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Abstract—The proposal presented in the paper considers the 

following scenario. There is a population of subjects and an event E 

that can occur to each subject of the population. The population is 

constituted of subjects that, each with his/her specific past, begin, at 

a certain point of their life, a period of aging (observed-aging) 

under certain conditions (possibly changing in time). The 

probability of E occurrence to a subject during his/her observed-

aging depends on the particular combinations of conditions under 

which the subject spends such a period of time. The basic question 

underlying the proposal is: if, given his/her specific past, a subject S 

had to spend his/her next future time ∆T under certain (simulated) 

combinations of conditions, what would be the occurrence 

probability of E to S at the end of the future time interval ∆T ?  

The paper presents both a method for step by step modelling the 

physical world and the mathematical model of a probabilistic 

prediction engine that provides answer to the basic question.   

Moreover the basic general laws of probability dynamics in 

causal networks are also illustrated. This is motivated by the fact 

that these laws underlie the probabilistic reasoning that produces 

the prediction algorithm. The prediction engine, presented in this 

paper at a theoretical level, has also been implemented in a software 

prototype in turn embedded in a general software environment 

(www.cheerup.it) for creating and administering specific 

application oriented predictive tools in heterogeneous fields .  

The proposal can be useful in all the problems in which there is 

the need to take suitable and personalized measures in advance. For 

example, in the field of medicine, the proposal might be useful to 

Predictive, Preventive and Personalized Medicine. In fact the 

prediction engine, producing probabilistic predictions might be 

useful to Predictive Medicine, allowing to take suitable measures in 

advance might be useful to Preventive Medicine, producing specific 

predictions for each specific subject might be useful to Personalized 

Medicine. 

 

Keywords—Computer applications, Knowledge engineering, 

Decision support systems, Predictive monitoring.  

 

I. INTRODUCTION 

N order to allow the reader to briefly get an intuitive and 

synthetic view of the proposal let us organize this section as an 

explanation of  the title of the paper. Precisely, let us first 

explain the terms used in the first part of the title, then let us pass 

to examine the terms used in the second part.   

A. Probability dynamics in causal networks : what are we 

talking about ? 

   ―I consider the world probability as meaning the state of mind 

with respect to an assertion, a coming event, or any other matter 

on which absolute knowledge does not exists‖ – August de 

Morgan, 1838. Such citation, that appears at the beginning of the 

book [1], points out the natural concept of probability. 

Probability is not a property of events of the physical world, but 

a mental state, a psychological state (belief, trust, expectation, 

etc.) of who asks, with respect to his/her own information state, 

about the occurrence of future events. The term ―probability 

degree‖ has therefore the meaning of ―degree of belief, trust, 

expectation, …‖ about the occurrence of a future event, in 

synthesis: how much one believes that a certain event E will 

occur.   

   As uncertainty is pervasive in all fields (especially in 

medicine), the probability calculus about the occurrence of an 

event supports the rational decision (that cannot be the winner 

one) about which measure should be taken in advance in order to 

prevent/favour the occurrence of an undesired/desired event E. 

For decades hundreds of researchers have faced the problem of 

how to represent and manage uncertainty  [2] and a great number 

of papers have been published on this topic. Let us avoid facing 

such a crucial subject, it would be beyond the scope of the paper. 

The proposal presented in this paper follows the probabilistic 

approach. Uncertainty is represented in probabilistic terms and 

probability theory is adopted as the theoretic and mathematical 

foundation of the mental state called probability.  
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   In many kinds of problems pervaded by uncertainty the 

probability concept is effective if it is intended as conditioned 

probability playing the role of strength of causal relation. More 

precisely, the world is modelled in two steps. The first step 

consists in modelling the world in terms of cause-effect relations 

building this way a causal network whose nodes are multistate 

variables. The second step consists in putting uncertainty into the 

causal network, that is assigning conditioned probabilities to the 

causal relations of the network. A causal network with 

conditional probabilities is called probabilistic network. The 

probabilistic network is a basic conceptual paradigm for 

modelling real world under uncertainty [1], [3]. In each node of 

the network, probability is distributed (as a sort of fluid) on the 

states of the node and the total sum of the single quantities is 1. 

When an evidence enters the network, that is when a node is 

instantiated to one of its states, the consequences of this fact 

propagate through the network. Such consequences consist in 

redistributing the probabilities on the states of the remaining 

nodes. Probability calculus in probabilistic networks consists in 

calculating the probability distributions on the states of the end 

nodes given the probability distributions on the states of the start 

nodes. End nodes are the ones that, representing future events, 

cannot be directly observed and yet are relevant for taking 

measures in advance. The proposal concerns both a method for 

building a type of probabilistic network suitable to certain 

categories of problems (see the scenario illustrated in the next 

sub-section), and the definition of an algorithm for probability 

calculus in such type of network: the Probabilistic Prediction 

Engine.  

After this general premise, necessary for the sake of 

conceptual clarity, let us pass to examine the second part of the 

title. 

 

B. Probabilistic Prediction Engine: what is it ? 

   Let us start this section by examining the general scenario 

considered by the proposal. Let us consider a population of 

subjects and an event E that can occur to each subject of the 

population. The population is constituted of subjects that, each 

with his/her specific past, begins, at a certain point of their life, a 

period of aging under certain conditions (possibly changing in 

time), period that we will call observed-aging. What is 

interesting is the fact that the probability of E occurrence to a 

subject during his/her observed-aging depends on the particular 

combinations of conditions under which the subject spends such 

a period of time. For the sake of clarity let us consider the 

following example concerning the occupational medicine. A 

subject S, with his/her own chronological age and specific past 

(familial anamnesis, operations and/or illness undergone, etc.), at 

a certain point of his/her life begins a certain working activity 

that requires to spend a long period of time under certain 

working conditions harmful to health (for example, unhealthy 

environmental conditions, stress conditions, etc.). If E represents 

a professional illness typical of that working activity, it can be 

stated that such working conditions, lasting in time, affect the 

occurrence probability of E to S. 

   Turning back to the general scenario, let us consider the 

following basic question: if, given his/her specific past, a subject 

S had to spend his/her next future ∆T time under certain 

(simulated) combinations of conditions, what would be the 

occurrence probability of E to S at the end of the future time 

interval ∆T ? Answering this question is the goal of the  

proposal.  

In order to allow the reader to better understand the basic 

question and what the proposal consists in, it is necessary to 

informally introduce some basic concepts.   

    At the moment of beginning of the observed-aging on behalf 

of a subject S, an initial profile of S is built. The initial profile is 

an informative record that describes the status of S at the 

beginning of his/her observed-aging: the age range (in the 

following called initial age-range) to which the current 

chronological age (expressed with a proper time unit) of S 

belongs, and a set of initial information concerning the past and 

present status of S (anamnesis information, familial 

predispositions to E occurrence, current health state, operations 

undergone in the past, illness undergone (e.g. hepatitis, cardiac 

infarcts), or still present (e.g. diabetes), etc.).  

After a subject S has passed a certain period of observed-aging, 

the information that specifies for how long (in the observed-

aging period) S has been under the condition C1, for how long 

under the condition C2, etc. constitutes the profile of observed 

aging of S. Let us call whole profile of S the informative set: 

initial profile (of S) AND profile of observed aging (of S). 

Finally let us take into account if E has occurred or not to S. The 

period of observed-aging of S ends when such piece of 

information is: E has occurred to S. 

    The Probabilistic Prediction Engine presented in the proposal 

and implemented in a software prototype [4] provides the 

possibility to simulate that a subject S will spend a future time 

interval ∆T under certain combinations of conditions defined by 

the user (of the Engine). In other words, given a subject S, the 

Engine allows the user to define (for S), for a future time interval 

∆T, a hypothetical profile of observed aging, profile that we will 

call future profile of observed aging. In this case the whole 

profile of S extends even to include the simulated future: whole 

profile = initial profile AND extended profile of observed aging, 

where extended profile of observed aging = ―profile of observed 

aging‖ & ―future profile of observed aging‖ (& is a merging 

operator). The user, after having defined a simulated future, can 

ask the Engine to calculate the answer to the basic question 

(section 4 will illustrate how such a calculus is accomplished). 

Let us notice that the possibility to compare different predictions 

resulting from different simulated cases may help decision 

making in trade-off problems.  
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Let us also notice that the calculated probability values are 

sufficiently reliable only if the Engine has at its disposal a great 

number of subject stories. How to collect such stories?  As it is 

well known, there are two methods for filling a database: either 

by means of batch loading of data or by means of collecting 

every single story in real time. This second method is carried out 

by monitoring single subjects, monitoring that, being equipped 

with prediction features, is called: predictive monitoring. 

    There are many fields (not necessarily the medicine field) in 

which the proposal could be applied. In general the proposal 

could be a useful support to Predictive, Preventive and 

Personalized Medicine. In fact probabilistic predictions may be 

used in Predictive Medicine. Predictions may be used in 

Preventive Medicine for taking suitable measures in advance. 

Predictions, being specific for each specific subject, may be used 

in Personalized Medicine.  

Let us also notice that the event E might also be a desired 

event. For example, in the fields of fitness or sport what might 

be interesting is calculating the probability that a subject, given 

his/her initial profile, has to reach a certain target (event E) if 

he/she spends his/her next years under certain conditions of 

physical exercise, diet, etc. 

 

C. Paper organization 

Section 2 ―Step by step modelling the physical world‖ 

presents the general conceptual tools needed to build a real 

world model suitable to the proposal. Section 3 ―Modelling the 

dynamics of probability in a causal network: a qualitative view‖ 

presents the concept of probability dynamics in causal networks. 

Section 4 ―Computational probability dynamics: Probabilistic 

Predictive Engine‖ presents the Probabilistic Predictive Engine. 

Sections 5 "Discussion and related work‖ and 6 ―Conclusions‖ 

terminate the paper. 

 

II. STEP BY STEP MODELLING THE PHYSICAL WORLD 

This section, that concerns the construction of a model that 

will be used by the Probabilistic Prediction Engine, is organized 

in three sub-sections. The first sub-section presents the formal 

definitions of the basic concepts underlying the theoretical 

model of the proposal and informally illustrated in section 1. The 

second sub-section introduces the concepts of time-slice, concept 

necessary for modelling the real time. Finally the third sub-

section illustrates how the concepts presented in the preceding 

sub-sections are organized in order to build a suitable causal 

network: the basic conceptual platform for the Probabilistic 

Prediction Engine.  

 

A.  Concept of observed-aging 

● Let us represent the event E by means of a variable with two 

states: ―occurred‖, ―not-occurred‖. For short the notation E=n 

stands for E = not-occurred, E=y for E = occurred. 

● Let us define the concept of ―state of a condition C1‖. 

A condition C1 is represented by a variable with a set of possible 

states s1, s2, … . The set of possible states of C1 is denoted by 

C1={s1, s2, ...}, and C1=s1 means: ―the condition C1 is in state 

s1‖ or, equivalently, ―the condition C1 is instantiated to the state 

s1‖. For example, the condition ―Cigarette smoke‖ might have 

three states: ―yes under 10 cigarettes a day‖ (s1), ―yes 10 or 

more cigarettes a day‖ (s2), ―no‖ (s3).  

    ● Let us define the concept of ―observed-aging, of a subject 

S1, related to a condition C1‖. Let us consider a condition C1. 

Let ∆T = [0 , z) be the period of observed-aging of a subject S1. 

It is reasonably to consider the possibility that S1 elapses ∆T by 

spending n time units with C1=s1, then m time units with C1=s2, 

etc. Let us adopt the following dot notation: <condition 

state>.<number of time units> to represent the fact that a subject 

spends a certain number of time units under a certain condition 

state. As a consequence, the  present concept is formally defined 

by the sequence S1C1 = (st1.n, st2.m, ...), where n + m +  … = 

∆T.  

    ● Let us define the concept of ―variable of observed-aging 

related to a condition C1‖. Let us consider a set of subjects {S1, 

S2, S3, …}. The present concept is represented by the variable 

HC1 whose set of values is {S1C1 , S2C1 , S3C1 …}. HC1 is a 

history variable, it stands for ―History of C1‖. 

    In this sub-section we have so far formalized the concept of 

observed-aging and its consequences, but, since such concept 

involves time, we are prompted to face the problem of defining a 

proper model of time. 

 

B. Concept of time slice 

    The concept of observed-aging of a subject implies that we are 

interested in time elapsing only after the beginning of the 

observed-aging (before the beginning of the observed-aging the 

past of a subject is summarized in his/her initial profile).  In 

other terms, the beginning of the observed-aging can be viewed 

as a sort of ―birth‖ for a subject, i.e. the birth of his/her 

observed-aging. Let tu be the time unit suitable for measuring 

the observed-aging in a given application. Let us subdivide the 

time axis into segments, each with length equal to 1 tu . More 

precisely, let us subdivide the time axis into the intervals: [0 , 1) 

, [1 , 2), …, where 0 is the point on the time-axis that 

corresponds to the birth of the observed-aging.  

    In real life, time elapses in a continuous way, but in a 

computational model we must get time to elapse in a discrete 

way, that is as a sequence of time-slices: time-slice 1, time-slice 

2, etc. (for short, time-slice 1 is denoted by ts1, time slice 2 by 

ts2, etc.). Precisely, the time interval [0 , 1) concentrates in ts1, 
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the time interval [1 , 2) concentrates in ts2, etc. Each time slice 

collects both the history-variables and the E-variable. Let us 

refer, for example, to the condition C1. In ts1 there is HC11 that 

means HC1 with ∆T = [0 , 1), in ts2 there is HC12 that means 

HC1 with ∆T = [0 , 2), etc. So, in general, given a set of 

conditions {C1, C2, …, CN}, in a time slice tsm (m>0) there are: 

HC1m , HC2m , …, HCNm , with ∆T = [0 , m). As for E, in tsm 

there is also the variable Em . If in ∆T = [0 , m) E has not 

occurred, tsm has Em=n, if E has occurred, tsm has Em=y.  Let us 

suppose that b is the point of E occurrence in [m-1 , m). If in the 

sub-interval [m-1 , b) a condition C is in state st, then let us 

make an approximation by assuming that such state lasts even 

during the remaining sub-interval [b , m). 

The concept of time slice is synthetically illustrated in fig. 1. 

Let us briefly comment it. For the sake of simplicity the figure 

considers a hypothetical period of observed-aging constituted by 

only 3 time slices. Moreover C1 is the only condition being 

considered. The interval time defined, in the real world, by [0 , 

1), is concentrated, in the model, in a single point: the  time-slice 

1 (i.e. ts1), the interval [1 , 2) is concentrated in ts2, etc. In the 

real world E occurs inside the interval [2 , 3) and the sub-interval 

before E occurrence elapses with C1=s2. Such a situation is 

represented in the model by: {HC1=(s1.1), E1=n} in ts1; 

{HC2=(s1.1,s2.1), E2=n} in ts2;  {HC3=(s1.1,s2.2), E3=y} in ts3. 

The period of observed-aging of the current subject terminates 

with ts3. In point 0 we have the special time slice ts0 with only 

E0=n. After having formalized the concept of time slice, let us 

consider again the concept of observed-aging by examining its 

consequences in terms of time slices. To this end let us face the 

definition of the profile concept. 

 

C.  Concept of profile 

Let us define, in more formal terms, the concept of initial profile 

already presented in section 1 in informal terms. Let {IF1, IF2, 

…} be the set of initial information. 

    ● Let us define the concept of ―state of a piece of initial 

information IF1‖. A piece of initial information IF1 is 

represented by a variable with a set of possible states: s1, s2, … 

and IF1=s1 means ―the piece of initial information IF1 is in state 

s1‖ or, equivalently, ―the piece of initial information IF1 is 

   

REAL WORLD 

 

  Start of monitoring                            

        |    

        |     

        |   

        0-------------------------------1-------------------------------------2--------------------------------3----------- > 

                                                                                                                                                          real  time 

 HC1                                           ----------------------------s2------------------------------                                 

         -----------s1-------------------                                

      E0=n 

                                                                                                                               E=y 

 

 

                       [0 , 1)  ts1                  [1 , 2)  ts2                            [2 , 3)  ts3 

 

 

                                                                                                                                                           modelled time 

MODELED WORLD               ● ts1                                          ● ts2                                    ● ts3     

 

                                             time-slice 1                             time-slice 2                             time-slice 3  

                                             HC11=(s1.1)                           HC12=(s1.1,s2.1)                    HC13=(s1.1 , s2.2) 

                                             E1=n                                       E2=n                                        E3=y 

 
Fig. 1   An application example of the time-slice concept.  
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instantiated to the state s1‖.  For example, the piece of initial 

information ―Genetic predisposition‖ might have two states: 

―yes‖ (s1), ―no‖ (s2).  

    ● Let us define the concept of ―initial information of a subject 

S1‖. Let us consider all the single pieces of initial information: 

IF1, IF2, IF3, … On the basis of the real history of a subject S1 

each single piece of initial information has a proper instantiation 

to one of its possible states. For example IF1=s2, IF2=s1, 

IF3=s1, … The present concept is represented by such a set of 

instantiations of the initial information. 

    ● Let us define the concept of ―initial profile of a subject S1‖. 

Let us define the present concept as: ―initial age-range of S1‖ 

AND ―initial information of S1‖. The concept is denoted with 

iprofS1 .  

    ● Let us define the concept of ―variable of initial profile‖. 

This concept is represented by the variable IP  whose set of 

values is defined by the initial profiles of the single subjects.  

    ● Let us define the concept of ―profile of observed-aging of a 

subject S1 as long as a time slice k‖. Let us consider the set of 

conditions {C1, C2, …, CN} and a subject S1. Let us define the 

present concept as the set: {S1C1, S1C2,  …, S1CN} with ∆T = [0 , 

k), and let us denote it with profS1,k .  

   As already stated in section 1, the Prediction Engine provides 

the possibility to simulate that a subject S1 spends a future time 

interval ∆t under certain combinations of condition states. In 

other words, it is possible to define, for a future ∆t, different 

possible simulated profiles of observed-aging. We are therefore 

prompted to formulate two new definitions. 

    ● Let us define the concept of ―future profile of observed-

aging of a subject S1 referred to the time interval between the 

present time slice q and the future time slice k‖. Let us consider 

the set of conditions {C1, C2, …, CN} and a subject S1. Let us 

define the present concept as the set: {S1C1, S1C2,  …, S1CN} 

referred to the time interval ∆t = [q , k), where q is the present 

time slice and k is the future time slice (q <  k). Let such profile 

be denoted with fprofS1,q,k .  

    ● Let us define the concept of ―profile of observed-aging of a 

subject S1 extended to a future time slice k‖. The present 

concept is represented by the profile resulting by extending the 

profile of observed-aging of a subject S1 profS1,q so to also 

include the future profile fprofS1,q,k . In formal terms, let us state:  

profS1,k = profS1,q & fprofS1,q,k , where the symbol & stands for 

―merging‖. That is, the sequences <condition state>.<number of 

time units> of the two profiles are to be merged. Let us explain 

what it means. Let us refer, for the sake of simplicity, to the 

condition C1 only. Let us suppose, for example, that in the 

segment ∆T = [0 , q) the sequence S1C1 is (s1.a, s2.b, s1.c) where 

a + b + c = ∆T. Let us suppose that in the segment ∆t = [q , n) 

the sequence S1C1 is (s1.d, s2.e). Then in the segment ∆T = [0 , 

n) the sequence S1C1 is the given by: (s1.a, s2.b, s1.c) &  (s1.d, 

s2.e) = (s1.a, s2.b, s1.(c+d), s2.e). 

Time       Initial       IF1   IF2                  HC1                             HC2                HC3             EYprof           ENprof 

slice     age-range 

 

…. 

3             30-35           s1     s2                  (s3.2, s1.1)           (s1.3)               (s2.3)               2                 113                     

3             35-40           s2     s2                  (s3.3)                   (s2.3)           (s2.1, s1.2)           3                 124 

3             35-40           s2     s1                  (s3.3)                   (s2.3)           (s2.1, s1.2)           1                  57 

3             40-45           s2     s1                  (s3.3)                   (s2.3)           (s2.1, s1.2)           5                  98 

… 

… 

4             30-35           s1     s2                  (s3.2, s1.2)           (s1.4)               (s2.4)               2                 113 

4             30-35           s1     s2                  (s3.2, s1.2)           (s1.4)               (s2.4)               3                 113 

… 

5             30-35           s1     s2                  (s3.2, s1.3)           (s1.5)          (s2.4, s1.1)           2                  125 

…         

 

 
Fig. 2    An example of how profiles are stored in model memory. In the example, that represents a cross-section of  

             the database, the initial profile is based on initial age range and two variables (IF1, IF2) whereas the 

             observed-aging profile is based on three history-variables (HC1, HC2, HC3). 
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    ● Let us define the concept of  ―whole profile of a subject S1 

as long as a time slice k‖. This concept is defined as: wprofS1,k = 

iprofS1 AND profS1,k . 

    In general, let us use the symbols wprofk , profk to respectively 

indicate a whole profile and a profile related to a time slice k 

without making explicit the subject the profiles belong to. 

Similarly, let us use the symbol iprof to indicate an initial profile 

without making explicit the subject the initial profile belongs to.  

    ● Let us define the concept of ―counter variable related to a 

whole profile wprofk―. During the period of observed-aging, 

subjects give their contributions by adding, for each time slice k, 

their whole profiles wprofk to the database. Let us define, for 

each wprofk , two counter variables: ENwprofk and EYwprofk. If 

the wprofk of the current subject is already present in the 

database, then one of the two variables will be incremented. 

Precisely, if E has not occurred, ENwprofk is incremented. If E 

has occurred, EYwprofk is incremented. As a consequence the 

variable ENwprofk contains the number of cases (having profile 

wprofk) with Ek=n whereas the variable EYwprofk contains the 

number cases (having profile wprofk) with Ek=y. Let us notice 

that the fact that wprofk is added to the database (or, 

equivalently,  the fact that the related counter variables are 

updated) implicitly implies the fact that the state of E in the 

preceding time slice k-1 is necessarily in state n (in fact, as stated 

in section 1.2, the period of observed-aging of a subject S ends 

when E occurs to S). Formally, for each wprofk belonging to the 

time slice k, we should take into account the fact Ek-1=n. Finally, 

let us notice this important fact: the value of  [EYwprofk / 

(ENwprofk + EYwprofk)] represents the frequency of occurrence 

of E given the profile wprofk and Ek-1=n.  For short let us denote 

such value with the symbol L(wprofk). Formally: L(wprofk) = 

frequency-of-occurrence(Ek =y | Ek-1=n, wprofk). As a 

consequence, assuming that the value of (ENwprofk + EYwprofk) 

is enough great, if we adopt the frequentist definition of 

probability, we can state that, with a certain approximation, 

L(wprofk) = P(Ek =y | Ek-1=n, wprofk). 

    Figure 2 shows how profiles are represented in the database. 

Let us briefly comment it. Let us consider for example the time 

slice 3. There are four rows referring to it. Each row represents 

the whole profile of a subject in the time slice 3. Let us consider, 

for example, the first row. The initial profile is represented by 

{init. age-range = 30-35 , IF1 = s1  , IF2 = s2}. The profile of 

observed-aging is represented by { HC1 = (s3.2,s1.1) , HC2 = 

(s1.3) , HC3 = (s2.3) }. Finally let us consider the counter 

variables: EYwprof3 = 2, ENwprof3 = 113. As a consequence 

L(wprof3) =  2 / 115 = 0.017. 

In this sub-section we have formalized the concept of profile 

and its consequences. We have now at our disposal the concept 

of time slice and the concept of profile and we are therefore 

ready to organize them in a basic structure: a temporal causal 

network. Let us define such concept in the next sub-section. 

 

D. Concept of temporal causal network 

    In general, for many real world domains, we are not sure that 

the probability distribution on the states of E is constant in time. 

It may vary due to the only fact that time elapses. In general, 

given two time-slices: a present one (tsa) and a future one (tsb), 

we can state that it might be that P(Eb=y) ≠ P(Ea=y) for the only 

reason that the real time interval corresponding to tsb – tsa has 

elapsed. Let us represent such a situation in the following way. 

Let us consider, for example, a time interval [(i-1) , m)  where 

the point (i-1) is included whereas the point m is excluded and i 

≥ 1. Such interval is subdivided into sub-intervals: [(i-1) , i), 

concentrated in tsi ;  [i , (i+1)), concentrated in ts(i+1) ;  …; [(m-

1) , m), concentrated in tsm. Let us build a causal chain where 

the E variables Ei , Ei+1 ,…, Em (that are present in the respective 

time-slices tsi, tsi+1, …, tsm) become nodes of the chain (i.e. E 

nodes). Such E nodes are connected by causal links: Ei  Ei+1  

…  Em . Such links connecting E nodes represent time 

elapsing. For this reason they are called temporal links. Taking 

into account that the occurrence probability of E for a subject 

may be affected by both the mere aging of the subject and the 

conditions C1, C2, …, CN under which the subject ages, we are 

prompted to enrich the causal chain by adding the history-

variables of observed-aging present in the time slices. Precisely, 

such variables become nodes of the network (i.e. HC nodes) and 

in each time slice HC nodes are connected to the E node of the 

related time slice by causal links. For example, in tsi we have: 

HC1i  Ei , HC2i Ei , … , HCNi Ei . And so forth for the 

other time slices. Considering that also the initial profile of a 

subject contributes to affect the probability of E occurrence 

during the observed-aging period, let us also add the IP variable 

(i.e. IP node). Such node is linked through causal links to the E 

nodes of all the time slices: IP  Ei , IP  Ei+1 , …, IP  Em . 

Finally, let us add the causal relation Ei-1  Ei . If we suppose 

that the time slice (i-1) (if i=1, we have to do with the special 

time slice ts0) represents the time slice of the present time and all 

the others represent future time slices, we can conclude that Ei-1 

is necessarily in state n.  Putting all together we get the temporal 

causal network illustrated in Figure 3. Let us comment it.  

    The network will be used by the Prediction Engine to produce 

predictions. If S1 is the subject for which predictions are to be 

produced, in each future time slice k the IP variable and the 

related history-variables are respectively instantiated with iprofS1 

and profS1,k , where profS1,k  is the profile extended as long as tsk. 

Formally: profS1,k = profS1,(i-1) & fprofS1,(i-1),k .  

This sub-section has defined the basic structure of the 

temporal causal network used to produce predictions. However 

there is still an important concept missing from such network: 

probability. Let us examine, in the next section, how to obtain a 

probabilistic temporal causal network. 
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E.  Concept of probabilistic temporal causal network 

    Let us consider the temporal causal network of Figure 3 and 

and let us enrich it with the concept of conditioned probability in 

the following way. Given two events: A, B, where B causes A, 

the probability of A occurrence conditioned to B occurrence, for 

short the probability of A given B, denoted by P(A|B), is defined 

as  

)(

),(
)|(

BP

BAP
BAP   

From this definition we get the so-called Product Rule 

 
),()()|( BAPBPBAP   

 

Let us establish that a causal relation like B  A (B causes A) 

has associated a quantitative aspect: the value of the conditioned 

probability P(A|B), value that represents the strength of the 

causal relation. For example, for the time slice i we have (let A 

be Ei , let B be {Ei-1 , IP, HCi ,…, HCi }): 

 

 

 

   As a consequence we obtain a probabilistic temporal causal 

network (for short: probabilistic network). Such network is 

dynamically created by the prediction engine when prediction 

calculus is required for a subject S1. Let us examine what an 

instantiation of the network of fig. 3 consists in. If (i-1) (where i 

≥ 1) is the time-slice of the present time, probabilistic predictions 

consist in calculating, for each future time-slice k, where i ≤ k ≤ 

m, the value of  

 

 

 

 

where IP is instantiated to the initial profile of S1 (i.e. iprofS1 ), 

whereas nodes HC1i , …, HCNi  are instantiated to  

profS1,i = profS1,(i-1) & fprofS1,(i-1),i , … , nodes HC1k , …, HCNk 

are instantiated to profS1,k = profS1,(i-1) & fprofS1,(i-1),k . Once 

instantiated, the network of fig. 3 is ready for being used by the 

prediction engine. The target probability  

P(Ek=y | Ei-1=n, IP, HC1i , …, HCNk ) has this meaning: 

probability that in time slice k E is in state y (that is Ek  = y). 

    Let us conclude the present section with the following 

considerations. By using the basic concepts of observed-aging, 

time slice, temporal causal network and probabilistic network, 

we are able to step-by-step define a real world model that can be 

used to produce probabilistic predictions. The probabilistic 

network plays the role of a platform on which computational 

probability dynamics has to be accomplished by following well 

defined laws, laws that underlie the algorithm of the Prediction 

Engine.  The next section faces this aspect. 

 

III. MODELLING THE DYNAMICS OF PROBABILITY : A 

QUALITATIVE VIEW 

    Let us examine, in general and qualitative terms, the laws of 

probability  dynamics. Let us think of probability  as a sort of 

fluid located in the nodes of a probabilistic network. In each 

node, probability  is distributed on the states of it. In each node, 

the sum of the probability  quantities on the states equals 1. As a 

consequence, even if nodes are connected through causal 

relations, probability  does not flow from a node to another 

),...1,,|( 1 iiii HCNHCIPEEP 

),...,1,...,,...1

,,|( 1

kkii

ik

HCNHCHCNHC

IPnEyEP  

  HC1i   HC2i … HCNi   HC1i+1  HC2i+1 … HCNi+1  HC1i+2  HC2i+2 … HCNi+2  ……  HC1m  HC2m … 

HCNm  

 

 

 

 

  

     Ei-1                Ei                         Ei+1                                 Ei+2                  ……                          Em 

 

                                                                       

                                                                              IP 

 

Fig. 3.  The structure of the causal network used to produce predictions for a subject S1.  The time-slice i  (i ≥ 1) represents  

            the first future time slice. The time-slice m  represents the last future time slice. The arrows connecting E nodes  

            represent  temporal links. The nodes in bold are instantiated: the set of nodes HC1i , …, HCNi  are instantiated by the 

            observed-aging profile profS1,i , the set HC1i+1, …, HCNi+1  are instantiated by profS1,i+1 , etc. 

            The IP node is instantiated by the initial profile iprofS1 . The node Ei-1 is instantiated to the state n.  

            The probability  values of the E nodes in italic are to be calculated.  
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through such connections. In fact, dynamics of probability  has 

the following meaning. When we gather a certain fact from the 

real world we instantiate the related node. Instantiating a node 

means to get the probability  distribution on its states to become 

the following: on one state the level of probability  is 1 (that is 

100%), on each of the remaining states the level of probability is 

0. After having instantiated a node we have to propagate the 

consequences of such an instantiation throughout the network. 

Such propagation consists in properly varying the probability 

distribution on the states of the other nodes of the network 

(dynamics of probability). Such variations are accomplished by 

both calculating probability values on the basis of theorems (e.g. 

Bayes theorem, etc.) and definitions, and taking into account the 

types of structures of the causal relations that connect nodes.   

    Basically there are three types of such structures: serial 

structure, diverging structure, converging  structure. Let us 

examine for each of them what it consists in and how it works 

taking into account that serial and converging structures are 

present in the network of fig. 3 and the knowledge of their 

behaviours will be relevant during the probabilistic reasoning 

presented in section 4. The diverging structure is not present in 

the network but, for the sake of completeness, it will be 

examined all the same.  

In order to show that the laws of these structures are coherent 

with probability dynamics in human mind, let us use a well 

known example present in [5] : the ―wet grass example‖ (fig. 4). 

The scenario the network of the figure refers to is the following. 

Mr. Holmes lives in a house with a garden that is near to the 

garden of his neighbour: Mr. Watson. Moreover, Mr. Holmes in 

the evening is used to water his garden with his sprinkler but 

then sometimes he forgets to switch it off. The wife of Mr. 

Holmes is used to get up early in the morning and go to the 

garden. The figure represents the causal  relations of the physical 

world.  

    In the following of this section let us use this graphic 

representation: a node in bold means that it is instantiated, a 

node in italic means that the distribution of probability on its 

states is consequence of  the fact that one or more nodes have 

been instantiated.  

 

A. Serial structure 

    A serial structure (with 3 nodes) is represented by:  

B  A  C .  

    Let us suppose that the starting situation is: no node is 

instantiated. If we instantiate B, then the instantiation 

consequences propagate descending along the causal path:  from 

B to A to C (from the cause to the effect): B  A  C affecting 

this way the distribution of probability on the states of A and C. 

Vice versa, if we instantiate C, then instantiation consequences 

propagate going up the causal  path in the opposite direction: 

from C to A to B (from the effect to the cause): B  A  C 

affecting this way the probability distributions on the states of A 

and B.   

    Let us now suppose that we start from a situation in which A 

has already been instantiated: B  A  C. In such a case the 

propagation channel between B and C is closed. The 

instantiation of B has no influence on C, that is B  A  C is 

equivalent to A  C and so B can be neglected (such a situation 

will be encountered in the course of probabilistic reasoning in 

section 4). Similarly, the instantiation of C has no influence on 

B.  

Referring to fig. 4, let us consider the sub-network  

{R , S}  H  wshoes. If Mr. Holmes knows with certainty 

that H=y (his grass is wet) then he concludes that it is very 

probable that the shoes of his wife are wet, no matter if that is 

due to the fact that it has rained or the sprinkler has been 

forgotten on, that is no matter if it is {R=n, S=y} or {R=y, S=n}. 

 

B. Diverging  structure 

    As already above stated, the diverging structure is not present 

in the network of fig. 3 but, for the sake of completeness, let us 

examine it all the same. A diverging structure (with 3 nodes) is 

 

 

 

 

                
 

 R             S 
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Fig. 4. The causal network of the ―wet  

          grass example‖. Legenda:  

         R = rain;  

         S = sprinkler of Mr. Holmes;  

         H = grass of Mr. Holmes;  

         W = grass of Mr. Watson;  

         wshoes = shoes of wife of Mr. Holmes. 

Each node has two states: y, n. (that is: yes, no). 
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represented by: B  A  C . Let us suppose that the starting 

situation is: no node is instantiated. If we instantiate B, then the 

instantiation consequences propagate going up the causal path in 

the opposite direction (from B to A): B  A and then 

descending along the causal path (from A to C): A  C , 

affecting this way the distribution of probability on the states of 

A and C. Similarly, if we instantiate C, the instantiation 

consequences propagate to A and B. Again, if we suppose that 

we start from a situation in which A has already been 

instantiated: B  A  C, then the propagation channel between 

B and C is closed.  Referring to fig. 4, let us consider the 

diverging structure W  R  H with no node instantiated.  

    ● Case a: R is not instantiated.  

    If in the morning Mr. Holmes sees that the grass of Mr. 

Watson is wet (W=y), he concludes that it is very probable that 

it has rained during the night, that is: R=y is very probable (he is 

not certain because the grass of Mr Watson might be wet 

because Mr. Watson has watered the garden). As a consequence 

Mr. Holmes retains that it is very probable that his grass too is 

wet, that is: H=y is very probable (and therefore it is also very 

probable that the shoes of his wife are wet).   

    ● Case b: R is instantiated. 

Let us suppose that Mr. Holmes, as soon as gets up in the 

morning, receives the piece of news that it has not rained in the 

night (that is he knows with certainty that R=n). As a 

consequence he retains that it is little probable that the grass of 

Mr. Watson is wet (he is not sure because Mr. Watson 

sometimes waters his garden). If later Mr. Holmes sees that his 

grass is wet (H=y), then this fact does not change his retaining 

that it is little probable that W=y (in fact the grass of Mr. Holmes 

might be wet because of his sprinkler that had been forgotten in 

state on the night before). 

 

C. Converging  structure 

   Let us consider the converging structure. Such structure, 

beside being present in the network of fig. 3, presents interesting 

aspects of probability dynamics that will have an important role 

in the probabilistic reasoning of section 4 (see Theorem 1). As a 

consequence let us deeply examine it. The converging structure 

(with 3 nodes) is represented by:  

B A  C , where A is called ―convergence node‖.  

    Let us suppose that the starting situation is: no node is 

instantiated. If we instantiate C, then the instantiation 

consequences propagate only to A, the propagation channel from 

A to B is closed: B A  C . Similarly, if we instantiate B, the 

propagation channel from A to C is closed.  

    Again let us start from the starting situation in which no node 

is instantiated. If we instantiate A, then the instantiation 

consequences propagate to B and C: B A  C . If now we 

instantiate one of the two remaining nodes, say C, then the 

channel from A to B is open and the instantiation consequences 

can propagate to the other node, i.e. B. Precisely: the probability 

distribution on the states of B goes back to the initial values.  

    Referring to fig. 4, let us consider the converging structure 

R H  S . The starting situation is: no node is instantiated. 
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Fig. 5. The converging structure of the ―wet 

           grass example‖. Initial situation: no node  

           is instantiated. Only the state y is  

           illustrated. The state n is complementary.  
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Fig. 6. R is instantiated but since H is not  

           instantiated, the instantiation of R does  

           not affect S.  
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There are two initial probability distributions: one on the states 

of R, the other on the states of S. The distribution concerning R 

reflects the percentage of night with rain in the current season. 

The distribution concerning S reflects the percentage of times 

that Mr. Holmes forgets to turn his sprinkler off. The starting 

situation is represented in fig. 5. Probability is represented as a 

fluid that is distributed on the states of a node.  

    ● Case a: H is not instantiated. 

Let us suppose that Mr. Holmes, as soon as he gets up, 

receives the piece of news that it has rained during the night. He 

instantiates the node R, that is R=y, and propagates the 

consequences: he retains that it is very probable that his/her 

grass is wet, that is H=y (and similarly as for W=y and the shoes 

of his wife). He though does not vary the probability distribution 

on the states of S because the fact that it has rained has nothing 

to do with the fact that the sprinkler might has been forgotten in 

state on. In other words: as for the propagation of the  

consequences of the instantiation of R, the channel from H to S 

is closed. The situation here described is represented in fig. 6. 

    ● Case b: H is instantiated. 

    Starting from the initial situation (fig. 5) let us now suppose 

that Mr. Holmes, as soon as he gets up, sees his grass wet. He 

instantiates the node H, that is H=y, and propagates the 

consequences: he retains more probable both that he has 

forgotten to turn his sprinkler off and that it has rained (and as a 

consequence it is also more probable that the grass of Mr 

Watson is wet). In more formal terms, Mr. Holmes increases the 

probability level associated to the state S=y and R=y (and as a 

consequence, W=y). The situation here described is represented 

in fig. 7 (of course he also believes wshoes=y). 

    If 

then 

Mr. 

Holmes 

receive

s the 

piece 

of news 

that it 

has rained during the night, he instantiates the node R, that is 

R=y, and propagates the consequences of such an instantiation. 

Of course the probability level associated to the state W=y 

increases, but what is more interesting is that the probability 

level associated to the state S=y decreases to the initial level, that 

is the level that corresponds to the fact that some evenings Mr. 

Holmes forgets to turn his sprinkler off: the level illustrated in 

fig. 5. In fact, the fact that it has rained during the night (R=y) 

perfectly explains why the grass of Mr. Holmes is wet and as a 

consequence there are no reasons for Mr. Holmes to believe in 

S=y more or less than how much he normally believes. This 

phenomenon of probability dynamics that occurs in human mind 

is called ―explaining away‖. The situation here described is 

represented in fig. 8. 
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Fig. 7. H is instantiated to state y. The effects of  

      such an instantiation propagate to R and  S.  
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Fig. 8. The instantiation of R to the state y,  

           finding H instantiated, produces the     

           ―explaining away‖ effect: the level of 

           probability of S=y goes back to the   

           initial level.  
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Fig. 9. The instantiation of W to the state y,  

           finding H instantiated, produces an     

           ―explaining away‖ effect, but the level of 

           probability of S=y does not go back to  

           the initial level. 

           level.  
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    Finally, for the sake of completeness let us consider the 

following case of ―explaining away‖. Let us suppose that, 

starting form the situation described in fig. 7, Mr. Holmes does 

not know if it has rained during the night, but sees that the grass 

of Mr. Watson is wet. Then Mr. Holmes instantiates the node W 

(i.e. W=y), instead of R, and propagates the consequences of this 

instantiation. The probability level associated to the state R=y 

increases and the probability level associated to the state S=y 

decreases, carrying out the ―explaining away‖ mechanism, but 

this time the probability level associated to the state S=y does 

not decrease to the initial level. This is due to the fact that Mr. 

Holmes is not certain that it has rained during the night. In fact 

the fact that the grass of Mr. Watson is wet might be due to the 

fact that Mr. Watson has watered his garden the evening before 

and therefore the fact that the grass of Mr. Holmes is wet, might 

be due to the fact that Mr. Holmes has forgotten to switch off his 

sprinkler the evening before. The situation here described is 

represented in fig. 9. (A sort of imperfect explanation of H=y) 

    Let us notice that the ―explaining away‖ mechanism occurs 

even if the convergence node is not instantiated, in fact it is 

sufficient that an effect node (a son node) of the convergence 

node is instantiated. Referring to fig. 5  it can be stated that if, 

instead of instantiating H, we instantiate wshoes, the ―explaining 

away‖ occurs all the same.  

    We are now at the end of this section. We have at our disposal 

all the background knowledge necessary for facing the 

prediction problem considered in the proposal. Let us therefore 

pass to examine, in the next section, how to build the 

probabilistic prediction engine.  

 

IV. COMPUTATIONAL PROBABILITY DYNAMICS : PROBABILISTIC 

PREDICTION ENGINE 

Let us consider the network of fig. 3. Let S1 be the subject for 

which predictions have to be produced for the future time slices: 

i , …, m.  Let fprofS1,(i-1),m  be the future simulated profile for S1. 

For each time slice k (i ≤ k ≤ m) let us calculate the related 

extended profile of S1:  profS1,k = profS1,(i-1) & fprofS1,(i-1),k  , and 

then, with such extended profile, let us instantiate the nodes 

HC1k … HCNk . Finally let us instantiate the node IP with 

iprofS1 . The network of fig. 3 is now completely instantiated.  

 

A. Prediction for the first future time slice 

Let us calculate the prediction for the first future time slice: 

the time slice i. This means that we have to calculate the 

probability of  Ei=y in the network of fig. 3. Let us notice that 

the node Ei+1 is the converging node of a converging structure. 

Let us map such converging structure in fig. 3 into the 

converging structure R  H  S  in fig. 5. More precisely,  the 

node Ei+1 corresponds to the node H, the node Ei corresponds to 

the node S, the set of nodes {HC1i+1 ,…, HCNi+1 , IP} 

corresponds to the node R. Since the node Ei+1 is not 

instantiated, Ei is not instantiated, the nodes HC1i+1 ,…, HCNi+1 

and IP are instantiated, we are in the situation described in 

section 3.3 case a fig. 6. As a consequence, the instantiations of 

the nodes {HC1i+1 ,…, HCNi+1 , IP} do not affect the distribution 

probability on the states of f Ei . The conclusion is that the nodes  

HC1i+1 ,…, HCNi+1 can be neglected along with the link from IP 

to node Ei+1 and the node Ei+1 itself. The instantiated network of 

fig. 3 therefore reduces to the one of fig. 10. 

    Let us make the following considerations on the network of 

fig. 10. Let us suppose that a subject S1 at the time slice i has the 

whole extended profile wprofi = iprof AND profi . As a 

consequence the extended profile profi instantiates the variables 

  HC1i   HC2i … HCNi    

 

 

 

 

  

     Ei-1                Ei                          

                                                                       
 

                  IP 
 

 

Fig. 10.  The structure of the causal network used to 

produce prediction  for the first future time slice. 

The node Ei-1 is instantiated to the state n. The 

probability  value of the Ei node has to be 

calculated.  

 

  HC1i   HC2i … HCNi   HC1i+1  HC2i+1 … HCNi+1   
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                                      IP 

 

Fig. 11.  The structure of the causal network used to  

              produce predictions for the second future time 

              slice.  The node Ei-1 is instantiated to the state n.  
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HC1i ,…, HCNi and the initial profile iprof  instantiates the 

variable IP. So, considering the node Ei (the only node that is not 

instantiated), it can be stated that the probability that Ei is in state 

y is formally expressed by:  

P(Ei=y | Ei-1=n, iprof , profi ). On the basis of the considerations 

made in section 2.3, precisely in the paragraph concerning the 

definition of the counter variables, we can state that P(Ei=y | Ei-

1=n, iprof , profi ) = L(wprofi). 

    We have so reached the first target. We know the prediction 

for the first future time slice, the time slice i. But what about the 

prediction fort the next time slice, i.e. the time slice i+1 ? 

 

B. Prediction for the second future time slice: common sense 

based reasoning 

    Let us calculate the prediction for the second future time slice: 

the time slice i+1. This means that we have to  calculate the 

probability of  Ei+1=y in the network of fig. 3. Let us notice that 

the node Ei+2 is the converging node of a converging structure. 

By applying to the present case the same kind of reasoning 

illustrated for the first future time slice, we can conclude that the 

network of fig. 3 becomes the one of fig. 11. 

 

Let us make the following considerations on the network of 

fig. 11. Let us notice that Ei is a node inside a serial structure: it 

is a node along the causal paths starting from Ei-1 , HC1i ,…, 

HCNi , IP and ending to Ei+1 . Let us suppose that Ei=n . In such 

a case, on the basis of the considerations made in section 3.1, the 

nodes  HC1i ,…, HCNi can be neglected along with the node Ei-1 

and the link from IP to node Ei , and as a consequence the 

network of fig. 11 reduces to the one of fig. 12. 

    But this network is similar to the one of fig. 10 and so, by 

applying the same considerations made for fig. 10, we can 

conclude that for a subject S1, that at the time slice i+1 has the 

whole extended profile wprofi+1 = iprof AND profi+1 , it can be 

stated: P(Ei+1 =y | Ei=n, iprof , profi+1 ) = L(wprofi+1). 

But, unfortunately, we cannot be sure that Ei=n . So, considering 

fig. 11, the basic question arises: if we believe L(wprofi) that 

Ei=y (given Ei-1=n and wprofi ), and L(wprofi+1) that Ei+1=y 

(given Ei=n and wprofi+1), then how much should we coherently 

believe that Ei+1=y (given Ei-1=n and iprof and the extended 

profiles profi and profi+1) ?  

 

C. P

redictio

ns for 

all the 

future 

time 

slices: 

formal 

and general approach 

    Let us go back to a formal level. For the sake of shortness and 

formal clarity let us use, in the following formal reasoning, the 

shorter denotation Lk  instead of L(wprofk). Referring again to 

the network of fig. 3 let us consider a time slice k (with i≤k≤m) 

and let us formalize and generalize the common sense based 

considerations made in section 4.2. Let us start by reformulating 

the basic question: if we believe Li that Ei=y (given Ei-1=n and 

wprofi ), …, Lk that Ek=y (given Ek-1=n and wprofk), then how 

much should we coherently believe that Ek=y (given Ei-1=n , 

iprof , profi , …, profk) ? In formal terms the question becomes: 

what is the value of the following conditioned probability ? 

 

 

 

 

. 

The prediction engine is a machine built for providing answer to 

this question. The answer is given by the following formula       

 

                                            if  k=i  

                                                                             (0) 

         if  i < k ≤ m  

   

 

where  Xk-1 stands for the prediction value calculated for the 

preceding time slice k-1, that is formally: 

 

 

 

 

 

The proof is given by Theorem 1, theorem that is presented in 

the following sub-section. 

 

D. Probabilistic reasoning: approach based on probability 

dynamics 

    This section presents probabilistic reasoning based on the laws 

of probability dynamics examined in section 3.  

 

 

    Theorem 1 [reasoning based on probability dynamics] 

Let us consider the network in fig. 3 and a time slice k (with 

i≤k≤m) 
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Fig. 12.  The node Ei is instantiated 

to the state n. The probability  value 

of the state y of the node Ei+1 is 

given by L(wprofi+1) .  
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                if  i < k ≤ m  

   

 

where  

 

 

 

 

where wprofk  represents the whole profile instantiating both the 

variable IP (with iprof) and the set of history variables 

HC1k,…,HCNk related to time-slice k (with profk), and where  

Xk-1 stands for the prediction value calculated for the preceding 

time slice k-1. 

 

    Proof  

    Let us premise the following considerations.  

For each whole profile wprofk (where i ≤ k ≤ m, and i≥1) present 

in the database it can be stated the implicit fact Ek-1=n 

As a consequence, by adopting the frequentist probability 

definition, it can be stated that 

 

 

 

 

 

 

Obviously it has to be intended as an empirical probability value 

approximating the theoretical probability value, approximation 

that is as smaller as greater the value of (ENwprofk + EYwprofk) 

is. Given this premise, let us enter the theorem proof. 

 

    ● Let us consider first the case of k = i. If k=i we have  

 

 

 

 

but this is just Li  

 

    ● Let us now consider the case i < k ≤ m.  

For short let us use the symbol A to denote the sequence: 

 

 

 

 

It can be stated that 

 

           

 

           (1) 

 

 

In fact: 

 

1) by applying the product rule we have 

 

 

 

 

 

and similarly 

 

 

 

 

 

2) since the two joint events (Ek=y, Ek-1=n) and (Ek=y, Ek-1=y) 

are mutually exclusive, on the basis of the addition axiom we 

have: 

 

3) since the set of states {Ek-1=n , Ek-1=y} is exhaustive, we have: 

 

 

On the basis of these considerations let us rewrite the (1) as 

follows (for short the sequence HC1i , …, HCNi,  …, HC1k , …, 

HCNk is represented by HC1i , …, HCNk):  
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    ● Let us consider the (2). Every causal path connecting the 

nodes Ei-1 , HC1i ,…, HCNi ,…, HC1k-1 ,…, HCNk-1 to the node 

Ek is a serial structure in which Ek-1 is the last but one node. 

Since Ek-1 is instantiated to a state (i.e. the state n), its 

antecedents can be neglected along with the link IP  Ek-1 

Referring to section 3.1 and fig. 4  we can notice that the node Ek 

plays the role of the node wshoes, the node Ek-1 plays the role of 

the node H, the set of the remaining nodes plays the role of the 

set {R , S}. In conclusion  the (2) is equivalent to 

 

  

 

which is  Lk 

 

● Let us consider the (3). The value of the (3) is 

complementary to the value of the (5).  

 

● Let us consider the (4). The value of the (4) is 1. In fact if 

Ek-1=y, then Ek=y independently of the combination of context 

states in session k: if when we are in time-slice k-1 we know that 

E has occurred, then the knowledge of that fact does not change 

for all the subsequent time-slices. 

 

    ● Finally let us consider the (5). The nodes Ek-1 , IP, HC1k 

,…, HCNk are all direct causes of the node Ek : there is a causal 

structure converging to Ek and since Ek  is not instantiated, its 

causes are all independent. We have a case that instantiates the 

case a in section 3.3. In fact, referring to fig. 6 we can notice that 

the converging node Ek plays the role of H, the node Ek-1 plays 

the role of S, the (instantiated) nodes HC1k ,…, HCNk and IP 

play the role of R and as a consequence do not affect the 

distribution probability on the states of Ek-1 . The conclusion is 

that the nodes  HC1k ,…, HCNk can be neglected along with the 

link from IP to node Ek and the node Ek itself. The ultimate 

consequence is that the (5) is equivalent to:  

 

 

         (6) 

 

But the value of the (6) is the prediction value calculated for the 

time slice k-1. Putting all together, it can be stated that: 

 

 

 

 

 

where Xk-1 stands for the prediction value calculated for session 

k-1. In conclusion: 

 

 

 

       

           = 

                                    if k=i 

 

          if i < k ≤ m 

 

 

End of proof [Theorem 1] 

 

It is interesting to notice that we can get to an equivalent 

conclusion by reasoning with the global joint probability table of 

the network of fig. 3. The next sub-section faces this problem. 

 

E. Probabilistic reasoning: global joint probability-table 

based approach 

We know that from the global joint probability table of a 

network we can calculate the probability values of all the nodes 

of the network. Such a joint probability table can be built by 

applying the so-called Chain Rule. The Chain Rule, which is an 

application of the Product Rule, is defined as: 

 

 

 

 

where pa(Ai) stands for ―direct parents of Ai‖. 

Let us look at Figure 3 again and let us build the following 

theorem (Theorem 2) for calculating the value of 

 

 

 

 

 

Theorem 2, based on Chain Rule application, defines a general 

algorithm, that is equivalent to the one defined in Theorem 1. 

 

 

Theorem 2 [reasoning based on global joint probability-table] 
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where Lj (where j is such that: i ≤ j ≤ k), is given by 

 

 

 

 

 

 

where wprofj  represents the whole profile instantiating both 

the variable IP and the set of the variables HC1j,…,HCNj . 

 

 

Proof 

For short, the sequence HC1i , …, HCNi,  …, HC1k , …, HCNk 

is represented by HC1i , …, HCNk . Before entering the 

reasoning of the proof let us define the following five general 

rules: 

 

● RULE 1) Given that P(Ei-1=n)=1, and the symbols IP, HC1i 

,…, HCNk denote condition instantiations (that is IP means 

IP=st, HC1i means HC1i = st, etc.) we have that: P(IP)=1, 

P(HC1i)=1 ,…, P(HCNk)=1. As a consequence: 

 

 

 

 

● RULE 2) Given a time-slice j (j ≥ 1) it can be stated that:  

 

 

 

 

 

 

● RULE 3) On the basis of Rule 2 it can be stated that: 

 

 

 

 

 

● RULE 4) As already noticed, if Ej-1=y, then Ej=y 

independently of the combination of context states. As a 

consequence: 

 

 

 

 

 

 

 

● RULE 5) On the basis of Rule 4 it can be stated that: 

 

 

 

 

Let us now enter the proof. The proof is defined by an algorithm 

structured in three basic sequential steps. 

 

● STEP 1) Let us consider the global joint probability table of 

the network in Figure 3. The value of 

 

 

 

is calculated by adding the values of all the table rows 

containing  Ek=y  and  Ei-1=n, IP, HC1i, …, HCNk . 

In more formal terms: 

 

 

 

 

 

 

 

 

 

 

 

 

Let us notice that the number of addenda is 2k-i . In fact between 

Ek and Ei-1 there are the k-i E nodes: Ek-1 , Ek-2  ,…, Ei+1 , Ei . Such 

nodes are not instantiated and since each of them has two states 

{n, y}, the number of possible combinations for the set of states 

of these nodes is 2k-i . As a consequence we have 2k-i addenda. 

 

● STEP 2) Let us apply the Chain Rule to each addendum. Let 

us consider the first addendum. We get: 
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By applying rules 1, 2, 3 the first addendum becomes: 

 

 

 

 

 

 

 

Let us now consider the second addendum. By applying the 

Chain Rule and then rules 1, 2, 3, 4, we get: 

 

 

 

 

 

 

And so forth for the remaining addenda.  

 

● STEP 3) Let us sum the results obtained by applying the chain 

Rule and then the above five rules. At the end we get: 

 

 

End of proof  [Theorem 2] 

 

Let us examine, in the next sub-section, the equivalence 

between the conclusions of the two theorems. 

 

F.  Equivalence of the two approaches 

    For the sake of simplicity let us avoid facing a formal general 

proof of equivalence of the conclusions of the two theorems. Let 

us limit to show that there is equivalence when considering 

specific time slices.  

For example, let us consider the time slice k where k = i+2. By 

applying the algorithm of Theorem 2 we have: 

 

 

 

 

 

 

 

 

By applying the algorithm of Theorem 1 with k=i+2 we have: 

 

 

 

where 

 

 

 

where 

 

 

 

We can notice (by a simple algebraic calculus) that even if the 

two results appear  to be formally different, they express the 

same conclusion. 

    Let us conclude this section by noticing that the fact that by 

means of Theorem 2 (that uses only probability axioms) we have 

reached the same conclusions reached by means of Theorem 1 

(that uses the laws of probability dynamics in the structures 

presented in section 3) can be seen as a mathematical 

confirmation of the validity of the common sense based laws of 

the dynamics of that sort of ―fluid‖ called probability. 
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V. RELATED WORK AND DISCUSSION 

    The Prediction Engine has been implemented as a software 

tool embedded in a general software environment for predictive 

monitoring. The great number of works concerning predictive 

monitoring, published in scientific journals and conferences both 

in past and in recent years, gives evidence of both the modernity 

of the topic and the remarkable effort so far accomplished by the 

researchers community with respect to such a theme.  

 

    Industry is a typical world in which predictive monitoring, 

mostly intended as preventive monitoring, has find numerous 

applications with a variety of approaches. Twenty years ago 

already, preventive monitoring was a crucial theme for 

manufacturing processes (typically, for example, in the world of 

the large car manufacturing companies [6]). In manufacturing 

industries there is a considerable attention to reduce costly and 

unexpected breakdowns. As a consequence preventive 

maintenance is becoming more and more important. 

Maintenance should abandon the traditional ―fail and fix‖ 

approach to pass to the more modern ―predict and prevent‖ one 

[7]. As a consequence the fundamental need is monitoring 

degradation instead of detecting faults. A predictive performance 

and degradation monitoring is what is needed for an effective 

proactive maintenance to prevent machines from breakdown. 

The theme of degradation monitoring for failure prevention 

applied to vehicle electronics and sensor systems is faced in [8] 

where the authors propose a unified monitoring and prognostics 

approach that prevents failures by analyzing degradation 

features, driven by physics-of-failure. The need, for 

manufacturers of complex systems, to optimize equipment 

performance and reduce costs and unscheduled downtime, gives 

rise to system health monitoring. System states monitoring is 

augmented with prediction of future system health states and 

predictive diagnosis of possible future failure states [9]. 

Predictive monitoring has been also applied to flexible 

manufacturing systems. In [10], the main objective is to manage 

progressive failures in order to avoid breakdown state for the 

flexible manufacturing system. The approach to predictive 

monitoring proposed in [11] uses predictions from a dynamic 

model to predict whether process variables will violate an 

emergency limit in the future (predictions are based on a Kalman 

filter and disturbance estimation). Predictive monitoring has also 

been applied in many specific industry worlds like, for example, 

cold extrusion and forging processes [12] and chemical plants 

[13], [14]. In many industrial applications predictive monitoring 

assumes the meaning of preventive monitoring and aims to 

enhance the effectiveness of preventive maintenance by making 

it proactive. In some cases though, predictive monitoring is 

finalized to early intervening to maintain a system at a high level 

of performance. It is the case of a predicting monitoring 

application for wireless sensor networks: ―...by monitoring and 

subsequently predicting trends on network load or sensor nodes 

energy levels, the wireless sensor network can proactively 

initiate self-reconfiguration…‖ [15]. In most industry 

applications the acquisition of monitoring data is carried out 

through sensors [16]. 

 

    Predictive monitoring has found many applications in 

medicine too. Applications concern both clinical trials [17] and 

several specific fields. For example, interesting applications have 

been carried out in the field of diabetes therapy. In [18] and [19], 

continuous glucose monitoring devices provide data that are 

processed by mathematical forecasting models to predict future 

glucose levels in order to prevent hypo-/hyperglycemic events. 

Many other specific applications of preventive monitoring may 

be found in medicine. For example, in [20] the authors present 

the experience of predictive monitoring applied to some patients 

exposed to gentamicin (a commonly used antibiotic medication) 

ototoxicity: the most common single known cause of bilateral 

vestibulopathy. Patients undergoing exercise rehabilitation 

therapy were tested repeatedly during follow-up visits to monitor 

changes in their vestibulo-ocular reflex. Predictive monitoring 

turned out to be  useful for continuing or modifying the course 

of vestibular rehabilitation therapy. 

Very recently predictive monitoring has found many applications 

in the field of environment pollution [21], [22], [23]. 

 

Literature shows that, in general, prediction has been intended 

in the sense of prevention, that is as a means for preventing 

undesired events. Actually the possibility of getting early 

warnings before an undesired event may occur has always been 

very appealing. Let us think, for example, of prevention of high 

risk events for health, or serious faults or anomalies of costly and 

strategic industrial equipments or plants.  

 

The proposal presented in the paper has the ultimate purpose 

that is in common with all the cited applications, but, at the same 

time, it has many aspects that distinguish it from them. The 

proposal, is neither a predictive monitoring application nor a 

general prognostics tool for preventing undesired events in some 

fields like, for example, manufacturing industries, medicine, etc.  

In fact the proposal is general, it presents both a general method 

for modelling real problems and a general algorithm for 

producing predictions. Moreover the proposal concerns 

prediction applied to both preventing undesired events and 

favouring desired events. Since the prediction engine has been 

implemented in a software tool oriented to predictive 

monitoring, it is the domain expert (i.e. a human agent) that 

carries out monitoring sessions and enters data about the current 

subject situation (context states, etc.). Again, it is the domain 

expert that defines the starting conditions for simulating the 

future (which condition states are supposed to be present in the 

future), and it is the domain expert that reads the simulation 
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results and takes suitable measures. Let us notice though that the 

algorithm of the prediction engine might be embedded in a 

software program. In such  a case it is an automatic agent that 

plays the role of a human user of a specific predictive monitoring 

tool. For example, a software agent might periodically gather 

data about a subject (e.g. a machine) by means of sensors or 

other software programs interfacing a database. It is the software 

agent that activates simulations and then examines the results 

and as a consequence takes suitable measures. Finally, let us 

consider that, with respect to other approaches to predictive 

monitoring, the predictive engine considered in the proposal is 

probabilistic. This means that the tool becomes predictive only 

after having collected a number of cases that is statistically 

significant, i.e. sufficient to be able to produce probabilistic 

inferences. Before reaching that condition the tool works like a 

mere monitoring tool (subject data acquisition and data entry 

into the database). 

 

 

VI. CONCLUSION 

The paper has presented both a method for modelling real 

world and a Probabilistic Prediction Engine at a theoretical level. 

However the author has also developed a software tool, in a 

prototype version, that implements the algorithm of the 

prediction engine. Moreover, such tool has been embedded into 

a general software environment for creating and administering 

specific application oriented predictive tools (in heterogeneous 

fields). Such environment, that has been illustrated in [4] and can 

be found at the web-page www.cheerup.it , is oriented to 

predictive monitoring. It provides numerous and effective 

facilities for probabilistic predictive monitoring: facilities for 

creating new application oriented tools (equipped with specific 

domain knowledge), monitoring subjects and simulating possible 

future probabilistic scenarios, administering tools and subjects 

and regulating co-operation among working groups. Such 

environment is ready to be used for facing probabilistic 

prediction applications in real world fields.  
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