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Abstract—A common step in drug design is the formation of a 
quantitative structure-activity relationship (QSAR) to model an 
exploratory series of compounds. A QSAR generalizes how the 
structure of a compound relates to its biological activity.  There is 
growing interest in the application of machine learning 
techniques in QSAR modeling research. However, no single 
technique can claim to be uniformly superior to any other. This 
study introduced the ensemble machine learning, a set of 
classifiers whose individual decisions are combined in some way 
(typically by weighted or unweighted voting) to improve the 
performance of the overall system. A comparative study was 
carried out of two popular ensemble learning algorithms, 
Bagging and AdaBoost, for QSAR modeling. Two test case 
problems were studied: the inhibition of Escherichia coli 
dihydrofolate reductase (DHFR) by pyrimidines, and the 
inhibition of rat/mouse tumor DHFR by triazines. It was 
observed that the ensemble learning algorithms, Bagging and 
AdaBoost, can significantly improve the performance of Decision 
Tree C4.5 and 1-R (p<0.05), while Naïve Bayesian and 1-Nearest 
Neighbor did not benefit from ensemble learning. Furthermore, 
in general, AdaBoost outperformed Bagging on the tested data 
sets. 
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I.  INTRODUCTION  
Quantitative structure-activity relationship (QSAR) 

analysis represents an essential part of the drug discovery 
process to reduce the search for new drugs [1]. QSAR is based 
on the assumption that there exists a relationship between the 
structural or molecular features of a compound and its 
biological activity (such as chemical activity, aqueous 
solubility, blood-brain barrier penetration, oral absorption or 
toxicity). The aim of QSAR analysis is to discover these 
relationships in order to predict the activity of new molecules 
based on their physiochemical descriptors [2, 3, 4]. 

QSAR analysis is becoming increasingly important in 
automated pharmaceutical production processes. It also 
presents an extremely challenging problem to the field of 
Intelligent Systems and one that, if solved successfully, has 
the potential to provide significant economic benefit. New 
compounds emerging from the production lines must be 
screened for their potential use (measured by chemical or 
biological activity in some assay) in future products. The 
capacity of the production lines is increasing through 

developments in robot technology and pharmaceutical 
methods. QSAR analysis forms an essential part of the overall 
screening process, in which new compounds are tested against 
structural models to determine their potential activity or 
otherwise [1].  

In recent years, artificial intelligence techniques have been 
applied to model QSAR’s, such as neural networks [5-9], 
genetic algorithms [10], decision trees [11], inductive logic 
programming [11, 12], and support vector machine [1]. 
Machine learning techniques have, in general, offered greater 
accuracy than have their statistical forebears, but not without 
accompanying problems for the QSAR analysts to consider. 
Neural networks, for example, offer high accuracy in most 
cases but can suffer from overfitting the training data [13]. 
Other problems with the use of neural networks concern the 
reproducibility of results, owing largely to set-up and stopping 
criteria, and lack of information regarding the classification 
produced [13]. Genetic algorithms may also suffer from their 
stochastic nature, in that results may be hard to reproduce and 
the resulting classification may not be optimal [14]. Decision 
trees offer a large amount of information regarding their 
decisions, in the form of predictive rules, but occasionally 
struggle to provide the accuracy supplied by more powerful, 
but less informative, techniques. Owing to the reasons 
outlined above, there is a continuing need for the application 
of more accurate and informative classification techniques to 
QSAR analysis [1]. 

An ensemble of classifiers is a set of classifiers whose 
individual decisions are combined in some way (typically by 
weighted or unweighted voting) to improve the performance 
of the overall system [15]. Other terminologies found in the 
literature to denote similar meanings are: multiple classifiers, 
multi-strategy learning, committee, classifier fusion, 
combination, aggregation, and integration [16]. The intuitive 
concept of ensemble learning is that no single classifier can 
claim to be uniformly superior to any other, and that the 
integration of several single classifiers will enhance the 
performance of the final classifier (e.g. accuracy, reliability). 
Hence, ensemble classifiers are often much more accurate than 
the individual classifiers that make them up. The easiest 
approach to generate diverse classifiers is to manipulate the 
training data and run a base learner on the manipulated 
training data multiple times. Ensemble learning methods have 
been shown to be very successful in improving the accuracy of 
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certain classifiers for artificial and real-world datasets [15-21]. 
Using decision tree as the base learner, Tan and Gilbert (2003) 
[16] applied ensemble machine learning to gene expression 
data for cancer classification. The results showed that 
ensemble learning performed better than single decision tree. 
Similar observation was reported by Dietterich (2000b) [21] 
when 33 different datasets were studied and by Bauer and 
Kohavi (1999) [20] when 13 datasets were employed.  

The focus of this study is to investigate the performance of 
ensemble machine learning in QSAR modeling. Four base 
learners, decision tree C4.5, Naïve Bayesian (NB), 1-Nearest 
Neighbor (1NN), and 1-Rule (1R) [22] were used to construct 
ensembles. 

 

II. MATERIALS AND METHODS 

A. Notations 
A labeled training example is a pair <x, y> where x is an 

element from space X and y is an element from a discrete 
space Y. Let x represent an attribute vector with n attributes 
and y the class label associated with x for a given example, a 
classifier (or a hypothesis) is a mapping from X to Y. 

 

B. Ensemble Machine Learning 
In this study, two of the most popular techniques for 

constructing ensembles, Bagging and AdaBoost, were 
investigated. These two techniques manipulate the training 
examples to generate multiple classifiers. The learning 
algorithm takes the base learner and a training set as input and 
runs the base learner multiple times by changing the 
distribution of the training set instances. The generated 
classifiers are then combined to create a final classifier that is 
used to classify the test set [15]. 

 
• Bagging (bootstrap aggregating) was introduced by 
Breimen (1996) [23] and it aims to manipulate the training 
data by randomly replacing the original T training data by N 
items. The replacement training sets are known as bootstrap 
replicates in which some instances may not appear while 
others appear more than once. Each bootstrap replicate 
contains, on the average, 63.2% of the original training set. 
The final classifier C*(x) is constructed by aggregating Ci(x) 
where every Ci(x) has an equal vote [15, 16, 20].  

 
• AdaBoost: Freund and Schapire (1996) [24] 
introduced the AdaBoost (Adaptive Boosting) method as an 
alternative method to influence the training data. Initially, the 
algorithm assigns every instance xi with an equal weight. In 
each iteration i, the learning algorithm tries to minimize the 
weighted error on the training set and returns a classifier Ci(x). 
The weighted error of Ci(x) is computed and applied to update 
the weights on the training instances xi. The weight of xi 

increases according to its influences on the classifier’s 

performance that assigns a high weight for a misclassified xi 

and a low weight for a correctly classified xi. The final 
classifier C*(x) is constructed by a weighted vote of the 
individual Ci(x) according to its accuracy based on the 
weighted training set [15, 16, 20].  
 

C. Data Sets 
Two well-studied data sets were used as test cases [1, 11, 

12, 25, 26] 
• Pyrimidines data set. A data set of 74 compounds 
testing inhibition of Escherichia coli DHFR by 2,4-diamino-5-
(substituted-benzyl)pyrimidines [12, 25]. Each compound has 
three positions of possible substitution: the 3-, 4-, and 5-
positions of the phenyl ring (six-atom carbon ring) [11]. For 
each substitution position there are nine descriptors: polarity, 
size, flexibility, hydrogen-bond donor, hydrogen-bond 
acceptor, π donor, π acceptor, polarizability and σ effect. Each 
of the twenty-four non-hydrogen substituents was given an 
integer value for each of these properties [12]; lack of a 
substitution is indicated by nine -1’s. This gives twenty-seven 
integer attributes for each compound; in addition, each 
compound has a real valued activity [25]. Therefore, in this 
dataset, the number of examples is 74, and the dimensionality 
is 28. This data set was divided randomly into five equal sized 
cross-validation sets [11]. 
• Triazines data set. A data set of 186 compounds 
testing inhibition of mouse/rat tumor DHFR by 4,6-diamino-
1,2-dihydro-2-2-dimethyl-1(X-phenyl)-s-triazines (ortho-
substituents were not considered) [26]. In the triazine 
compounds, there are six positions of possible substitution: the 
3- and 4-positions of the phenyl ring; if the substituent at the 
3-position contained a ring itself, then the 3- and 4-positions 
of the third ring (the attribute values for these regions were set 
to null if there was no third ring); if the substituent at the 4-
position of the phenyl ring contained a ring itself, then the 3- 
and 4-positions of the third ring (the attribute values were set 
to null if there was no third ring) [11]. For each substitution 
position there are ten descriptors: polarity, size, flexibility, 
hydrogen-bond donor, hydrogen-bond acceptor, π donor, π 
acceptor, polarizability, σ effect, and branching. This gives 
sixty integer attributes for each compound; in addition, each 
compound has a real valued activity [25]. Therefore, in this 
dataset, the number of examples is 186, and the dimensionality 
is 61. The triazine data were randomly divided into six equally 
sized cross-validation sets [11]. 

D. Preformance Evaluations 
The performance of Bagging and Boosting compared with 

the base learners were measured using several statistics: 
• Accuracy: the proportion of correctly classified 
instances: 

Accuracy = 
FNFPTNTP

TNTP
+++

+  

where true positives (TP) denote the correct classifications of 
positive examples; true negatives (TN) are the correct 
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classifications of negative examples; false positives (FP) 
represent the incorrect classification of negative examples into 
the positive class; and false negatives (FN) are the positive 
examples incorrectly classified into the negative class. 
• Sensitivity: the percent of positive examples which 
were correctly classified; 

Sensitivity = 
FNTP

TP
+

 

• Specificity: the percent of negative examples which 
were correctly classified; 

Specificity = 
FPTN

TN
+

 

• Positive Predictive Value (PPV): the percentage of 
the examples predicted to be positive that were correct; 

PPV = 
FPTP

TP
+

 

• Negative Predictive Value (NPV): the percentage of 
the examples predicted to be negative that were correct; 

NPV = 
FNTN

TN
+

 

 

III. RESULTS 

A. Pyrimidine data set 
 
The performance of the ensembles and the base learners on the 
pyrimidine data set was shown in Figure 1. Bagging and 
AdaBoost significantly improved the performance of decision 
tree C4.5 as measure by sensitivity, specificity, and accuracy 
(p<0.05). Furthermore, AdaBoost also improved the PPV of 
C4.5 (P<0.05). 1R also benefited from AdaBoost. When 
AdaBoost was applied to the pyrimidine data set, the 
sensitivity, specificity, PPV, and accuracy were significantly 
improved from 0.76, 0.65, 0.55, and 0.66 to 0.83 (p<0.05), 0.84 
(p<0.01), 0.84 (p<0.05), and 0.83 (p<0.05), respectively, 
(Figure 1B). From Figure 1C, it can be observed that AdaBoost 
NB performed better than single NB. However, the difference 
was not significant (p>0.05). When 1NN was used as the base 
learner, there was no significant difference between the 
ensemble results and the 1NN result (P>0.05) (Figure 1D). 
 

B. Triazine data set 
 
Similar to the results for the pyrimidine data set, Bagging and 
AdaBoost improved the performance of decision tree C4.5 and 
1R significantly (p<0.05) when the algorithms were applied to 
triazine data set (Figure 2A and Figure 2B). Whereas, the 
ensembles did not outperform the base learners, NB and 1NN 
(p>0.05) (Figure 2C and Figure 2D). 
In general, the results for the pyrimidine data set were better 
than those for the triazine data set in terms of sensitivity, 
specificity, PPV, NPV, and accuracy (Figure 1 and Figure 2). 
Take accuracy as an example, for pyrimidine data set, the 
results obtained from all the methods had an accuracy over 0.83 

except 1R and Bagging 1R, while for triazine data set, the 
results obtained from all the methods had accuracy less than 
0.80 except Bagging C4.5 and AdaBoost C4.5. This is probably 
due to the simpler structure of the pyrimidine compounds [11]. 
 

IV. DISCUSSION 

 
The advent of combinatorial chemistry in the mid-1980s has 
allowed the automatic synthesis of millions of new molecular 
compounds. The need for a more refined search methodology 
than simply producing and testing every single molecular 
combination possible has meant that statistical approaches and, 
more recently, intelligent computation have become an integral 
part of the drug production process. QSAR analysis is one 
technique used to reduce the search for new drugs. Machine 
Learning techniques have already started to be successfully 
applied to the problem of SAR analysis [4]. However, no single 
technique can claim to be uniformly superior to any other. One 
of the most active areas of research in machine learning has 
been to study methods for constructing good ensembles.  

A. Ensembles outperform single learning algorithms 
 

Studies have been repeatedly demonstrated significant 
performance improvements through ensemble methods. There 
are three fundamental reasons for this: 

The first reason is statistical. A learning algorithm can be 
viewed as searching a space H of hypotheses to identify the 
best hypothesis in the space. The statistical problem arises 
when the amount of training data available is too small 
compared to the size of the hypothesis space. Without 
sufficient data, the learning algorithm can find many different 
hypotheses in H that all give the same accuracy on the training 
data. By constructing an ensemble out of all of these accurate 
classifiers, the algorithm can “average” their votes and reduce 
the risk choosing the wrong classifier. 

The second reason is computational. Many learning 
algorithms work by performing some form of local search that 
may get stuck in local optima. In cases where there is enough 
training data (so that the statistical problem is absent), it may 
still be very difficult computationally for the learning 
algorithm to find the best hypothesis. An ensemble 
constructed by running the local search from many different 
starting points may provide a better approximation to the true 
unknown function than any of the individual classifiers. 

The third reason is representational. In most applications of 
machine learning, the true classification function cannot be 
represented by any of the hypotheses in H. By forming 
weighted sums of hypotheses drawn from H, it may be 
possible to expand the space of representable functions. 
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These three fundamental issues are the three most 
important ways in which existing learning algorithms fail. 
Ensemble methods have the promise of reducing (and perhaps 
even eliminating) these three key shortcomings of standard 
learning algorithms [15]. 

 

B. Base learner effect on the performance of ensemble 
learning methods 

 
A necessary and sufficient condition for an ensemble 

learning algorithm to be more accurate than any of its 
individual members is whether the algorithms are accurate and 
diverse [15, 21]. Dietterich (2000a) [15] claimed that Bagging 
and AdaBoost work especially well for unstable learning 
algorithms – algorithms whose output classifier undergoes 
major changes in response to small changes in the training 
data. Decision tree, and rule learning algorithms are unstable. 
Nearest Neighbor, Naïve Bayesian algorithms are generally 
very stable [15, 20]. This study confirmed the claim. Bagging 
and AdaBoost performed well when decision tree C4.5 and 1R 
were used as the base learners, while they did not improve the 
performance when 1NN and NB were used as the base 
learners. Other studies reported similar results [15, 17, 18, 20, 
21, 23].  
 

C. AdaBoost outperformed Bagging 
 

In this study, AdaBoost, in general, outperformed Bagging 
(Figure 1 and Figure 2). AdaBoost, like Bagging, manipulates 
the training data to generate multiple hypotheses. AdaBoost 
maintains a set of weights over the training examples. In each 
iteration, the learning algorithm is invoked to minimize the 
weighted error on the training examples, and it returns a 
classifier. Dietterich (2000a) [15] pointed out that, in low-
noise cases, AdaBoost gives good performance, because it is 
able to optimize the ensemble without overfitting. However, in 
high-noise cases, AdaBoost puts a large amount of weight on 
the mislabled examples, and this leads it to overfit very badly. 
Bagging does well in both noisy and noise-free cases.  
 

V. CONCLUSION 
 

Machine learning has increasingly gained attention in 
drug discovery research. Ensemble machine learning has been 
an active research topic in machine learning but is still 
relatively new to the drug discovery research community. 
Most of the machine learning oriented drug discovery research 
still largely concentrates on single learning approaches. It is 
believed that ensemble learning is suitable for drug design 
applications due to the fact that the classifiers are induced 
from incomplete and noisy data. 

In this study, we have demonstrated the usefulness of 
employing ensemble methods in QSAR modeling. Ensemble 

learning methods have been shown to be very successful in 
improving the accuracy of certain classifiers, i.e., decision tree 
C4.5 and 1R.  
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