(T->childs[i]);
 stack_pt--;
}

IV. IMPROVED RECURSIVE BRANCH AND BOUND

ALGORITHM

 In the previous algorithm, all tree nodes are saved in the
RAM, making it unsuitable for high-dimensional features.
Hence, an improved algorithm where all tree nodes are saved
to hard disk files is designed to save RAM space. Each tree
node is saved to a hard disk file in the improved algorithm.
The feature dimensions has nearly no limitations because the
file number in a disk folder also has almost no limitations. The
complete source code can be found in the appendix of this
paper. TNodeFile is used to define a tree node. data in
TNodeFile is used to record the sequence number of the tree
node in the feature sets, whereas v in TNodeFile is used to
record the criterion function value. The array fname[N+1][50]
in TNodeFile is used to record each file name that corresponds
to each child, TNodeFile, respectively. For example, the file
name that corresponds to the leftmost child is saved in
fname[0]. If no file name corresponds to fname[i], then
“999999999” is saved to fname[i] as a flag. The function
CreateTree() is used to create a tree recursively. The function
OutResultFile() is used to search the BB tree recursively and
output each group of feature subsets to be deleted. The
function ReadWriteFile() is used to read data from a disk file
with the third parameter set as 0, or write data to a disk file
with the third parameter set as 1. Function Cfunc() is used to
calculate the criterion function value and should be modified
according the actual criterion function. A file called
“100000000” is created first in the function main(); this file
only has one child called “100000001”. The file called
“100000001” is the root node.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 03, May 2015

www.ijcit.com 538

V. IMPLEMENTATION OF TWO IMPROVED BRANCH AND

BOUND ALGORITHMS IN THE PROPOSED RECURSIVE

FRAMEWORK

 Yu and Yuan’s BB+ algorithm [8] and Chen’s IBB
algorithm [4] are more efficient than the original BB
algorithm. The nodes with only one branch in Yu and Yuan’s
BB+ algorithm do not require calculation of the criterion
function value, unless the node is at the last level. If the
criterion function value of a path composed of nodes is less

than the bound B in Chen’s IBB algorithm, then the nodes in
the path is saved to a set. All such sets form a set list. If
several nodes of a path are equivalent to a set from the set list
in the following search, then the path is cut, to enable it to
become faster than the BB algorithm. The two algorithms can
also be implanted in the proposed recursive framework.
Therefore, the proposed recursive framework is generally
suitable for the improved BB algorithm. The following
algorithm shows the implementation of the BB+ and IBB
algorithms in the proposed recursive framework. The function
inSet() is used to determine whether a node set belongs to the
set list, whereas function addToSet() is used to add a node set
to the set list. The sentence “if(tf.fname[0][0]!='9' &&
tf.fname[0][1]=='9')” is used to judge whether a node only
has one branch.

void OutResultFile(char filename[50])
{
 int i;
 TNodeFile tf;
 if(filename[0]=='9')
 return;
 ReadWriteFile(filename,tf,0);
 stack[stack_pt++]=tf.data;
 if(tf.fname[0][0]!='9' && tf.fname[0][1]=='9')

tf.v=0;
 else
 {
 if(inSet(stack,stack_pt))
 return;
 tf.v=Cfunc(stack,stack_pt);
 if(tf.v <max_j && max_flag==1)
 {
 addToSet(stack,stack_pt);
 return;
 }
 }
 if(tf.fname[0][0]=='9')
 {
 if(tf.v > max_j)
 {
 max_j=tf.v;
 max_flag=1;
 }
 for(int j=1;j<stack_pt;j++)
 printf("%d ",stack[j]);
 printf("%f \n",tf.v);
 }
 for(i=N;i>=0;i--)
 OutResultFile(tf.fname[i]);
 stack_pt--;
}

CONCLUSIONS

A recursive BB algorithm is designed and implemented in
this study. The algorithm is easy to program and debug.
However, because all tree nodes are built in RAM, the
algorithm is unsuitable for high-dimensional features. Hence, a
recursive algorithm that saves each tree node to a hard disk file
is also designed and implemented to address this shortcoming.
No limitations are set on the number of tree nodes, making it
suitable for high-dimensional features. Two improved BB
algorithms from previous literature are also included in the
proposed recursive framework, which suggests that the
proposed recursive framework is compatible with improved
BB algorithms.

ACKNOWLEDGMENT

This work was supported by Scientific Research Fund of
Heilongjiang Provincial Education Department (NO:
12541078).

REFERENCES

[1] Z. Q. Bian and X. G. Zhang (2000). Pattern recognition. 2nd ed. Beijing:
Tsinghua University Publisher.

[2] X. Yao, X. D. Wang, Y. X. Zhang and W. Quan, “Summary of feature
selection algorithms”, Control and Decision, vol. 27, issue 2, 2012, pp.
161-166.

[3] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for
feature subset selection”, IEEE Transactions on Computers, vol. 26,
issue 9, 1977, pp. 917-922.

[4] X. W. Chen, “An improved branch and bound algorithm for feature
selection”, Pattern Recognition Letters, vol. 24, issue 12, 2003, pp.
1925-1933.

[5] K. Fukunaga, “Introduction to Statistical Pattern Recognition”, second
ed. Academic Press Inc., New York, 1992.

[6] P. Pudil, J. Novovicova, and J. Kittler, “Floating search methods in
feature selection”, Pattern Recognition Letters, vol. 15, 1994, pp. 1119–
1125.

[7] K. Fukunaga, and P. M. Narendra, “A branch and bound algorithm for
computing k-Nearest neighbors”, IEEE Transactions on Computer, vol.
24, issue 7, 1975, pp. 750-753.

[8] B. Yu, and B. Yuan, “A more efficient branch and bound algorithm for
feature selection”, Pattern Recognition, vol. 26, 1993, pp. 883–889.

APPENDIX

The following is the program code of the recursive BB
algorithm, where all tree nodes are saved to hard disk files.

#include "stdlib.h"

#include "string.h"

#define M 7 //defining number of features in total

#define N 4 //defining number of feature remained

typedef struct TNodeF

{

 int data;

 double v;

 char fname[N+1][50];

} TNodeFile;

int ct,stack[300],stack_pt;

double m_bound;

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 03, May 2015

www.ijcit.com 539

int max_flag;

double Cfunc(int stack[100])

{

 return 1.0;

}

void ReadWriteFile(char filename[100],TNodeFile & tf,int type)

{

 char filenameFull[100];

 strcpy(filenameFull,"e:\\temp_TreeNode\\");

 strcat(filenameFull,filename);

 FILE *fp;

 if(type==0)

 {

 fp=fopen(filenameFull,"rb");

 fread(&tf,sizeof(tf),1,fp);

 }

 else

 {

 fp=fopen(filenameFull,"wb");

 fwrite(&tf,sizeof(tf),1,fp);

 }

 fclose(fp);

}

void CreateTree(char filename[50], int fname_index, int lv, int fea_c,

int cld_s, int cld_c)

{

 double rval;

 int i;

 int k=0;

 TNodeFile tf;

 char filenameNew[50];

 if(lv>M-N+1)

 {

 ReadWriteFile(filename,tf,0);

 strcpy(tf.fname[fname_index],"999999999");

 ReadWriteFile(filename,tf,1);

 return;

 }

 tf.data=fea_c;

 for(i=1;i<=N+1;i++)

 strcpy(tf.fname[i-1],"999999999");

 itoa(ct,filenameNew,10);

 ReadWriteFile(filenameNew,tf,1);

 ct++;

 ReadWriteFile(filename,tf,0);

 strcpy(tf.fname[fname_index],filenameNew);

 ReadWriteFile(filename,tf,1);

 for(i=1;i<=cld_s+1-cld_c;i++)

 CreateTree(filenameNew,i-1,lv+1,fea_c+i,cld_s+1-cld_c,i);

}

void OutResultFile(char filename[50])

{

 int i;

 TNodeFile tf;

 if(filename[0]=='9')

 return;

 ReadWriteFile(filename,tf,0);

 stack[stack_pt++]=tf.data;

 tf.v=Cfunc(stack);

 if(tf.v <m_bound && max_flag==1)

 return;

 if(tf.fname[0][0]=='9')

 {

 if(tf.v > m_bound)

 {

 m_bound=tf.v;

 max_flag=1;

 }

 for(int j=1;j<stack_pt;j++)

 printf("%d ",stack[j]);

 printf("%f \n",tf.v);

 }

 for(i=N;i>=0;i--)

 OutResultFile(tf.fname[i]);

 stack_pt--;

}

void main()

{

 ct=100000001;

 TNodeFile tf;

 ReadWriteFile("100000000",tf,1);

 CreateTree("100000000",0,1,0,N+1,1);

 stack_pt=0;

 m_bound=0;

 max_flag=0;

 OutResultFile("100000001");

}

