
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 239

Using an Interaction Model as a Requirement for

Distributed Database Design to Enhance Data Access

and Reliability in Higher Learning Institutions: A

Study Conducted at Saint Augustine University of

Tanzania

Anthony Mwombeki

Information Systems Department–College of Informatics and Virtual Education

 University of Dodoma, UDOM

 Dodoma, Tanzania

Email: mwombekianthony [AT] gmail.com

Abstract—Data access and distribution is one of the key

challenges facing Tanzania higher learning institutions

especially those with distributed campuses in various regions

and districts within the country. Saint Augustine University of

Tanzania, having distributed campuses, experience data

access, reliability and distribution challenges due to the

presently used centralized database systems resulting to

problems in data access and distribution as well as data

reliability in case of system failure.

This study explores the challenges resulting from the currently

used centralized database systems and recommends

appropriate solutions which can in turn be employed to utilize

the current high bandwidth network within the country to

design distributed database systems by making appropriate

decisions on the placement of data and programs across

different University campuses as sites of a computer network

and probably designing the network itself.

The study proposes effective analysis of institutions key tasks

with appropriate interaction models designed based on those

tasks being fundamental to distributed database systems

design. The top down design approach which involves

designing of distributed database systems from scratch was

employed with homogeneous distributed database environment

being employed across various sites of a computer network.

Sybase replication server architecture was employed during

replication design to enhance sharing of information across

campuses of the University. The study finally proposes the use

of appropriate interaction models for distributed database

systems design and implementation to enhance data access,

distribution and reliability in higher learning institutions

specially institutions with distributed campuses.

Keywords—DDBMS, SAUTDDBS, Top down design, Interaction

model, Horizontal fragmentation, Replication server.

I. INTRODUCTION

Distributed database system is the union of what appear

to be two diametrically opposed approaches to data

processing which are database systems and computer

networks [1]. Computer networks promote a mode of work

that goes against centralization since the most important

objective of database technology is data integration and not

data centralization. Integration is possible without

centralization, since integration of databases and networking

does not mean centralization. Therefore, the main purpose of

distributed database systems is to achieve data integration

and data distribution transparency [1].

A distributed database system (DDBS) consists of two or

more data files located at different sites on a computer

network. Because the database is distributed, different users

can access it without interfering with one another. A DDBS

consists of distributed database management system

(DDBMS) software. DDBMS is a collection of DBMS

software whose function is to manage the DDBS and

provides an access mechanism that makes data distribution

transparent to the users. Thus, DDBMS software must

periodically synchronize the distributed database at various

sites to make sure that they all have constant data [1].

Higher learning institutions with distributed campuses

particularly Saint Augustine University of Tanzania (SAUT)

experience a challenge of how to improve data access in

various campuses while ensuring data reliability in case of

system failure. This is due to the fact that most higher

learning institutions still use centralized database systems for

various activities and processes involving both institutions

members and their respective alumni. This challenge can be

managed by designing and implementing distributed

database systems through the use of appropriate models of

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 240

interactions making sure that all important parties, activities

and processes are taken into account during the design

process [1][2].

This research study proposes the use of an appropriate

interaction model as an effective requirement for distributed

database systems design where five campuses of SAUT have

been taken as five sites of Saint Augustine University of

Tanzania Distributed Database System (SAUTDDBS). The

model can easily and effectively be used with the top down

approach for distributed database design process. Thus,

depending on data requirements at various sites, the database

can then be fragmented into several fragments to ensure easy

data access and reliability.

In Distribution design, the key problem is on how to

make decisions about the placement of data and programs

across the sites of a computer network as well as perhaps

designing the network itself. However, this study proposes

the use of appropriate requirement analysis tools in the early

stages of distributed database design for simplification of

distribution design process. The study proposes the use of an

interaction model obtained as a requirement in the early

stages of the top down DDBS design approach.

II. LITERATURE REVIEW

A. Distributed and Centralized Database Systems Issues

A distributed database consists of two or more data files
located at different sites on a computer network. So, a
distributed database system consists of two opposed
approaches to data processing which are database systems
and computer networks. Because the database is distributed,
different users can access it without interfering with one
another. However, the DDBMS must periodically
synchronize the scattered database to make sure that they all
have constant data [1][3].

Data is spread across multiple computer or servers which
are not necessarily located in the same physical location.
Data may however be accessible through an Internet based
portal as a GUI for accessing data. The database requires
software which is able to locate and index all of the data
from different locations. Due to distributed data, different
uses can access it without interfering with one another [1][3].

Figure 1. DDBS Environment [1]

DDBSs’ plays a key role in increased reliability and

availability, easy system expansion, reflection of

organization structure while providing for protection of

valued data which are not all held in one spot. With DDBSs’,

failure of one site does not bring the entire systems down due

to high reliability as data is located on different sites of a

computer network.

However, DDBSs’ suffers from several complicating

factors such as its complexity which results to high costs as

increased complexity and more extensive infrastructure

means extra labour costs. Security issue also affects DDBSs’

as remote database fragments must be secured with the need

for operating system to have the ability to support distributed

environment [1][3].

A centralized database is the one located, maintained and

managed in one location, unlike a distributed database. With

centralized database, the database is located in one place so

that it can be easily accessible and backed up. The databases

are still accessible through Wide-Area Networks (WANs)

and Virtual Private Network [1][4].

Figure 2. Central Database on a Network [1]

However, centralized databases are prone to bottlenecks

as today’s global enterprise may have many local area

networks (LANs) in the form of international offices, as well

as additional data servers and applications on the LANs. This

is an issue because all staff may need access to the database

[1][4].

B. DDBSs’ Design Approaches

Distributed computing system design involves making

decisions on the placement of data and programs in computer

network nodes, and possibly designing the network itself.

For distributed databases, and assuming that the network has

been designed already and there is a copy of the DBMS

software on each node in the network where data are stored,

it remains to focus our attention on the distribution of data

[3][5].

Distributed databases can be designed under two major

approaches: top down design and bottom up design. The

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 241

strategies are very different approaches to the design process.

But most applications are not so simple that it fits completely

in one of these strategies, so it is important to know that

these strategies should be used together as a complement to

each other [6].

C. Top down design approach

This design approach is mostly used in designing systems

from scratch. The process starts from a requirement analysis

phase including analysis of the company situation where in

this study; an interaction model illustrated in figure 3

assisted the author in analyzing SAUT situation. The process

also involves defining objectives, and designing scope and

boundaries. The next two activities are conceptual design

and view design. Focusing on the data requirements, the

conceptual design deals with entity relationship modeling

and normalization [6][7].

It creates the abstract data structure to represent the real

world items. The view design defines the user interfaces. The

conceptual schema is a virtual view of all databases taken

together in a distributed database environment. It should

cover the entity and relationship requirement for all user

views. The conceptual model should support existing

applications as well as future applications. The definition of

the global conceptual schema (GCS) comes from the

conceptual design. The next step is distribution design [1][6].

The global conceptual schema and the access information

collected from the view design activity are inputs of this

step. By fragmenting and distributing entities over the

system, this step designs the local conceptual schemas.

Therefore, this step can be further divided into two steps:

fragmentation and allocation [1][3][6].

Distribution design also includes the selection of DBMS

software in each site. The mapping of the local conceptual

schemas to the physical storage devices is accomplished

through the physical design activity. Throughout the design

and development of the distributed database system, the

author constantly monitored, periodic adjusted and tuned the

processes in order to achieve successful database

implementation and suitable user interfaces [1][3].

D. Bottom Up Design

Top down approach is suitable when we are designing a

DDBS starting from scratch. But it often happens that some

databases already exist, and design activities must realize

and integration. Bottom up approach is suitable for such

environments. The starting point in designing bottom up is

local conceptual schema [6].

E. Distributed Design Issues

The design of a distributed database introduces additional

issues which complicate distributed database design. These

issues include: how to partition the database into fragments,

how many copies of a fragment should be replicated, how to

allocate the fragments and replicas and how to test for

correctness [5][7].

F. Fragmentation

Data fragmentation allows us to fragment relations to

appropriate units of distribution since usually applications

only deal with a subset of a relation. Each fragment can be

stored at any site across the network. The decomposition of a

relation enables the concurrent execution of several

transactions. Three types of fragmentation strategies:

horizontal, vertical, and mixed fragmentation. With

horizontal fragmentation, a relation is fragmented into

subsets of tuples (rows) based on the database information

and application information. Each fragment consists of

unique rows and is stored at a different site. The advantage

of horizontal fragmentation is that it allows data locality by

storing the fragments in the sites where they are most

frequently accessed [8].

Vertical fragmentation can be achieved by fragmenting a
relation along its attributes with the primary key attribute
being available in each of the vertical fragments. However,
in most cases simple horizontal or vertical fragmentation of a
DB schema will not be sufficient to satisfy the requirements
of the applications thus need for mixed fragmentation which
consists of a horizontal fragment followed by a vertical
fragmentation, or a vertical fragmentation followed by a
horizontal fragmentation. The three fragmentation types
should satisfy three correctness rules which are
completeness, disjointness and reconstruction [3][8][9].

Completeness

o Decomposition of relation R into fragments R1, R2, .
. . ,Rn is complete iff each data item in R can also be
found in some Ri.

Reconstruction

o If relation R is decomposed into fragments R1, R2, .
. . ,Rn, then there should exist some relational
operator ∇ that reconstructs R from its fragments,
i.e., R = R1∇. . .∇Rn

 ∗ Union to combine horizontal fragments
 ∗ Join to combine vertical fragments
Disjointness
o If relation R is decomposed into fragments R1, R2, .

. . ,Rn and data item di appears in fragment Rj , then
di should not appear in any other fragment Rk, k<>j

(Exception: primary key attribute for vertical

fragmentation).

∗For horizontal fragmentation, data item is a tuple

∗For vertical fragmentation, data item is an attribute

III. METHODOLOGY

A. Study Design

This study firstly involved the analysis of key

interactions, processes and activities taking place in various

campuses of SAUT where face to face interviews, personal

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 242

observation and comparative analysis techniques for the

strengths and weaknesses of centralized and distributed

database systems were employed. Secondly, an
interaction model depicted in figure 3 illustrating key tasks at
SAUT was designed based on the analysis process and used
as a basic requirement for distributed database design.
Finally, based on distributed database design approaches
strengths, the top down approach was employed as a suitable
approach for distributed database design at SAUT.

The study has employed both horizontal and vertical

fragmentation techniques during fragmentation design

process. However, this paper focuses mainly on horizontal

fragmentation technique where both primary and derived

horizontal fragmentations were employed. The study also

employed Sybase Replication Server architecture for

replication design.

B. Proposed Interaction Model as the Base for DDBSs’

Design in Higher Learning Institutions

Understanding key interactions among members of an

organization plays an important role in effective DDBSs’

design. This is because user requirements are usually

required during the conceptual model design phase of the top

down DDBSs design approach the requirements of which

can be effectively obtained by clearly understanding

important interactions and processes taking place among

members of a respective organization [1][7][10].

This study proposes an interaction model depicted in

figure 3 as the base for effectively obtaining user

requirements. The model illustrates key interactions taking

place among SAUT members and their respective alumni.

This model is considered to effective since it does not

exclude any important party among SAUT members and

SAUT alumni and based on computer science and Internet

security principles, the model goes further to prevent any

external party to have access on it for anonymity problem

control [10].

Figure 3. Interaction Model between SAUT Members and SAUT

Alumni [10]

Top down design process is mostly used in designing

distributed database systems from scratch. With top down

design approach, it was easier to employ homogeneous

distributed database technique since it is much easier to

design and manage distributed databases designed using this

technique. The technique also provides incremental growth

while allowing increased performance. Based on

homogeneous distributed database environments

requirements, same database management systems (DBMS)

software have to be used across each site of the distributed

database system.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 243

Figure 4 illustrates the process of top down design. The

process starts from a requirement analysis phase including

analyzing of organization’s situation, defining problems and

constraints, defining objectives, and designing scope and

boundaries the process of which has been key part of this

research work with an interaction model in figure 3

illustrating.

The next two activities are conceptual design and view

design. Focus on the data requirements, the conceptual

design deals with entity relationship modeling and

normalization [3][6]. It creates the abstract data structure to

represent the real world items. The view design defines the

user interfaces. The conceptual schema is a virtual view of

all databases taken together in a distributed database

environment. It should cover the entity and relationship

requirement for all user views.

Figure 4. Top Down Design Approach [1]

Furthermore, the conceptual model should support

existing applications as well as future applications. This

study has provided the class diagram model based on the

interaction model proposed as shown in figure 5.

Figure 5. Class Diagram Used for SAUTDDBS Design

IV. SAUTDDBS DISTRIBUTION AND REPLICATION

DESIGN PROCESSES

A. Sautddbs Campuses as Sites

The design process of SAUTDDBS involved designing

the five campuses of SAUT as sites of the distributed

database under discussion. Based on the class diagram

designed from the interaction model in figure 3, the

distribution design process was done.

During this distribution design process, fragmentation,

replication and allocation requirements were accomplished

based on data requirements at various sites.

B. Fragmentation

Fragmentation is a design technique to divide a single

relation or class of a database into two or more partitions

such that the combination of the partitions provides the

original database without any loss of information [5][8].

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 244

A fragment i.e. horizontal or vertical of a database object

in an object oriented database system contains subsets of its

instance objects (or class extents) reflecting the way

applications access the database objects [8].

Consider a relation with scheme R. The fragmentation of

R consist of determining the number of fragments (sub

scheme) Ri obtained by applying an algebraic relation on R

(as operations on relations which show the logical properties

of data). In this context, the fragmentation of data in this

study was done under horizontal fragmentation technique.

The horizontal fragmentation of a relation R as applied

in this study, was considered to be the subdivision of its

tuples into subsets called fragments; the fragmentation was

considered to be correct if each tuple of R was mapped into

at least one tuple of the fragments (completeness condition).

An additional disjointness condition, required that each

tuple of R be mapped into exactly one tuple of one of the

fragments, was often introduced in SAUTDDBS design in

order to control the existence of duplication explicitly at the

fragment level (by having multiple copies of the same

fragment). The resulted fragments Ri have the same scheme

structure as well as collection R, but differ by the data they

contain and are resulted by applying a selection on R [8].

Two versions of horizontal partitioning were applied

during the design process which were primary and derived

horizontal fragmentation. Primary horizontal fragmentation

of a relation was achieved through the use of predicates

defined on that relation which restricts the tuples of the

relation with derived horizontal fragmentation being

recognized by using predicates that were defined on other

relations [9][11][12].

This process considered data fragmentation based on sub

sets of relations as fragments to be appropriate units of

distribution since usually applications only deal with a subset

of a relation. Each fragment can in turn be stored at any site

across the network. The decomposition of a relation enabled

the concurrent execution of several transactions. Data

fragmentation information is normally stored in the

distributed data catalog for being accessed by the transaction

processor to process user requests [8].

C. Primary Horizontal Fragmentation

A primary horizontal fragmentation is defined by a

selection operation on the relations of a database schema.

Given a relation R, its horizontal fragments are given by

Ri = Fi(R); 1 ≤ i ≤ w

where Fi is the selection formula used to obtain fragment Ri

(also called the fragmentation predicate). Note that if Fi is in

conjunctive normal form, it is a minterm predicate (mi). The

algorithm applied in this study required that Fi be a minterm

predicate [11][13].

Example, the decomposition of a relation Student into

horizontal fragments by considering fragmentation based on

student’s Campus resulted into five horizontal fragments;

Arusha, Bagamoyo, Iringa, Mbeya and Mwanza as

Student_A, Student_B, Student_I, Student_M and

Student_Z respectively is as follows:

Student_A = Campus=“Arusha” (Student)

Student_B =Campus =“Bagamoyo” (Student)

Student_I = Campus =“Iringa” (Student)

Student_M = Campus =“Mbeya” (Student)

Student_Z = Campus =“Mwanza” (Student)

Consider the Student Relation fragmented into five primary

horizontal fragments as depicted in table I.

TABLE I. STUDENT RELATION

Stud_Reg# College Campus

SAUT/ARUSHA/2007_4657 EDUCATION ARUSHA

SAUT/BAGAMOYO/2010_1123 NATURAL AND

APPLIED SCIENCES

Bagamoyo

SAUT/BAGAMOYO/2012_2348 INFORMATION

TECHNOLOGY

Bagamoyo

SAUT/IRINGA/2008_4507 ARTS IRINGA

SAUT/MBEYA/2005_2997 SOCIAL SCIENCES MBEYA

SAUT/MBEYA/20014_9997 ARTS MBEYA

SAUT/MBEYA/2006_4567 SOCIAL SCIENCES MBEYA

SAUT/MWANZA/2009_7890 MEDICAL SCIENCES MWANZA

SAUT/MWANZA/2008_4588 MEDICAL SCIENCES MWANZA

Note: Only some attributes and tuples of relation student are

shown.

Below are the fragments of Student relation fragmented

based on a campus where a student was enrolled.

Student_A = Campus=“Arusha” (Student)

TABLE II. STUDENT_A PRIMARY HORIZONTAL FRAGMENT

Stud_Reg# College Campus

SAUT/ARUSHA/2007_4657 EDUCATION ARUSHA

Student_B = Campus=“Bagamoyo” (Student)

TABLE III. STUDENT_B PRIMARY HORIZONTAL FRAGMENT

Stud_Reg# College Campus

SAUT/BAGAMOYO/2010_11

23

NATURAL

AND APPLIED

SCIENCES

Bagamoyo

SAUT/BAGAMOYO/2012_23

48

INFORMATION

TECHNOLOGY

Bagamoyo

Student_I = Campus=“Iringa” (Student)

TABLE IV. STUDENT_I PRIMARY HORIZONTAL FRAGMENT

Stud_Reg# College Campus

SAUT/IRINGA/2008_4507 ARTS IRINGA

Student_M = Campus=“Mbeya” (Student)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 245

TABLE V. STUDENT_M PRIMARY HORIZONTAL FRAGMENT

Stud_Reg# College Campus

SAUT/MBEYA/2005_2997 SOCIAL

SCIENCES

MBEYA

SAUT/MBEYA/20014_9997 ARTS MBEYA

SAUT/MBEYA/2006_4567 SOCIAL

SCIENCES

MBEYA

Student_Z = Campus=“Mwanza” (Student)

TABLE VI. STUDENT_Z PRIMARY HORIZONTAL FRAGMENT

Stud_Reg# College Campus

SAUT/MWANZA/2009_7890 MEDICAL

SCIENCES

MWANZA

SAUT/MWANZA/2008_4588 MEDICAL

SCIENCES

MWANZA

D. Derived Horizontal Fragmentation

Derived horizontal fragmentation is used to splitting up

a relation in dependence on another relation by applying

semi-join operations [11][13]. Horizontal fragmentation of

relation S based on the fragmentation of another relation R

where R is already fragmented into R1, R2, R3, …, Rn. Using

the semi-join operator Si = S ∞ Ri = S ∞ σpi (R) = π S.*(S ∞

σpi(R)) fragmentation expression only refers to R.

Consider the derivation of derived horizontal

fragmentation below; the relations have been distributed

into other relations who depend on each primary horizontal

fragment relation.

Distributing the relation R into to Student_A,

Student_B, Student_I, Student_M and Student_Z for

Staff_Student_Communication relation (i.e.

Staff_Student_Communication relation was generated after

breaking a many to many relationship existing between

Student and Staff classes) we generate other five derived

horizontal fragmentation based on the criteria for finding the

number of times a particular student in a particular campus

communicated with his/her staff for academic, research or

consultation issues within a period of six study semesters.

Staff_Student_Communication (StaffID, Stud_Reg#,

Consultation Times)

TABLE VII. STAFF_STUDENT_COMMUNICATION RELATION

StaffID Stud_Reg# Consultatio

n Times

SAUT/ARUSHA/2012_1983 SAUT/MBEYA/2005_29

97

4

SAUT/ARUSHA/2009_1007 SAUT/IRINGA/2008_45

07

3

SAUT /ARUSHA/1999_1125 SAUT/BAGAMOYO/20

10_1123

5

SAUT/BAGAMOYO/2013_208

8

SAUT/MBEYA/20014_9

997

2

SAUT /IRINGA/2001_0330 SAUT/MWANZA/2009_

7890

1

SAUT/MWANZA/2014_0059 SAUT/ARUSHA/2007_4

657

6

SAUT /MWANZA/2000_1983 SAUT/BAGAMOYO/20 4

StaffID Stud_Reg# Consultatio

n Times

12_2348

SAUT /MBEYA/2012_1983 SAUT/MBEYA/2006_45

67

5

SAUT /MBEYA/2010_2101 SAUT/MWANZA/2008_

4588

3

Staff_Student_Communication1=Staff_Student_Communic

ation ∞ Student_A

TABLE VIII. STAFF_STUDENT_COMMUNICATION1 DERIVED

HORIZONTAL FRAGMENT

StaffID Stud_Reg# Consultatio

n Times

SAUT/MWANZA/2014_00

59

SAUT/ARUSH

A/2007_4657

6

Staff_Student_Communication2=Staff_Student_Communic

ation ∞ Student_B

TABLE IX. STAFF_STUDENT_COMMUNICATION2 DERIVED

HORIZONTAL FRAGMENT

StaffID Stud_Reg# Consultatio

n Times

SAUT

/ARUSHA/1999_1125

SAUT/BAGA

MOYO/2010_1

123

5

SAUT

/MWANZA/2000_1983

SAUT/BAGA

MOYO/2012_2

348

4

Staff_Student_Communication3=Staff_Student_Communic

ation ∞ Student_I

TABLE X. STAFF_STUDENT_COMMUNICATION3 DERIVED

HORIZONTAL FRAGMENT

StaffID Stud_Reg# Consultatio

n Times

SAUT/ARUSHA/2009_100

7

SAUT/IRINGA

/2008_4507

3

Staff_Student_Communication4=Staff_Student_Communic

ation ∞ Student_Z

TABLE XI. STAFF_STUDENT_COMMUNICATION4 DERIVED

HORIZONTAL FRAGMENT

StaffID Stud_Reg# Consultation

Times

SAUT

/IRINGA/2001_0330

SAUT/MWANZ

A/2009_7890

1

SAUT

/MBEYA/2010_2101

SAUT/MWANZ

A/2008_4588

3

Staff_Student_Communication5=Staff_Student_Communic

ation ∞ Student_A

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 246

TABLE XII. STAFF_STUDENT_COMMUNICATION5 DERIVED

HORIZONTAL FRAGMENT

StaffID Stud_Reg# Consultation

Times

SAUT/ARUSHA/2012_1

983

SAUT/MBEYA/

2005_2997

4

SAUT/BAGAMOYO/20

13_2088

SAUT/MBEYA/

20014_9997

2

SAUT

/MBEYA/2012_1983

SAUT/MBEYA/

2006_4567

5

The derived horizontal fragmentation strategy above

enabled the author to achieve the desired fragmentation with

join characteristics. With derived fragmentation using join

operations in distributed databases the author managed to

retrieve the desired tuples or records according to the

predicate or minterm efficiently.

E. Allocation

With data allocation, the determination of the location of
the fragments based on the information of the database is
done. The types of transactions to be applied to the database,
the communication network, the storage capability of each
site, and the design goal of cost, response time and data
availability all need to be taken into account for effective
data allocation [9][11].

Figure 6 illustrates five campuses of SAUT considered as
sites of SAUTDDBS.

Figure 6. SAUTDDBS Sites Design

F. Replication

In a distributed database, a relation or a fragment can be
replicated or copied. Copies of data may be stored
redundantly in two or more sites to serve specific
information requirements and enhance data availability. For
example, SAUTDDBS has copies of a student relation

fragments stored in the database of its campuses and also in
the main campus database.

Data replication decisions need to consider the size of
database and data usage frequency. If a database is fully
replicated, it will then store multiple copies of each fragment
at multiple sites. While in a partially replicated database,
only some fragments are replicated. A database is fully
redundant if each site contains a copy of the entire database
[1][8].

Replication improves performance, increase the fault
tolerance and introduce enhanced availability of the data into
database systems while reducing the cost of accessing and
transferring data. However, data replication increases the
cost of updates since all replicas have to be updated to ensure
they are all identical. Therefore, replication increases the
complexity of the concurrency control [1][14].

In this study, replication design was done using Sybase
replication server architecture. Replication Server enables
sharing of information across various SAUT campuses by
replicating it to and from different hardware platforms and
data sources without losing the transactional integrity of the
data [14].

Reliable replication system architecture must do much
more than simply copy a piece of data. The system must be
able to maintain the integrity of the data at the transaction
level, deliver data quickly and efficiently across the
network, allow distributed sites to modify data, be easy to
monitor and manage (the most important, perhaps) and
transfer data in any direction across heterogeneous data
sources [14][15].

The use of replication server was essential since it
supported replicating data to and from non Sybase data
servers. Data can be replicated to non Sybase data servers
such as Oracle, Informix, IBM DB2, and Microsoft SQL
Server using Sybase DirectConnect gateways. Transactions
can be captured and forwarded from non Sybase data
servers using Sybase Replication Agents. Data can also be
replicated from a non Sybase source, through Replication
Server to a non Sybase destination [14][15].

The replication server helped to provide warm standby
capability with a pair of databases where one was the active
database and the other as the standby database, being
supported by replication server’s functionality. As clients
update the active database, replication server copies
transactions to the standby database, maintaining
consistency between the two. Should the active database fail
for any reason, you can switch to the standby database,
making it the active database, and resume operations with
little interruption. Figure 7 illustrates SAUTDDBS
Replication Design.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 247

Figure 7. SAUTDDBS Replication Design

Adaptive Server: Manages databases that contain primary

data, replicate data, or both.

Replication Server: Captures transactions from non Sybase

data servers and sends them to a Replication Server.

TABLE XIII. SAUTDDBS AGAINST EXISTING CENTRALIZED

DATABASE SYSTEM ANALYSIS

Process

Enhanced or

Affected

Existing

Centralized

Database

Systems

capabilities/chal

lenges

Designed Distributed

Database System

(SAUTDDBS)

capabilities/challenges

Distribution

Design

No fragmentation

needed and

database design

is much easier

since data is

centralized.

More complex since it

required making proper

decisions about data and

programs placement

across various sites of a

computer network.

Difficulties on how to

employ homogeneous

distributed database

environment since some

of the campuses had

their databases

implemented using

different DBMS

software. This was due

to the fact that the

interaction model

proposed in this study

Process

Enhanced or

Affected

Existing

Centralized

Database

Systems

capabilities/chal

lenges

Designed Distributed

Database System

(SAUTDDBS)

capabilities/challenges

could only be applied

effectively with

homogeneous

distributed environment

rather than

heterogeneous

distributed environment.

User

involvement in

the design

process

University

members and

alumni were not

effectively

involved in the

design of these

systems.

The study has

effectively involved

University members (i.e.

students, instructors and

supporting staff).

Designed by taking into

account important

alumni activities and

processes which could

enable the University to

easily obtain alumni

financial and academic

contributions.

Reliability Have very low

data reliability

since data is

located, managed

and maintained

at one location.

Has high data reliability

and good usability as

data is stored at various

sites (campuses), so, a

disaster or system

failure at one site will

not cause loss of entire

data.

Users’

awareness,

readiness and

experience to

use DDBSs’.

Have enough

experience and

readiness to use

centralized

database

systems.

Users still very slow and

not ready to use

distributed database

systems due to lack

enough experience.

Replication

Design

Not applicable,

therefore

problems in

ensuring data

availability as

well as data

reliability.

Enhanced data

availability, parallelism

as queries on a relation r

can be processed by

several nodes in parallel.

Also reduced data

transfer as a relation r is

available locally at each

site containing a replica

of r.

High costs for updates

as each replica of

relation r must be

updated.

Concurrency control

more difficult since

concurrent updates to

distinct replicas may

lead to inconsistent data.

Integrity

control

Easy integrity

control.

Integrity control was

more difficult since

communication and

processing costs that are

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 04 – Issue 02, March 2015

www.ijcit.com 248

Process

Enhanced or

Affected

Existing

Centralized

Database

Systems

capabilities/chal

lenges

Designed Distributed

Database System

(SAUTDDBS)

capabilities/challenges

required to enforce

integrity constraints are

high as compared to

centralized system.

Enabling

system

expansion

Difficulties in

expanding

database size.

Has been designed in

such a way to easily

accommodate increasing

database sizes by only

increasing processing

and storage power to the

network.

Data Access A lot of remote

data access

requests due to a

centralized

database system

existed.

Much improved data

access since data can

easily be accessed

locally due to data

replication at various

SAUT campuses.

University

Management

Activities

Very slow and

sometimes could

take days due to

dependence on

centralized

database.

Much improved since

important information

can be obtained easily

and fast locally.

CONCLUSIONS

This study has employed an interaction model as a
requirement for distributed database systems design in higher
learning institutions. The model is effective due to its
capability in supporting attaining both; data access and
reliability capabilities when used as a requirement in
distributed database systems design while providing the
foundation for communication and interactive applications
design between higher learning institutions and their
respective alumni.

The study recommends the use of the proposed model for
DDBSs’ design especially with the top down design
approach for distributed database systems design and
implementation to augment data access, distribution and
reliability in higher learning institutions with distributed
campuses.

On the other hand, the author has provided the strategies

used during data fragmentation where both primary and

derived horizontal fragmentation techniques were applied.

An analysis of the designed SAUTDDBS against existing

centralized database system has as well been provided in

Table XIII. The author has also provided a diagrammatic

design of SAUTDDBS illustrating how various campuses of

SAUT were made into sites with fragments depending on

data access, distribution and reliability needs at those sites.

The study finally explains how Sybase replication server

was employed during replication design as it enabled

replicating data to and from non Sybase data servers for

ensuring high data reliability.

REFERENCES

[1] Ozsu, M., & Valduriez, P. (2011), Principles of Distributed Database
Systems, 3rd edition, Springer Science+Business Media, LLC, 233
Spring Street, New York, NY 10013, USA.

[2] Slonim, J., Schmidt, & Fisher, P. (1979), “Considerations for
Determining the Degree of Centralization or Decentralization in the
Computing Environment”, North-Holland Publishing Company,
Information & Management, 2 (1979), 15-29, USA.

[3] Ceri, S., & Pelagatti, G. (1984), Distributed Databases Principles and
System, McGraw Hill, New York, USA.

[4] Elmasri, R. & Navathe. S. (2006), Fundamentals of Database
Systems, 5th edition, Menlo Park, CA: Benjamin Cummings.

[5] Ma, H. (2007), ”Distribution Design for Complex Value Databases”,
dissertation presented in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Information Systems at Massey
University, New Zealand.

[6] Kung, H., Kung, L., & Gardiner, A. (2012), “Comparing Top down
with Bottom up Approaches: Teaching Data Modeling”, paper
presented at the Proceedings of the Information Systems Educators
Conference, New Orleans Louisiana, USA.

[7] Iacob, N. (2011), The use of distributed databases in e-learning
systems, paper presented at the Proceedings of 3rd World Conference
on Educational Sciences-WCES2011, Bahcesehir University,
Istanbul, Turkey, 03-07 February 2011, 2673-2677.

[8] Huang, F. & Chen, J. (2001), “Fragment Allocation in Distributed
Database Design”, Journal of Information Science and Engineering,
17(1), 491-506.

[9] Daudpota, H. (1998) “Five Steps to Construct a Model of Data
Allocation for Distributed Database Systems”, Journal of Intelligent
Information Systems, 11 (1), 153-168.

[10] Mwombeki, A., & Kimaro, H. (2013), “Adoption of Web Based
Applications to Enhance Communication and Interaction Between
Higher Learning Institutions and Alumni”, International Journal of
Computer and Information Technology, 2 (6).

[11] Marwa, F., Ali, I. & Hesham, A. (2008), “A heuristic approach for
horizontal fragmentation and alllocation in DOODB,” paper
presented at the Proceedings of INFOS2008, 9-16.

[12] Cheng, C., Lee, W., & Wong, K. (2002), “A genetic algorithm-based
clustering approach for database partitioning,” IEEE Transactions on
Systems, Man, and Cybernetics, 32 (3), 215–230.

[13] Baião, F., Mattoso, M., & Zaverucha, G. (2000), "Horizontal
Fragmentation in Object DBMS: New Issues and Performance
Evaluation", paper presented at the Proceedings of the "19th IEEE
International Performance, Computing and Communications
Conference" (IPCCC 2000), IEEE CS Press, Phoenix, Feb 2000, 108-
114.

[14] Wiessman, M., & Pedone, F. (2000), Understanding replication in
databases and distributed systems, paper presented at the Proceedings
of the 20th IEEE International Conference on Distributed Computing
Systems, Taipei, Taiwan, April 2000.

[15] Tanenbaum, S., & Steen, V. (2007), Distributed Systems, Pearson
Education, Inc., Upper Saddle River, New Jersey, USA.

