
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 110

Towards A General Purpose Middleware Model for
WSNs: A Literature Survey

Basem Y. Alkazemi
College of Computer and

Information System
Umm Al-Qura University

Makkah, Kingdom of Saudi Arabia

Atif Naseer
Science and Technology Unit

Umm Al-Qura University
Makkah, Kingdom of Saudi Arabia
Email: anahmed [AT] uqu.edu.sa

Emad A. Felemban
College of Computer and

Information System
Umm Al-Qura University

Makkah, Kingdom of Saudi Arabia

Abstract— The applications of Wireless Sensor Networks (WSN)
have recently become the core element in many industrial
business models. The literature reports several aspects about the
deployment and associated implementation protocols of WSN.
However, conceptual taxonomization of the different elements of
a WSN system seems lacking in the literature especially in terms
of middleware models. As a result, this paper based on our
survey work of middleware models available in the literature in
order to serve as a base for the investigation of a general purpose
middleware model that suits different business needs and
network architectures. The survey is carried out by considering
some key architectural characteristics defined in a prior work
that have been identified to cause potential mismatches between
business applications and hertogeneous WSNs. Our analysis is
derived by the notion of middleware models and component
models adopted by the software engineering community as we
believe their defined practices can benefit the WSNs community
to standardize their development activities.

Keywords-component; Wireless Sensor Network, Middleware,
Software Architecture

I. INTRODUCTION
In the past few years, wireless sensor networks (WSN) have

played an important role in many industrial applications for
monitoring different phenomena to fulfill certain business
requirements. Conceptually, a wireless sensor network is a
special type of adhoc network that utilizes sensors for data
collection and transmission. Sensor nodes are small devices
with very limited resources (i.e. storage and power) that can be
deployed to perform any sort of data collection and
aggregation. Every node in a network must comply with a set
of pre-defined communication protocols and configurations to
manipulate their lifecycle states and operation mode as per
their corresponding business application requirements. A node,
in a software engineering terminology is analogous to a
component [17]. Every component model (e.g. COM [18], EJB
[18]) defines a set of architectural characteristics that
distinguishes it from other types of models. The selected
component model must comply with the architectural
characteristics required by a system in order to work as
required. For instance a software system that expects to
manipulate EJB components cannot deal with COM
components. The same principles can apply to nodes in WSNs.

If a business application uses Java Messaging Service
(JMS) [16] to interact with a network then all nodes within that
network must implement the corresponding interfaces for JMS
communication protocol and configuration settings. Although
this is commonly recognized practice among the WSN
community, the underlying network cannot be reused by any
business applications those define different standards other
than their deployer. There might be cases where heterogeneous
nodes (i.e. nodes with different characteristics than what is
available in a network) is used in a network. Although all
nodes might follow similar communication protocols, there
might be differences in terms of their states and configuration
patterns. For example, if business applications invoke a method
called "public void sleep ()" to switch the state of a node from
data collection to sleep mode then a node with different method
signature will not be managed. Considering that in mind, the
notion of middleware can be utilized to tackle incompatibility
between business application and the nodes of the underlying
network.

In addition, nodes in WSNs usually have very limited
power and storage capabilities. It may not be feasible to
overload nodes with operations other than its basic
functionality and expect a long lifetime of nodes. Thus, some
operations, other than data collection and transmission, might
be delegated to middleware components that have more
resources and capabilities. In that sense, a middleware model
must be general enough to deal with all sorts of interactions
between business applications and WSNs. Therefore, this work
aims at reviewing the current middleware models in the
literature and examines their characteristics.

The rest of the paper is organized as follows: section 2
highlights the system definition for WSNs, section 3 describes
some architectural characteristics of middleware; the related
work is discussed in Section 4; we analyze some middleware in
section 5; and finally, in section 6 we give concluding remarks
and future work.

II. A SYSTEM MODEL FOR WSNS
A system model in the context of WSNs can be given as a

composition of three main layers, namely:

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 111

• Business application layer
• Middleware layer
• Network layer

Figure 1 illustrates the overall architecture of a system model.
The Business application layer in the system represents the
main client who is interested in obtaining some data (e.g.
warehouse monitoring) to initiate possible actions or feed into
some sort of decision support systems. The middleware layer is
a special type of components that separates business
applications from the underlying networks. Finally, the
network layer is the physical composite of nodes that can be
deployed in a field for data collection.
Business applications can interact with WSNs either directly or
indirectly through the middleware layer. The middleware layer
hides the complexity of the underlying network from business
application; and also resolves potential mismatches in the
communication protocols between business applications and
the WSNs. Thus, users can request data without much
knowledge about the technical communication details of the
targeted WSN. Middleware can also manage the configuration
of the network topology to satisfy certain business
requirements.

``

Middleware

Applications

 Figure 1. Wireless Sensor Network System

III. MIDDLEWARE CHARACTERISTICS
The concept of middleware is used differently among the

WSN community. TinyOS [14] considers middleware as an
internal layer within a WSN node that provides an abstraction
to different physical components. It requires a number of APIs
and drivers to control and manage the hardware elements.
Other works refer to middleware as a layer between the
business application and the physical network. We adopted the
latter view in this study and investigated the different work
reported in the literature that fit into that context.
Consider a case where business application may not able to
retrieve a required data from certain WSN due to
incompatibilities between the business application and the
underlying network of nodes in terms of communication
protocols. Such a mismatch might negatively impact the
operation of the overall system. Therefore, middleware can be
utilized to facilitate the communication without any potential
mismatches. We distinguish between two main types of

characteristics of a system, functional and architectural. The
functional characteristics describe the behavior of nodes in a
network. For example, sensing through the transducer and
transmitting data to other nodes or sink.
The architectural characteristics describe how to get at the
functional characteristics. For example, how a node can start
the sensing operation. In other words, what interfaces a
business application needs to invoke so a node can start
sensing. This classification is important in order to separate
between the concerns that are relevant to a node and those that
should be addressed by middleware. In this work, we are
concerned only with the architectural characteristics as we
believe they represent the core business of a middleware
component. The survey conducted in this work aims at
investigating the applicability of the reported middleware
models in the literature to work as a general purpose
component that effectively bridges the gap between business
applications and WSNs in terms of interoperability and
flexibility. So, business applications can interact with various
types of networks regardless of being heterogeneous in nature.
We have identified, in a prior work [13], a number of
characteristics that are significant to be fulfilled by
middleware from the perspective of business requirements.
We utilize these characteristics to conduct a thorough survey
in this work. The architectural characteristics of a middleware
model should address the following:

A. Interaction Pattern

This characteristic defines how a middleware component
can interact with business application and also the underlying
network of nodes. From a business application perspective,
some of the commonly used communication protocols are
JMS and RPC. However, these protocols do not necessarily
apply to all third party networks. Hence, instead of modifying
a business application in order to comply with the protocol of
a given network, middleware component can resolve such
incompatibilities between business applications and networks.
In addition, it checks user privileges to identify the type of
information that must be delivered to business applications as
per a predefined policy. For instance, one user might only get
data about room temperature while another gets the complete
set of data about the usages of that room. From the network
perspective, the middleware model should define a standard
messaging protocol and node configurations that different
node types must comply in order to interact seamlessly with
the middleware. So, middleware can query different networks
to obtain data and synthesize them as appropriate for business
applications.

B. Data exchange model

Usually, two types of data exchange model are defined by
the WSN community; these are commonly known in the
context of data streams as pull model and push model [15].
The pull model operates by receiving requests from the clients
of business application and then responds by delivering the
required data, whereas the push model sends the data to

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 112

registered set of clients as per the occurrence of an event.
There are two subsidiary types of this model; interval based
dispatching and threshold based dispatching. The former sends
data to clients according to scheduled intervals (e.g. every 10
minutes). The latter sends data only once an interesting event
has occurred that triggers a threshold value (e.g. If temperature
exceeds 50c then send data). These two models, especially the
push model, can be embedded in a middleware model in order
to save storage space and power consumption of nodes. So,
clients can register themselves in a middleware and define
their threshold values in order to receive interesting data about
an incident.

C. Software as a Service

Scalability is a desirable characteristic in any system to
accommodate potential new business expansion. Therefore,
the notion of services is established by the software
engineering community to increase the flexibility and
scalability of a system. So, services can be orchestrated and
combined together at runtime instead of being hardcoded
together at compile time. This capability can exhibit a
considerable level of flexibility to fulfill continually changing
business requirements. Thus, adopting the notion of software
as a service (SaaS) [19] in a middleware model becomes an
essence due to the wide variety of business client types and
requirements. If a new type of parameters (e.g. QoS) needs to
be considered by a client, then a new service can be deployed
into a middleware component for client usage.

D. Proxy pattern

The notion of proxy pattern has been introduced in the
software engineering community to resolve the problem of
coupling between clients and servers. This pattern can be
adopted by middleware model as it provides a similar sort of
functionality of separating business applications from the
underlying networks of nodes. A key advantage of this pattern
can be obtained by means of deploying new modification to a
proxy without the need to interrupt the node's operation.
Moreover, middleware can interpret requests coming from
business applications and send them in a specific format to a
network and vice versa.

E. Dynamic binding of Services

Business applications should be able to manage and control
the configuration of their corresponding networks. For
example, if a business application requires fast response time
from a network according to a predefined policy during peak
hours only then a QoS service must be bound to the composite
of services in order to satisfy this requirement. Moreover, if
new types of services are introduced for business application
usages then the binding mechanism of services only needs to
be modified without affecting neither the application layer nor
the network layer. However, dynamic binding of services
requires high flexibility of service composition within a
middleware. Thus, a middleware model should define a pool
of services and also mechanisms of binding them together to

comply with a named business application requirements
without major impact on their clients.

F. Parallel Processing

One considerable problem might be encountered by
business applications in terms of sharing nodes with multiple
clients. For example, if the owner of a network has requested a
node 'X' to switch its state into sleep mode in order to preserve
the battery life. However, another application, which uses
same communication protocols and frequency, might request
data to be collected by the same node 'X' and requests its state
to be switched into data collecting mood. This kind of overlap
in state management might negatively impact the application
of the network owner as they might find the node 'X' dead
afterwards when they need to bring it to working mode again
due to battery ran out. Thus, a middleware model can be
utilized to control such ownership and coordinate interaction
as per predefined policies given by network owners. A
middleware should implement a means of queuing mechanism
to buffer all coming requests and then executes them
according to a pre-defined policy if available.

These characteristics represent the baseline for conducting
our survey work of middleware models. We are going to
investigate whether the available models satisfy, either fully or
partially, these characteristics in order to evaluate their
usefulness to serve as a general purpose middleware model.

IV. MIDDLEWARE SURVEY
Hermann et al. presents a middleware for wireless sensor

networks called Senceive [1]. It also separates the network
layer from the application layer. This model provides a GUI
for network administrator to manage and configure the
topology of the WSN. Senceive satisfies different
requirements like Sensor Data Quality is increased by
calculating noise level, zero crossing rate or signal energy,
2ndly it enables users to query each single sensor separately
and collecting data using a well-defined interface. 3rdly a
separate interface is also available for administrators to
configure the whole network as well as individual nodes. And
at last it gathers Meta information about the network
infrastructure. Senceive is designed as a basic three tiered
architecture by Crossbows Mote Works. The mote tier
(denoted as WSN) provides a communication. The server tier
provides a central control instance of the network and the
client tier finally has one administrator for the network
configuration and multiple applications for parallel data
gathering. The implementation of this network is also based
on TinyOS 2.x. Senceive is a good addition in WSN
middleware. Sensitive is commonly used in motion modeling
in the context of home security. It has a query interface to
interact with business application; this interface processes
queries from multiple applications, and provides the
applications with expressive and adequate SQL-like query
language. Senceive supports Java Remote Method Invocation.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 113

It provides the interaction with the user to collect information
from sensor networks, but it still focuses on the same type of
network configuration and assessment.

Jeon et al. [2] proposed a sensor node middleware to
support web-based application over a Wireless Sensor
Network (WSN). This middleware provides a web based
interface to sensor nodes. The system proposed in this paper
consists of three main parts: a gateway per sensor node, a data
server that includes a Web Application Server (WAS), and
application services. This system has different interfaces like
the WSN interface gateway connect the client and the sensor
node, here the gateway is an interface between WAS and
WSN. This system supports various application services. This
proposed middleware supports only some of the functional
and architectural characteristics of the middleware like to
manage nodes and dynamic binding of services. This
middleware is currently used in the context of analyzing the
effectiveness of mobile nodes in a GSM network and also the
intercommunication between different nodes in an ad-hoc
manner. The gateway transmits WSN sensor data to WAS
through HTTP. It uses Java messaging Service (JMS) to
transfer the data to the application. The gateway can transmit
XML Documents and send hexadecimal data. It also sends
HTTP request to nodes.

Heinzelman et al. [3] proposed application driven approach
middleware called MiLAN. The application driven approach
allows the programmers to tune the network according to the
application need. Milan [3] uses a specialized graph to receive
requirements for application. Through these graphs, Milan
gets the application variables and the required QoS. On the
basis of these graphs MiLAN can determine which sets of
sensors satisfy all of the application QoS requirements.
MiLAN supports scalability with its application driven
approach and QoS issues, but it doesn't address mobility and
lacks support for OS and hardware heterogeneity. Also
MiLAN lacks the architectural characteristics of the
middleware. Environmental Surveillance Home/Office
Security, Medical Monitoring is the main business cases of
Milan. The application uses an API to represent its
requirement with regards to different sensors available.
MiLAN uses a service discovery protocol (such as SDP or
SLP) to find new nodes and learn when nodes are no longer
accessible.

Based on Java language Li et al. [4] develops application
event oriented WSNs middleware software. This system
provides a standard interface and protocol for middleware.
Also it provides compatibility, generality and operability. This
middleware composed of following modules i.e. management
module, event processing management module, event of
information space, QoS processing module, and middleware
interface. The main business cases are environment
monitoring, health applications and military applications. This
middleware uses web services, HTTP and JMS to
communicate with business applications. Soap (Simple Object

Access Protocol) technology is mainly applied in the
interoperability between much heterogeneous program and the
platform. This middleware software is a good addition as it
provides an interface for communication but it lacks some
standard architecture. Implementation of this software is also
not available to formalize the results.

Padmanabh et al.[5] presents a middleware named MOJO
that converts the actual sensor network node into a virtual
network as a JAVA objects so that user can easily work with
network and can easily deploy any application without
knowing the complexity of Wireless sensor network. MOJO
only works for similar type of network node and can only
convert the same nodes into JAVA objects. These JAVA
objects are connected to the outside world via a multiplicity of
application programmable interfaces (APIs). The main
business case for this middleware is a Conference room
management system. This middleware exposed the APIs
through RMI and web service (AXIS by Apache).

Aoki et al. [6] proposes Spinning sensors middleware that
works for robotic sensor nodes. The middleware proposed in
this paper provides the functionality of device coordination,
data processing and management of spatiotemporal model of
robotics sensor nodes. Spinning sensor middleware supports
three kinds of applications i.e. environment monitoring, sensor
controlled robot and context-aware service. Environment
monitoring, radio control robot, and context-aware services
are the main business case used by this middleware. The
application uses Spinning sensor API to send their request. All
the communication among nodes is conducted by using event
driven architecture. This middleware only supports the
robotics sensors data and is not providing a framework to use
this middleware in any other wireless sensor network.

FOK et.al. [7] presents a mobile agent middleware for Self-
Adaptive Wireless Sensor Networks called Agilla. It’s an
agent based middleware provides a programming model
consists of different agents that shares a wireless sensor
network. Agents are able to enter and exit a network and are
working according to environmental conditions. These mobile
agents will allow the application to adapt the changing on the
requirements. This model is not meant for data collection
applications The architecture of agile is composed of an
engine which is a virtual machine kernel that controls the
middleware, underlying network and agents layers. Agilla
provides the scalability, security and the capability for
applications to self-heal. Agilla provides a model that consists
of agents but is unable to provide a framework for
middleware. Agilla middleware only supports the model
proposed by Agilla and is only agent based system.

TinyDB [8] is a query based processing middleware build
on top of TinOS [9] operating system. In a sensor network
TinyDB runs on each of the nodes. Every device in a network
contains a sensor table to produce and store their readings.
TinyDB provides power-efficient in network query processing
system for collecting data from sensor nodes. Also TinyDB

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 114

supports multiple queries running simultaneously and is able
to prioritized Data Delivery. TinyDB provides a strong query
based mechanism for wireless sensor network but it does not
provide much functionality as part of a middleware service.
Marrh et.al [10] presents a framework for middleware called
TinyCubus for TinyOS based sensor networks. TinyCubus
consists of three parts: the Tiny Data Management
Framework, the Tiny Cross-Layer Framework, the Tiny
Configuration Engine and Tiny Data Management. TinyCubus
flexible architecture allow it to be used in different types of
application but its not provide a framework that fixes all the
issues of middleware and supports different types of hardware
architecture nodes. Murphy et al. [11] bridges the gap between
sensor network and applications through a middleware called
TinyLime. TinyLime is an extension of Lime middleware
[12]. This paper contributes on two issues, proposing a new
operational setting for sensor network applications and a
middleware that support this development. TineLime is also
implemented on top of TinyOS platform. In the previous
schemes data are collected centrally by a central node and
application should communicate to that node to collect any
information but in the proposed architecture data is collected
by mobile monitors interconnected through a MANET, which
can access only those sensors that are directly available to
them. TinyLime has three main components i.e. Lime
integration component, mote interface and mote level
subsystem.

V. DISCUSSION
In the conducted survey, we have explored many

middleware architectures available for wireless sensor
networks with their separate merits and demerits. We try to
analyze these middleware according to different business
cases they are using also how they interact with different
application and underlying networks. Table 1 shows the
analytical study of each middleware according to the
architectural characteristics we identified earlier. We observed
that all the surveyed models employ sophisticated interaction
patterns and data exchanging model. It is obvious that these
two characteristics represent the key attributes in all
middleware models even though they vary in their
implementation details. However the surveyed middleware
varies with respect to the other architectural characteristics we
identified due to being designed to serve specific application
domain only regardless of potential variety of business
requirements.

In terms of flexibility, it has been observed that a
considerable number of models employ software as a service
(SaaS) as part of their model building block. However, they
only expose services externally to applications but cannot be
composed internally within the middleware itself to satisfy
different application domains. Another characteristic of
importance when dealing with distributed system is the
parallel processing capability. Surprisingly, we observed that
some of the surveyed models can only process one request at a

time and cannot support multi-threading. We believe that such
a deficiency contradicts with the nature of distributed
environment where services need to handle multiple types of
requests independently. Dynamic binding characteristic is not
addressed by many middleware models as most of them are
built on hardcoded components that cannot be manipulated or
re-structured at runtime.

The proxy design pattern is implemented in many
middleware models with sophisticated capability to separate
between interfacing and implementation components. Other
models that lack this characteristic (e.g. MOJO) assume that
middleware is a tightly coupled set of components without
separating their interfaces from the underlying computational
components. Their main concern is to satisfy the functional
requirements only regardless of architectural considerations.
Based on the analysis we conducted in this paper, we strongly
believe that a general purpose middleware model is required
that can effectively bridge the gap between application
domains and the underlying network of nodes. So, different
application domains can interact seamlessly with different
networks regardless of any potential incompatibility in their
architectural characteristics. We believe a service oriented
architecture (SOA) based model will overcome many of the
limitations observed in the current models, and this is going to
be part of our planned future work.

VI. CONCLUSION AD FUTURE WORK
Middleware plays an important role in WSN. This paper

discusses the architectural characteristics of middleware and
reviews some of the middleware already available in the
literature. The paper also analyzes these middlewares
according to their architectural characteristics to find out the
similarities and differences among their architectures. All of
these middlewares are compared and presented in a tabular
format; Table 1 provides a summary of these middlewares.
The next step is to propose a general purpose service-oriented
architecture (SOA) based model for middleware. This
proposed framework is able to provide services to sensor
networks and dynamically handles and build all types of
applications. This architecture will provides standard layers of
services to different types of nodes from different vendors,
hence to communicate with different types of nodes in a single
network is achievable.

ACKNOWLEDGEMENTS
This work is funded by grant number 11-INF1674-10 from

the Long-Term National Plan for Science, Technology and
Innovation (LT-NPSTI), the King Abdul-Aziz City for
Science and Technology (KACST), Kingdom of Saudi Arabia.
We thank the Science and Technology Unit at Umm A-Qura
University for their continued logistics support.

REFERENCES

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 115

[1] C. Hermann and J.Dargie.Senceive: A Middleware for a Wireless Sensor
In Advanced Information Networking and Applications, pages 612 -
619, Gino-wan, Okinawa, Japan, 2008, IEEE.

[2] Y.J. Jeon, S.H. Park, J.S. Park. Sensor Node Middleware to Support
Web-Based Applications over Wireless Sensor Networks, The 2nd IEEE
Workshop on Wireless and Internet Services (WISe 2009) Zrich,
Switzerland; 20-23 October 2009.

[3] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, Middleware to
Support Sensor Network Applications, IEEE Network, 2004.

[4] Qingfeng Li, Chen Li, Jifang Shi. Research and Application on
Application-oriented Event-Based Middleware of WSNs, In 2010
Second International Conference on Networks Security, Wireless
Communications and Trusted Computing, pages 498- 501, Wuhan,
Hubei 24-25 April 2010.

[5] Kumar Padmanabh, LakshyaMalhotra, AdiMallikarjun Reddy V, Amrit
Kumar, Sunil Kumar V and Sanjoy Paul, MOJO: A Middleware that
Converts Sensor Nodesinto Java Objects, In 2010 Proceedings of 19th
International Conference on Computer Communications and Networks,
pages 1-6, Zurich, Switzerland; 2-5 Aug. 2010.Schmitt, J.B; Roedig, U.,
“Worst case dimensioning of wireless sensor networks under uncertain
topologies”, In IEEE Proceedings of the 1st workshop on Resource
Allocation in Wireless Networks, (2005)

[6] Soko Aoki, Jin Nakazawa and Hideyuki Tokuda, Spinning Sensors: A
Middleware for Robotic Sensor Nodes with Spatiotemporal Models, In
The 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 89 98, 25-27 Aug. 2008,
Kaohsiung.

[7] Fok, C.-L., Roman, G.-C., and Lu, C. 2009. ”Agilla: A mobile agent
middleware for self-adaptive wireless sensor networks”. ACM Trans
Autonom. Adapt. Syst. 4, 3, Article 16 (July 2009), 26 pages. DOI =
10.1145/1552297.1552299
http://doi.acm.org/10.1145/1552297.1552299.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An
acquisitional query processing system for sensor networks. ACM
Transactions on Database Systems, 30(1):122173, 2005.

[9] P. Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric

Brewer, and David Culler. Tinyos: An operating system for wireless
sensor networks. In W. Weber, J. Rabaey, and E. Aarts, editors, Ambient
Intelligence. Springer-verlag, 2004.

[10] P. J. Marrn, D. Minder, A. Lachenmann, and K. Rothermel.
”TinyCubus: An Adaptive Cross-Layer Framework for Sensor
Networks, it – Information Technology, vol. 47(2), 2005, pp. 87-97.

[11] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P.
Picco. TinyLIME: Bridging mobile and sensor networks through
middleware. In 3rd IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 6172. IEEE
Computer Society, March 2005.

[12] A. L. Murphy, G. P. Picco, and G. C. Roman. Lime: A Middleware for
Physical and Logical Mobility 21st IEEE International Conference on
Distributed Computing Systems (ICDCS 01), April, 2001, pp. 524-533.

[13] Alkazemi, B.Y, Felemban, E.A, Abid, A.Z., Al-Zahrani, F.A.
”Middleware model for Wireless Sensor Networks”, International
Conference on Multimedia Computing and Systems (ICMCS), 10-12
May, 2012, Tangier-Morocco.

[14] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D.,
AND PISTER, K. 2000. System architecture directions for networked
sensors. SIGPLAN Not. 35, 11, 93104.

[15] M., Duller, R., Tamosevicius, G., Alonso, and D., Kossmann, XTream:
Personal Data Streams. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), ACM, 2007.

[16] http://www.afceurope.com/documents/JMS.pdf [Access: 11th June
2013].

[17] Dogru, A.H.; Tanik, M.M., "A process model for component-oriented
software engineering," Software, IEEE , vol.20, no.2, pp.34,41, Mar/Apr
2003 doi: 10.1109/MS.2003.1184164.

[18] Emmerich, W.; Kaveh, N., "Component technologies: Java beans, COM,
CORBA, RMI, EJB and the CORBA component model," Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on , vol., no., pp.691,692, 25-25 May 2002

[19] http://en.wikipedia.org/wiki/Software_as_a_service [Access: 24 August
2013].

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 116

TABLE I. ARCHITECTURAL CHARACTERISTICS OF VARIOUS DISCUSSED MIDDLEWARE IN LITERATURE REVIEW

Author(s) Middleware Summary Identified Problem Architectural Characteristics

Interaction
Pattern

Data
exchanging

model

Software
as a

Service
Proxy
pattern

Dynamic
binding

of
Services

Parallel
Processing

Hermann et
al. [1]

Senceive This middleware
support multiple
applications through
lightweight query
language and query
engine.

• Focuses on same type of
network configuration and
assessment.

• Dynamically configure a
network to carry some
complex processing tasks
within the network is also
lacking in this proposed
middleware.

Jeon et al.
[2]

Sensor Node
Middleware to
Support Web-

Based
Applications
over Wireless

Sensor
Networks

This middleware
provides a web based
interface to sensor
nodes. It consists of
three parts: a gateway
per sensor node, a data
server that includes a
Web Application Server
(WAS), and application
services

• It supports only some of the
functional and architectural
characteristics of the
middleware like manage
nodes and dynamic binding
of services.

Heinzelman
et al. [3]

MiLAN MiLAN is an
Application driven
approach. it allows
programmers to tune
the network according
to the application need.

• MiLAN supports scalability
with its application driven
approach and QoS issues,
but it doesn’t address
mobility and lacks support
for OS and hardware
heterogeneity.

• MiLAN lack the
architectural characteristics
of the middleware.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 117

Li et al. [4] Application-
oriented

Event-Based
Middleware of

WSNs

This system provides a
standard interface and
protocol for
middleware. Also it
provides compatibility,
generality and
operability.

• Lacks some standard
architecture and also not
able to dynamically
configure a new node.

• Implementation of this
software is also not
available to formalize the
results.

Padmanabh
et al. [5]

MOJO MOJO converts the
actual sensor networks
node into a virtual
network as a JAVA
objects so that user can
easily work with
network and can easily
deploy any application
without knowing the
complexity of Wireless
sensor network.

• MOJO only works for
similar type of networks
node and can only convert
the same nodes into JAVA
objects

Aoki et al.
[6]

Spinning
Sensors

Spinning Sensors
provides the
functionality of device
coordination, data
processing and
management of
spatiotemporal model
of robotics sensor
nodes.

• Only supports the robotics
sensors data.

• Not providing a framework
to use this middleware in
any other wireless sensor
network.

FOK et.al.
[7]

Agilla It's provides a
programming model
consists of different
agents that shares a
wireless sensor
network.

• It consists of agents but is
unable to provide a
framework for middleware.

Madden et
al. [8]

TinyDB TinyDB is a query
based processing
middleware build on tip
of TinOS operating
system. Every device in
a network contains a

• Provides a strong query
based mechanism for
wireless sensor network but
it does not provide much
functionality as part of
middleware service.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 04 – Issue 01, January 2015

www.ijcit.com 118

sensor table to produce
and store their readings.

Marrh et al.
[10]

TinyCubus TinyCubus consists of
three parts: the Tiny
Data Management
Framework, the Tiny
Cross-Layer
Framework, the Tiny
Configuration Engine
and Tiny Data
Management.

• It not provides a framework
that fixes all the issues of
middleware and supports
different types of hardware
architecture nodes.

Murphy et
al. [11]

TinyLime In TinyLime data is
collected by mobile
monitors interconnected
through a MANET,
which can access only
those sensors that are
directly available to
them.

• It only designs for a specific
type of network. TinyLime
is based on previously
developed Lime model.

http://www.ijcit.com/

	Introduction
	A System Model For WSNs
	Middleware Characteristics
	Interaction Pattern
	Data exchange model
	Software as a Service
	Proxy pattern
	Dynamic binding of Services
	Parallel Processing

	Middleware Survey
	Discussion
	Conclusion ad Future Work
	References

