
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    509 

 

Dissecting the User Interface of a Set of Highly 

Diffused Android Apps
 

Victor Matos 
Department of Computer and Information Science 

Cleveland State University, U.S.A. 

Email: v.matos [AT] csuohio.edu 
 

Abstract— In this study we have dissected the User Interface (UI) 

of a set of highly diffused Android apps. In particular, we are 

interested on identifying (a) what type of stylistic components are 

used to craft the UIs top décor, and (b) what type of navigation 

support do they provide to expose the general architecture and 

additional functionality of their associated applications. We have 

found that all selected apps use some form of the ActionBar or 

ToolBar control on top of their UIs. The majority of apps in our 

sample show a preference for vertical and tab-base navigation. 

Among the observed navigation patterns, we found the following:  

clickable tabs, drop-down lists, and drawer buttons. Surprisingly, 

various successful apps continue to use deprecated design and 

navigation strategies. An appendix is added showing the skeleton 

of a simple app based on the ActionBar top décor. 

Keywords-Android app development, UI design patterns, 

highly-difussed Android apps, Actionbar, Toolbar, top décor, 

vertical and tab-based navigation.  

I.  INTRODUCTION 

Software developers target today a world-wide audience 
made of a heterogeneous population representing all social, 
cultural, and economical corners of the planet. Regardless of 
the user‟s identity and background, the software designer is 
commanded to deliver software solutions that not only 
accomplish their functional goals but also provide a simple, 
effective and positive customer experience. Ideally, a positive 
user experience is one in which all wanted results are 
efficiently obtained while the users enjoys operating with their 
apps. Therefore, it is reasonable for new apps to seek some 
balance between innovation and imitation of the accepted 
visual and operational patterns defined by already established 
applications.  

The act of creating new applications could be simplified by 
re-using design patterns already tested by successful and 
popular apps. In addition, those model apps present styles and 
protocols that have already been learned by the user‟s 
community. Traditional UI computing leans on windows, 
icons, menus, and pointing mechanisms to provide a rich user-
machine interaction. Those patterns are inadequate and 
inappropriate for mobile applications on which a variety of 
new forms of interactions (swiping, tapping, pinching, shaking, 
etc) and sensorial hardware (location, light-detection, 
accelerometer, etc) are present to enhance the realm of user-
app interfacing  [9, 16].  

Using UI Design Patterns positively impacts the creative 
effort by reducing the set of design possibilities to a sub-set of 

well understood and documented paradigms [13, 14]. Among 
those efficient and well established Android patterns we have: 
vertical and horizontal navigation, modular tabs, pagination, 
hierarchical actions, and so on. Our study aims at identifying 
what components and strategies are used in well known and 
successful Android apps. 

II. ANDROID ECO-SYSTEM 

Sales of smartphone devices have long surpassed the 
acquisition of any other consumer electronic artifact. 
According to a Gartner report [8], by the end of the year 2015, 
approximately 1.2 billion people will own a smartphone. That 
roughly indicates that one person out of every eight people in 
the planet will operate a smartphone and consequently will be 
fully aware of the notion of mobile apps.  

Android OS has quickly become the leading mobile 
operating system. The estimated world-wide market share of 
devices powered by Android OS is 77% [7]. This position is 
followed by Apple‟s iOS with a 20% of the global market, and 
finally the remaining 3% is shared by Windows, Blackberry, 
and others.  

The top mobile applications by the end of 2014 consisted of 
an assortment of categories, among them: social-media, 
searching, messaging, entertainment, mapping, news, shopping 
[5]. Facebook ranked as the top smartphone app, reaching 
69.7% of the global audience, followed by YouTube (54.5%), 
Google Play (51.8 %) and Google Search (51.5%).  Mobile 
subscribers are avid software users; the KBPG group [11] 
reports that the average mobile users check their phones 
approximately 150 times per day. 

Android is an open platform that allows for hardware and 
software diversity.  Android powered devices are made by a 
number of different manufactures, many of whom add their 
own variations to the base hardware and software 
specifications. Consequently there is a wide range of physical 
Android devices targeting different market segments.  

A direct consequence of Android‟s device fragmentation is 
the simultaneous existence of various versions of the operating 
system. Due to the different features and capabilities supported 
by each OS version, as well as the individual contributions 
made by the carriers, there is not a single and uniform 
manifestation of the Android experience. Instead, there are 
various forms of user-app interactions -which although are not 
entirely different- are nonetheless not the same for each user. 
Clearly, the application software designer must carefully 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    510 

 

 
 

Figure1. An Android App displaying a simple Drawer-Navigation style. 

 

 

 

consider this range of possibilities and take advantage of the 
best alternatives for the app in mind. 

III. PROBLEM STATEMENT 

Our objective is to find a formula for crafting successful 
Android apps.  

In order to discover how-to continuously design high 
quality applications, we turn our attention to the exploration of 
a set of already well established Android apps. Table1 lists the 
observed applications. In particular we want to know how their 
User Interfaces are made, and how do they allow the user to 
visit the main logical sub-components of each selected app. 
The applications considered in this study have been chosen 
based on their high rate of diffusion as well as their index of 
user-satisfaction. We have chosen to narrow our investigation 
to a pair of inter-related design subjects (a) ascertain what 
stylistic elements are placed on the app‟s top portion of the 
screen (top décor), and (b) identify what exploration 
mechanisms are facilitated by those top décor elements.  

The motivation behind this project is simple; it is 
reasonable to believe we may learn from these examples and 
become better developers. Emphasizing the importance of the 
UI‟s architectural top element is consistent with the natural 
lexicographic process of inspecting documents written in 
Romance-based languages. On those documents (and therefore 
visual UIs) the human eye moves in a top-to-bottom, and left-
to-right order (we recognize the fact that in some scripts such 
as Chinese, Hebrew and Arabic, the lexicographic order is 
different).  Consequently the first graphical object to be 
naturally seen on an arbitrary screen tends to be its top-décor.  

IV. DEFINING NAVIGATION 

Android apps are made by integrating a variety of building 
blocks among them: activities, fragments, background services, 
broadcast receivers, and content providers [1, 10, 12]. Some of 
them (services, receivers, and content providers) do not have a 
visual representation. However; each UI or screen, is typically 
bound to an individual activity or fragment.  

 

User controlled Navigation is the process of reaching 
sections of an app as they are presented by their screens. 

Consequently, navigation and execution of activities and 
fragments are expressions of the same experience.  

Figure1 illustrates a form of „Vertical Navigation‟ in which 
a DrawerView control is activated by pressing the optional 
„Hamburger‟ button (≡) found on the top-left corner of the 
app‟s ActionBar. The overlapping curtain presents a (vertical) 
list of possible options or sections the user may want to 
explore. Backtracking from a section to the main screen is 
accomplished by either pressing the ActionBar‟s „UP 
Navigation‟ button (⟵ ActionBar‟s top-left corner) or the 
device‟s Back-button (⤶ or at the bottom of the device).   

Navigation has two phases:  exploration and backtracking. 
In the first case the user moves from one screen to any of its 
direct logical children. On backtracking the user returns to a 
previously exposed window which can be either its immediate 
ancestor, or a distant node on the view hierarchy.  

Android‟s Back key historically reverses the visitation 
sequence, in a way similar to the previous-window transition 
provided by the backward button of a web browser. Tapping 
the Up-key allows jumping from a distant child view to a non-
immediate ancestor (say „MainActivity‟). For this scheme to 
work, the app‟s manifest must include for the child activity the 
clause   android:parentActivityName="MainActivity" which 
identifies the target destination to be reached. 

 

Figure 2 shows the Weather-Channel app‟s top décor. This 
app offers two exploration strategies: first there is a vertical 
custom-list embedded in the ActionBar facilitating the 
selection of City/Location as well as a Tab-Based navigation 
bar to expose individual sections of the app (such as Radar, 
Video, Forecast). Under this model, whenever a tab-button is 
clicked, a new UI is presented to the user.   

In general, Navigation Tabs can be either directly 
embedded into the ActionBar or -as in this example- held into a 
horizontal scroll layout underneath the ActionBar. The selected 
tab is usually marked using a different color or a highlight.  

Apps older than SDK5.0 used the ActionBar to anchor their 
navigation tabs; however this technique is now deprecated. 
Currently tab-based exploration still remains a recommended 
navigation pattern, but tabs should not be part of the 
ActionBar, and instead they should be held into a horizontal-
scroll, tab-strip, or custom control [12].  

 
 

Figure2. ActionBar shows a custom dropdown list-view, menu items, 

and navigation tabs.Figure 2.  



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    511 

 

V. DATA SOURCES 

We have included in our study a group of twenty one 
highly diffused and successful Android applications. We will 
refer to this group as the HDSAPP collection (Highly Diffused 
Successful-Apps).  

Our summary data shown in Table1 was obtained from 
information gathered from the Google Play electronic store 
(http://play.google.com, visited on April 1, 2015).  Google Play 
is the site where users go to buy and download music, videos, 
books, apps, etc.  

 App  
Name 

Down 
loads 

Rating  Reviewers Category 

1 Google 
Search 

1B 4.4 1.5 M Tools 

2 Gmail 1B 4.3 1.8 M Communi- 
cation  

3 Google 
Maps 

1B 4.3 4.7 M Travel& 
Local 

4 YouTube 1B 4.1 6.1 M Media& 
Video 

5 Facebook 1B 4.0 27.2 M Social 

6 WhatsApp 1B 4.4 24.9 M Communi-
cations 

7 Instagram 500 M 4.5 20.6 M Social 

8 Skype 500 M 4.1 6.5 M Communi_ 
cations 

9 Pandora 100 M 4.4 1.9 M Music& 
Audio 

10 Netflix 100 M 4.4 1.7 M Entertainment 

11 Adobe 
Reader 

100 M 4.3 1.9 M Productivity 

12 Twitter 100 M 4.1 5.1 M Social 

13 eBay 100 M 4.3 1.3 M Shopping 

14 Kindle 100 M 4.1 0.4 M Books& 
References 

15 Weather 
Channel 

50 M 4.3 1.1 M Weather 

16 Wikipedia 10 M 4.4 0.3 M Books& 
References 

17 Zillow 10 M 4.4 0.2 M Lifestyle 

18 ESPN 
SportCenter 

10 M 4.2 0.4 M Sports 

19 BBC News 10 M 4.2 0.1 M News& 
Magazines 

20 Amazon 
(Tablets) 

10 M 4.2 0.1 M Shopping 

21 Expedia 10 M 4.0 0.05 M Travel_& 
Local 

22 Angry 
Birds 

100 M 4.4 4 M Arcade 

 

Table 1. Set of Highly Diffused and Successful Android Applications  

All apps listed in our HDSAPP collection are available for 
download at no cost to the user. Paid versions are not 
considered in this study. (As of April 1, 2015)1 

 

For each app in the selected group we have included: (1) its 
name, (2) a lower-bound estimation of the number of total 
downloads for that app, (3) a rating value representing the 
users‟ perception of quality (values are chosen from a scale of 
1…5 stars, were 5 stars represents the highest quality), (3) the 
number of people who have provided a score for the app, and 
(5) the main category to which the application belongs. Table1 
shows the selected HDSAPP apps and summarizes the data 
items enumerated above. 

VI. DIFFUSION RATE 

The Download attribute shown in Table1, is used to divide 
the HDSAPP set into five categories (remember that this field 
estimates the number of times an app has been installed in a 
device). The first group includes applications that have been 
downloaded at least 1billion times each. According to Google 
Play, the actual numbers are rather between 1 and 5billion; but 
for conservative reasons, only the lower bound index is shown 
in Table1. The next download categories are broken down 
(using their lower index indicators) as follows:  500, 100, 50, 
and finally 10 million deployments.  

Altogether, the apps in the HDSAPP set have been installed 
over 6 billion times. Considering there are close to eight billion 
people in the planet, the diffusion rate of the selected apps is 
significantly high (in average 1 out of each 8 people in the 
planet is a Gmail user, a Facebook user, and so on). 
Consequently, we may argue that very large pools of people 
who are disperse all over the planet, have already learned how 
to use those apps. In addition, the stylistic and operational 
protocols shown by HDSAPP apps define a familiar pattern 
that is expected and welcomed on new apps. 

VII. MEANING OF „SUCCESSFUL APP‟ 

The issue of quality regarding the HDSAPP sample has 
been addressed by deferring to the Google Play‟s Five-Star 
ranking system. In this schema, users submit a score for an app, 
analogue to the „Five Stars‟ approach used for grading hotels 
and restaurants. The lowest possible rate given to an app is one 
„star‟, while apps producing the highest degree of user 
satisfaction are granted five stars. In our study all selected apps 
have been rated as low as 4.0 and as high as 4.5 (with an 
average of 4.25 points). It is important to acknowledge the 
large number of end-users submitting their evaluations.  

The column „Reviewers‟ in Table 1 shows the count of 
votes received by each app. Please observe that some apps such 
as Facebook, Instagram, Whatsapp, and Skype have been rated 
by tens of millions of users (between 2% and 6% of total users) 
and others such as Gmail, Google Maps, Amazon Shopping 
have been rated by a much lower percentage of users (between 
0.01% and 2%). 

                                                           
1
  All apps in Table1 are copyrighted © products belonging to their authors 

and corresponding companies. 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    512 

 

 

Figure 3. Example on an ActionBar displayed on a Tablet 

VIII. BACKGROUND - ANATOMY OF A TYPICAL ANDROID 

ACTIONBAR/TOOLBAR 

In general, the UI of any Android app could be visually 
divided into three parts: header, body, and footer. Normally the 
header and footer are optional components, whereas the body is 
ordinarily the main visual manifestation of the app. All the 
apps in this study include a header component which is 
implemented either as a primitive ActionBar or ToolBar widget 
or a custom designed décor element imitating the structure of a 
ToolBar [3, 10, 12].  

The Android ActionBar control was introduced in SDK 3.0 
and plays a special role on the crafting of contemporary apps.  
It is depicted as a graphical tool-bar at the top of each screen 
and it is usually persistent across the app. Its dedicated 
placement and repeated style provides a sense of consistent 
identity and facilitates -in a predictable way- access to 
important actions and navigation.  As illustrated by Figure3, an 
ActionBar may contain the following pieces: Navigation 

Button (Hamburger or UP Arrow icon), an identity logo, title 
and subtitle, an optional custom view, action tiles (clickable 
buttons showing icons, text, or custom layouts), and finally an 
overflow Options-Menu (⋮) button placed on the rightmost 
corner of the bar. Legacy apps may also render ActionBar 
décors holding embedded Navigation-Tab (bear in mind this 
practice was deprecated after SDK4.4). 

The ActionBar can be used to support various navigation 
patterns, for instance (1) its “Hamburger” button ( ≡ top-left 
corner, see Figure1) could be tapped to display an overlapping 
DrawerView. The DrawerView is a sliding curtain (see 
Figure1) holding a list of sections or entry-points deemed 
important to the app. This navigation pattern is called Vertical 
Navigation, (2) scrollable horizontal tabs (either embedded or 
neighboring) could be tapped to expose a selected view 
(perhaps a page from a ViewPager control, an inflated resident 
fragment, or a window shown by another activity invoked via 
Intents. This style is called Tab Navigation. Finally, the UP 
(Arrow) button (⟵ top-left corner, see Figure 1) could be used 
to jump back to the previously visited screen or any higher 
place in the app‟s view hierarchy. 

The clickable action buttons of an ActionBar are defined in 
an XML menu file. Figure4 shows the menu specification used 
for the ActionBar depicted in Figure3. This resource file is later 
programmatically inflated and presented as part of the app‟s 
global Options-Menu. In addition, menu items may also appear 
on the drop-down list known as the overflow OptionsMenu. An 
OptionsMenu generally persists for the lifetime of the app, 
however it could be dynamically enabled, disable, and 
changed.  

 
<?xml version="1.0" encoding="utf-8"?> 
<menu xmlns:android= 
    "http://schemas.android.com/apk/res/android" > 
 
    <item 
        android:id="@+id/search" 
        android:actionLayout="@layout/custom_search_on_actionbar" 
        android:showAsAction="ifRoom" 
   android:title="Search"/> 
    <item 
        android:id="@+id/reset" 
        android:icon="@drawable/ic_action_reset" 
        android:showAsAction="ifRoom" 
        android:title="Reset"/> 
    <item 
        android:id="@+id/about" 
        android:icon="@drawable/ic_about" 
        android:showAsAction="never" 
        android:title="About"/> 
</menu> 
 

Figure4. Resource menu file used to populate the ActionBar shown  
on Figure2. 

Two methods do most of the work related to interacting 
with ActionBar‟s buttons:  

(1) onCreateOptionsMenu( … ) Inflates the XML menu-file 
executing the statement  actionbar.inflateMenu (R.menu.menu)  

(2) onMenuItemClick(MenuItem item) responsible for 
capturing the click-event on a tile (menu item) and channeling 
the proper response to the user‟s request.  

Each menu action item shown in Figure3 has an ID (such as 
android:id="@+id/search"). This ID field is used by the 
onMenuItemClick listener to determine what button has been 
tapped. In addition items may include an icon or a layout, a 
title, and an entry indicating how to render the item on the 
menu bar. For instance, the clause showAsAction="ifRoom" 

displays the action tile only if the device has enough room for 
it, whereas the clause showAsAction="never" places the item 
directly into the Overflow-Menu. A long ActionBar may split 
and be shown as top and bottom décors; this division often 
occurs on devices with a small screen. If defined, an optional 
custom view is placed between the title and the first menu item.  

The ActionBar shown in Figure3 includes a custom Spinner 
or DropDown control. Each row held in the spinner consists of 
an icon (a star in our example) and text (“spinner-row-n”). The 
pattern Drop-down list navigation occurs when the user picks 
a row from the list and the app adjusts to the requested choice. 
For instance, the drop-down list of Figure2 (Weather Channel 
app), allows the user to select a city. The app responds by 
presenting a weather forecast for the chosen locality. Adding a 
custom layout to an action bar is programmatically 
accomplished by the following logic 
actionBar.setCustomView(R.layout.custom_view_on_actionbar). 
This layout specification indicates the structure of the custom 
view that is to be embedded in the action bar. The custom 
Spinner control was used in early Android apps as an 
alternative navigation pattern. However; this practice is now 
considered obsolete and has been deprecated. 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    513 

 

 

Figure5. An example of  Gmail‟s View Hierarchy reported by the UI-

Automation Tool 

IX. RESEARCH METHODOLOGY  

We used the SDK UI-Automation Tool [2] to explore the 
main screen of each app listed in Table1. The UI-Automation 
Tool (or Hierarchy Tool) provides a visual representation of the 
app‟s view hierarchy together with performance information 
for each node in the layout. For example, Figure5 shows the 
results obtained after sampling a Gmail session running on a 
small handset device.  Each app listed in Table1 was inspected 
on two physical devices: a small handset (running SDK 4.4) 
and a large tablet (under SDK 5.1). In most cases the layouts 
for handsets and tablets are the same; however we have made 
notes of any exceptions found.  

The image on the left panel of Figure5 is an attempt to 
replicate a pixel-by-pixel rendition of the window shown by 
the app on the hardware device. On the right hand side of the 
screen there are two panels. The top view shows the Tree-
Hierarchy representation of the UI, the lower panel provides 
specific Properties of a selected UI‟s component. To some 
extend the Hierarchy tool facilitates a reverse engineering 
operation in which one can take an existing app and dissect 
most elements of its UI. Figure5 captures the moment in which 
we clicked on the Gmail app‟s top décor. The Tree-Hierarchy 
panel synchronizes with the visual selection by highlighting the 
corresponding tree node. In this case, the top décor is identified 
as a „view‟. The „view‟ label is followed by the location (in 
pixels) of its corresponding top-left and bottom-right corners. 
The descendants of the chosen „view‟ node include the 
following: Hamburger (Navigation Button), an ImageView 
surrounding a TextView displaying the caption “Primary” and 
finally a compact linear layout on which a magnifier icon 
(search action) is allocated.  

We detected a limitation on the way the SDK Hierarchy 
tool describes nodes of the UI under examination. For instance 
the root node of a sub-tree could be just labeled “view [pixel 
top-left cornet] [pixel bottom-right corner]” without providing 
specific declaration of its true nature. There is no way to 
determine if the selected view is exactly a Toolbar or an 

ActionBar. In our case this is not an issue because both 
components are treated as equivalent elements. 

X. SUMMARY OF OBSERVATIONS 

Table2 summarizes our observations. For each entry listed 
in Table1 we have recorded two dimensions: (1) Nature of the 
design element used on the UI‟s header, and (2) Navigation 
styles provided by the top décor. Possible entries for the first 
category include: (a) Presence of an ActionBar/Toolbar, (b) 
Presence of a custom designed view, and (c) None (top décor 
not used). Entries for the second dimension describe navigation 
modes including: DrawerView, Tabs, Spinner, custom 
methods, and none. If applicable, there are separate entries for 
handset and tablet implementations. See for instance the case 
of Pandora, Whatsapp, and Twitter which use different 
strategies based on the screen size of the user‟s device. 

The popular arcade app „Angry Birds‟ is an exception to the 
design patterns evaluated in this paper. This application does 
not have a distinguishable top décor element; instead the app 
dedicates its entire screen to render the multiple images used in 
the game. In this case we have entered “none” under top décor 
and navigation support (the app is excluded from the statistics 
given below).  

  Top Décor Navigation Strategy 

 (Free) 

App Name 

Actionbar 

Toolbar   

Custom 

Design 

 

Drawer 

View 

Tabs 

 

Drop 

Down 

List 

 

Custom 

Strategy 

 

1 Google 

Search 

 Y1 Yes    

2 Gmail Yes  Yes    
3 Google Maps  Y3 Yes    
4 YouTube Yes  Yes Yes   
5 Facebook  Y5 Y5 Y5   
6 WhatsApp 

(Phone) 

Y6      

7 Instagram  Y7  Y7   
8 Pandora 

(Phone) 

Yes   Y8P   

8 Pandora 

(Tablet) 

Yes     Y8T 

9 Netflix Yes  Yes    
10 Adobe 

Reader 

Yes  Yes    

11 Skype  Y11     
12 Twitter 

(Tablet) 

Yes   Yes   

12 Twitter 

(Phone) 

 Y12  Y12  Y112 

13 eBay Yes     Y13 
14 Weather  

Channel 

Yes   Y14 Y14 Y14 

15 Kindle Yes  Yes    
16 Wikipedia Yes  Yes    
17 Zillow Yes     Y17 
18 ESPN 

SportCenter 

Yes  Yes    

19 BBC News Yes      
20 Amazon 

(Tablet) 

 Y19    Y19 

21 Expedia Yes      
22 Angry Birds None      

 

TABLE2. Observed Top-Décor & Associated Navigation Features 

 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    514 

 

Comments: Top Décor, Navigation 

 
 Y1 Custom toolbar showing a „QuickSearchPlate‟.    

  No additional navigation features. 

 Y3 Custom toolbar showing a „QuickSearchPlate‟.    

  No additional navigation features. 

 Y5 Toolbar-Like (Search,  Contacts).  Navigation  Tabs 

  plus DrawerView-like “Contacts” 

 Y6 Our speculation.  View hierarchy not observed [app 

  does  not allow view  inspection] 

 Y7 Toolbar-Like(Identity, Messages).  Navigation:  

  Tab-based using older TabHost, TabWidget style 

 Y8P Toolbar, Navigation: Tab-based using TabHost,  

  TabWidget  

 Y8T Toolbar, Navigation: Custom List (Add Station,  

  Shuffle, RadioStations)  

 Y11 Toolbar-Like (Identity, Call, IMS, Contacts,   

  Avatar, MoreOptions) 

 Y12 Custom toolbar-like (Search, Write). TabHost &  

  TabWidget  

 Y13 Toolbar. Navigation is Tab-Based using a custom  

  layout placed away from the toolbar 

 Y14 Toolbar. Navigation is Tab-Based, tabs are on a  

  ScrollView linked to a ViewPager, additional   

  custom view (Spinner control) 

 Y17 Toolbar, Navigation provided by a floating    

  DialogBox exposing the app‟s OptionsMenu  

 Y19 Custom toolbar, DrawerView based navigation. 
 

TABLE2(continuation). Observed Top-Décor & Associated Navigation 

Features 

 

There are twenty-one different apps listed in Table1. All of 
those highly diffused apps make use of the ActionBar/Toolbar 
top décor style. Fourteen apps (or 66% of the sample) expose a 
view based on a native ActionBar (or analogous Toolbar) 
widget as provided by the Android SDK, while seven apps (or 
33% of the sample) utilize a custom made top décor. One app 
(Twitter) uses the native ActionBar element for its handset 
design and a custom top décor for tablets.  

A common denominator of the observed ActionBars is the 
consistent presence on the right corner of an Overflow Menu 
button (⋮). This button repeatedly facilitates among others 
choices, the app‟s „Settings‟ option. The applications Google 
Search and Google Maps use a very simple TextView-like top 
décor called „QuickSearchPlate‟. The QuickSearchPlate widget 
is specialized on calling a search-provider using the supplied 
text. Nothing else is used in the header of those two apps. 
Other common design strategy observed in our sample is the 
custom crafting of a toolbar-like control that looks and works 
as a native ActionBar widget but is reported by the UI-
Hierarchy Tool as a custom layout.  

Applications such as Facebook, Instagram, Skype, Twitter, 
and Amazon (Tablet version) rely on look-alike ActionBars. 
The top décor of these apps hosts familiar toolbar components 
such as identity logo, icons, and Overflow menu. We speculate 
this was done to give the designer more control on the behavior 
and longevity of these organizations. Remember that the 

ActionBar standard have been changed often and currently its 
tab and drop-down list navigation modes are deprecated.  

We have observed three dominant navigation styles 
connected to the top décor of apps in the HDSAPP collection, 
(1) Tab-mode (see  Figure2), (2) DrawerView-mode (see 
Figure1), and (3) Custom-designed strategies. There is almost 
an even split between the use of the DrawerView and Tab 
styles (at 48% each). Only one app (Zillow) uses an 
exploration pattern based on a legacy floating option menu [10, 
12].  Styling variations between apps using the DrawerView 
pattern are almost inexistent. The DrawerView is decorated 
with some artwork on top and proceeds to list options on a 
row-wise mode. Tapping an option closes the curtain and 
exposes a new window as requested. Users of those apps will 
encounter a familiar structural and behavioral experience in the 
exploration of the DrawerViews.  

Tabs are implemented using a wide range of design options. 
The most common solution found for holding navigation tabs 
is based on the use of a TabStrip or a Horizontal-Scroll control. 
An interesting finding is that the apps Pandora and Twitter base 
their Tab-Navigation on the legacy TabHost-TabWidget 
controls. The Weather Channel app uses a custom-view top 
décor component holding among others a drop-down list from 
which the user may navigate from one location to another. 

XI. CONCLUSION 

Mobile UI patterns are transient and tend to change as the 
hardware platforms become more capable and the software 
more mature and stable. However, at the time of writing, our 
study suggests that the apps in the HDSAPP have a remarkable 
common structural and functional architecture. This design 
sameness is surprising considering they operate on very 
different problem domain areas including among others: 
entertainment, news, geo-mapping, messaging, shopping, etc.  

The two most relevant characteristics of the observed 
HDSAPP sample are: (1) all the apps place as top décor an 
ActionBar-Toolbar (or look-alike) control. (2) navigation tied 
to the top décor is predominantly based on two stylistic 
options: DrawerView (Vertical Navigation) and Tab controls. 

 Best design practice suggests that Tab buttons should not 
be embedded into the ActionBar, instead, if used, they should 
be held in either a TabStrip or Horizontal-Scroll container 
adjacent to the ActionBar. The HDSAPP sample is evenly 
divided between tabbed and list based exploration. However, a 
previous research [4] suggests that when list-based exploration 
was used, results were found faster than under tabbed-
navigation, and also users reported a perceived better ease-of-
use advantage.  

We may conclude that imitating the UI patterns used by the 
HDSAPP set is a recommended first step in creating a 
successful Android app. 

REFERENCES 

[1] Android Developer. Application Fundamentals. Accessed on March30, 
2015 from 
http://developer.android.com/guide/components/fundamentals.html 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    515 

 

[2] Android Developer. Hierarchy Viewer – Accessed on March 22, 2015 
from http://developer.android.com/tools/help/hierarchy-viewer.html  

[3] Android Developer. Action Bar – Accessed on April 10, 2015 from 
http://developer.android.com/guide/topics/ui/actionbar.html 

[4] Balagtas-Fernandez, Florence, Forrai, Jenny, Hussmann, Heinrich. 
Evaluation of User Interface Design and Input Methods for Applications 
on Mobile Touch Screen Devices. Human-Computer Interaction – 
INTERACT 2009 Lecture Notes in Computer Science Volume 5726, 
2009, pp 243-246 

[5] ComScore Inc.  Top 15 Smartphone Apps, January 2015. 
http://www.comscore.com/Insights/Market-Rankings/comScore-
Reports-January-2015-US-Smartphone-Subscriber-Market-Share 
(accessed Marh 17, 2015) 

[6] Digital TV Research Inc. Number of connected TV sets worldwide from 
2010 to 2018 (in millions). Retrieved March 17, 2015, from 
http://www.statista.com/statistics/247160/ forecast-of-the-number-of-
connected-tv-sets-worldwide/ 

[7] IDC Inc. Global smartphone operating system market share held by 
Android from 1st quarter 2011 to 4th quarter 2014. Retrieved March 17, 
2015, from http://www.statista.com/statistics/236027/global-
smartphone-os-market-share-of-android/  

[8] Gartner Inc. Number of smartphones sold to end users worldwide from 
2007 to 2014 (in million units). Retrieved March 17, 2015, from 
http://www.statista.com/statistics/263437/global-smartphone-sales-to-
end-users-since-2007/ 

[9] Gavalas, Damianos & Economou, D. Development Platforms for Mobile 
Applications: Status and Trends, by. IEEE Software, (Volume: 28, Issue: 
1) Jan 2011. 

[10] Matos, V. Lecture Notes: Mobile Application Development Using 
Android OS. Retrieved March 22, 2015 from 
http://grail.cba.csuohio.edu/~matos/notes/cis-493/2014-fall/Android-
Syllabus-2014-fall.pdf 

[11] Meeker, Mary & Liang, Wu. KPBG - Internet Trends D11 Conference. 
Retrieved April 1, 2015 from http://kpcb.cc/d3144e9 

[12] Murphy, Mark. The Busy Coder's Guide to Android Development 
Version 6.5.  Published by CommonsWare, LLC, 2015. ISBN: 978-0-
9816780-0-9 

[13] Nudelman, Greg. Android Design Patterns. Edited by Wiley & Sons Inc. 
2013, ISBN 978-1-118-39415-1 

[14] Neil, Theresa. Design Pattern Gallery: UI Patterns for Smartphone Apps. 
O‟Reilley Publications. 2nd Edition, 2014, ISBN-13: 978-1449363635 

[15] Neil, Theresa & Malley, Rich. Rethinking Mobile Tutorials: Which 
Patterns Really Work? Accessed April 12, 2015 from 
http://www.smashingmagazine.com/2014/04/22/rethinking-mobile-
tutorials-which-patterns-really-work/  

[16] Subramanya, by S.R. ; Yi, B.K. User interfaces for mobile content. IEEE 
Computer (Volume:39 ,  Issue: 4 ) April 2006. 

APPENDIX. CREATING A SIMPLE ACTIONBAR APP  

 

 

 Figure 6. Layout of a simple ActionBar-based app. 

A. Menu XML-Definition 

<menu xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:app="http://schemas.android.com/apk/res-auto" 
    xmlns:tools="http://schemas.android.com/tools" 
    tools:context="csu.matos.MainActivity" > 
  
    <item 
        android:id="@+id/action_search" 
        android:icon="@drawable/ic_action_search" 
        android:orderInCategory="120" 
        android:showAsAction="always|withText" 
        android:title="Search"/> 
    <item 
        android:id="@+id/action_share" 
        android:icon="@drawable/ic_action_share" 
        android:orderInCategory="140" 
        android:showAsAction="always" 
        android:title="Share"/> 
    <item 
        android:id="@+id/action_download" 
        android:icon="@drawable/ic_action_download" 
        android:orderInCategory="160" 
        android:showAsAction="always" 

    android:title="Download"/> 

<item 
        android:id="@+id/action_settings" 
        android:orderInCategory="180" 
        android:showAsAction="never" 
        android:title="Settings"/> 
    <item 
        android:id="@+id/action_about" 
        android:orderInCategory="200" 
        android:showAsAction="never" 
        android:title="About"/> 
  
</menu> 

B. Main Activity Java-Code 

public class MainActivity extends Activity { 
    EditText txtMsg; 
 @Override 
 protected void onCreate(Bundle savedInstanceState) { 
  super.onCreate(savedInstanceState); 
  setContentView(R.layout.activity_main); 
  txtMsg = (EditText)findViewById(R.id.txtMsg); 
  // setup ActionBar  
  actionBar = getActionBar(); 
  actionBar.setTitle("ActionBarDemo2"); 
  actionBar.setSubtitle("Version2.0"); 
  actionBar.setLogo(R.drawable.ic_action_logo); 
 
  // choose a custom background(color, gradient) 
  actionBar.setBackgroundDrawable(getResources() 
  .getDrawable(R.drawable.mybackground0));  
  actionBar.setDisplayShowCustomEnabled(true);   
  // allow custom views to be shown 
  actionBar.setDisplayHomeAsUpEnabled(true);    
  // show ‘UP’ affordance < button 
  actionBar.setDisplayShowHomeEnabled(true);    
  // allow app icon – logo to be shown 
  actionBar.setHomeButtonEnabled(true);     
  // needed for API14 or greater  

 } 
  
 @Override 
 public boolean onCreateOptionsMenu(Menu menu) { 
  // Inflate the menu; add items to the action bar 
  getMenuInflater().inflate(R.menu.main, menu); 
  return true; 
 } 
  
 @Override 

http://developer.android.com/tools/help/hierarchy-viewer.html
http://www.smashingmagazine.com/2014/04/22/rethinking-mobile-tutorials-which-patterns-really-work/
http://www.smashingmagazine.com/2014/04/22/rethinking-mobile-tutorials-which-patterns-really-work/
http://www.smashingmagazine.com/2014/04/22/rethinking-mobile-tutorials-which-patterns-really-work/
http://www.smashingmagazine.com/2014/04/22/rethinking-mobile-tutorials-which-patterns-really-work/
http://www.smashingmagazine.com/2014/04/22/rethinking-mobile-tutorials-which-patterns-really-work/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 04 – Issue 03, May 2015  

 

www.ijcit.com    516 

 

 public boolean onOptionsItemSelected(MenuItem item) { 
  // user clicked a menu-item from ActionBar  
  int id = item.getItemId(); 
  
  if (id == R.id.action_search) { 
   txtMsg.setText("Search..."); 
   // perform SEARCH operations... 
   return true; 
  }  

 

  else if (id == R.id.action_share) { 
   txtMsg.setText("Share..."); 
   // perform SHARE operations... 
   return true; 
  }  
  else if (id == R.id.action_download) { 
   txtMsg.setText("Download..."); 
   // perform DOWNLOAD operations... 
   return true; 
  }  
  else if (id == R.id.action_about) { 
   txtMsg.setText("About..."); 
   // perform ABOUT operations... 
   return true; 
  }  
  else if (id == R.id.action_settings) { 
   txtMsg.setText("Settings..."); 
   // perform SETTING operations... 
   return true; 
  } 
 
  return false; 
 } 
} 
 

C. Comments 

 

1. Calls to the method findViewById() provides plumbing 

operations. Here we establish access to the GUI‟s  

EditText field displaying the “Hello World” line.  

2. The method onCreateOptionsMenu() is called to 

prepare the app‟s OptionsMenu. The xml file 

res/memu/main.xml containing the ActionBar item 

specifications is inflated using a MenuInflater object. 

Some action items will be shown on the ActionBar as an 

Icon/Text tile and the rest moved to the overflow menu 

window. 

3. When the user clicks on a reactive portion of the 

ActionBar, its item‟s ID is supplied to the 

onOptionsItemSelected() method. There you branch to 

the appropriated service routine where the action is 

served. Finally return true to signal the event has been 

fully consumed. 

4. A call to the getActionBar() method returns a handle to 

the app‟s ActionBar. Using this reference you now have 

programmatic control to any of its components.  

5. In this example a new title & subtitle is assigned to the 

ActionBar. Notice that when you work with a complex 

app exposing many screens, changing title and/or subtitle 

becomes a simple, yet powerful way of guiding the user 

through the app. 

6. The app‟s identifying logo could be changed with a call 

to .setLogo(drawable). Similarly, the ActionBar‟s 

background image could be changed to any drawable 

you chose that is stored as a .PNG image into the 

res/drawable folder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


