
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1269

Lessons Learned in Academic Hybrid Software

Development Projects – A Retrospective

Robert F. Roggio
*
, Dalila Castilla

School of Computing

University of North Florida

Jacksonville, FL USA 32224
*Email: broggio {at} unf.edu

Abstract— According to some researchers, a hybrid approach can

help to optimize the software development lifecycle by combining

two or more methodologies. The Rational Unified Process (RUP)

and Scrum are two methodologies that successfully complement

each other to improve the software development process.

However, the literature has shown only few case studies on

exactly how organizations are successfully applying this hybrid

methodology and the benefits and issues found during the

process. To help fill this literature gap and to provide a major

development project for a five-person team of first year software

engineering graduate students at The University of North

Florida, the Lobbyist Registration and Tracking System for the

City of Jacksonville (COJ), FL was designed and implemented

using a hybrid approach that integrated RUP and Scrum within
IBM's Collaborative Lifecycle Management (CLM) solution.

While it is safe to generalize and assert that it is typical for

software development projects to encounter challenges both in

the corporate community as well as in academe, the hybrid

development approach using RUP, Scrum, and CLM in an

academic setting presented some unique issues. The purpose of

this paper is thus to convey the distinctive issues arising from the

hybrid approach in an academic setting to provide empirical

evidence of these problems with suggestions as to how they might

be avoided. The details of the year-long development project are
reported in thesis form.

Keywords-RUP; Scrum; agile development; academe’;

iterations

I. THE PROBLEMS

A. Team Composition and Work Schedules

The two-semester graduate-level project was undertaken at
The University of North Florida (UNF) as part of the software
engineering track within the Master of Science in Computer
and Information Sciences degree program. The class had
approximately 18 first-semester students, who were divided
into three teams of six students. Team 1 developed the
lobbyist tracking system. (No special significance was
assigned to team numbers and no one had a problem with
being called Team 2 or Team 3.)

Team 1 consisted of five individuals (one dropped within
the first week of class). Of the five, two were well-
experienced developers who worked in UNF ITS (Information
Technology Services), which handles academic and
administrative computing university-wide. Although new to
the graduate program, their skills were quite good and they
had software development experience within the framework of
the systems that the university develops and maintains. The
other three individuals were similarly new to a graduate level
program, but had no experience in practical software
development other than coursework. They also had no
experience in the core technologies selected to develop the
system.

Because of the rigidity of semester scheduling and the
need to develop software quickly and on time, there was little
time for these students to learn classroom best practices of
software engineering while concurrently learning development
environments, complex tools, experience very diverse team
dynamics, and merge all these characteristics into a cogent
successful development team environment. Regardless, they
took their roles and supported other projects’ activities
required in order to deliver an application that met the client’s
expectations and requirements.

As it turned out, the team worked quite well together and
did not experience problems that oftentimes development
teams encounter. In retrospect, this was likely attributable to
the maturity of the individuals to pool their differing levels of
expertise. In particular, the two experienced individuals took
on the bulk of the design and programming efforts, while the
other team members provided database design, interface
design, undertook documentation of use cases, developed and
ran test scripts, ensured traceability and similar activities -
skills that could be obtained essentially from course work.

Given this high degree of cooperation, serious scheduling
complications nevertheless arose – not unique to team
projects. But these arose from several levels. The class met
twice a week in the evenings from 6-7:15pm. The
experienced team members worked from 9-5pm and were thus
unavailable during the day for development team meetings;
the other team members were full time graduate students and
were available during the days, but all had families and

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1270

spouses, which made meeting during the evenings other than
class nights very difficult. Because the class met two times a
week, this only left hours after class, which effectively meant
the team usually remained after class after a long day.
Management of the team, that is, the delegation of
responsibilities was equitably determined, and each team
member played a primary role, such as project manager,
primary programmer, quality control individual, tester, and
database developer. Each also had a secondary or backup
role. The management and integration of these activities
during available times (and all team members could not
always meet at available times), made the coordination of
team efforts very difficult.

Coordinating team member times for meetings is not an
unusual problem in development teams in an academic
environment. But another difficulty arose in trying to meet
with the clients, all of whom were City of Jacksonville
employees, who worked daily until 5pm. Students could not
meet as a group during the day in downtown with the clients
and the clients could not easily drive on to campus during the
day. All modern development techniques agree on the critical
importance of essential customer – developer relationships.

During the next academic year, the two-course software
engineering course sequence was scheduled to meet once per
week from 6 - 8:45pm. It was envisioned that this schedule
would leave more available times for team members to
organize their meeting times.

B. The Collaborative Life Cycle Management (CLM)

Solution

The CLM is an extremely powerful tool. It covers all
elements of the software lifecycle, and the capabilities for
keeping everything together while providing a comprehensive
solution is really outstanding. But it is not easy to learn
especially for students who lack software development
experience. Further, learning this solution and effectively
using this solution with its vast array of features while
concurrently learning principles and practices of software
engineering is daunting even for the most ambitious student.
While tutorials are available, the lack of prior experience with
the CLM together with the students learning basic software
development principles via the Rational Unified Process
(RUP) and digesting the management of the development
process with Scrum [2] proved to be a formidable challenge.

Tech support within the School of Computing at UNF often
wrestled with providing a stable environment for CLM. CLM
was hosted on a UNF computer, which proved to be reasonably
effective. Yet many of the features inherent in the CLM, such
as burn-down charts, velocity charts, and using the vast
facilities within CLM to manage and track development and
testing had to be eschewed by the development teams in order
to meet the time constraints of iterations and sprints. Dates for
these deliverables together with examinations, presentations,
and more, often precluded exploiting some of the real power of
the CLM.

C. Client Project Manager (PM)

Initially the software engineering professor for this course
sequence met with the lawyer in the Ethics and Compliance
Office to learn about requirements. Representatives from this
office later met with students one time for a serious question /
answer period. From this meeting and from additional
meetings between the professor and the Ethics and
Compliance Office, use cases were developed – but by the
development team (not by the client). Development started
once a reasonably solid set of use cases were developed and
approved by the client for comments. It was not until well
into the second semester that the COJ established a Project
Manager to oversee what the students were doing from a
client-perspective. Unfortunately, 60'% or more of elapsed
project time had been spent. More effective client
representation was sorely needed. This was not the way to

proceed.

D. Changing Requirements

Perhaps the once constant in software development is
change. All modern development environments embrace
change and certainly the RUP [1] and managing development
via Scrum support this reality. While experienced developers
know that change will occur and expect it and react to it, it is
always bit unsettling especially for new developers, who want
requirements to be firm, complete, and unchanging. But they
learn very quickly. Requirements that are “must haves”
suddenly become changed and generally more complicated
and comprehensive. This is frustrating to a student who is
looking at the end of a semester dates, exam schedules, and
closure. But for sure, change occurs.

As it turned out, most of the “must haves” in the lobbyist
application remained solid, but the team did experience some
“requirements creep.” A number of 'nice to haves' crept in too.
These may often seem rather simple, and indeed sometimes
they are. Oftentimes they are not. Despite the experience on
the team, the first stage of the project (about one semester)
consisted of five iterations of about two weeks each once the
project got started; the second stage, which was partially based
on the RUP (elaboration) but essentially development (used
Construction and Transition for recognizing artifacts / work
items) was planned to be five sprints based on Scrum. Three
more sprints were added to implement the ‘nice to haves’ and
schedule deployment activities (see Figure 1).

E. Version Control and Politics

Unfortunately, politics and other unforeseen circumstances
sometimes occur. This development effort was no exception.
When the project was nearing completion and demonstrations
had been provided to the client who applauded the fine work
and seemingly everyone was happy, versioning and politics
come to center stage.

While universities technologies often seem to lag as
compared to the industrial sectors, the converse seems to be
true when operating or working with state or city

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1271

IBM Rational CLM Solution

Stage I – RUP Stage II – Scrum

Inception Elaboration Construction Transition
It

er
at

io
n

 #
0

It
er

at
io

n
 #

1

It
er

at
io

n
 #

2

It
er

at
io

n
 #

3

It
er

at
io

n
 #

4

It
er

at
io

n
 #

5

S
p

ri
n

t
#

1

S
p

ri
n

t
#

2

S
p

ri
n

t
#

3

S
p

ri
n

t
#

4

S
p

ri
n

t
#

5

S
p

ri
n

t
#

6

S
p

ri
n

t
#

7

S
p

ri
n

t
#

8

Figure 1. Hybrid Approach Conceptualization

government. There appears to be a major lag in technologies
often due to the economics of versioning. Such was the case
in this development effort. The university was using ASP.NET
MVC 4.5 and SQL Server 2008 and had been demonstrating
the project for several months with the quiet assurance that
handover would be uneventful. UNF had developed the
software and database with versions to which the COJ had not
yet upgraded adopted.

II. PROPOSED SOLUTIONS

A. Team Composition and Work Schedules

1) What we did: Class was scheduled two nights a week: 6

– 7:15pm. Some team members worked 9-5; Clients worked

9-5; other team members were available only during the days.

2) Better ways to go: Schedule the class once a week thus

freeing up more available times within which the team can

meet.

Get a firm commitment from the client for pre-established

meetings: some on campus; some off campus at client shop.
But these must be agreed to ahead of time and these need to be
tagged, "Can't Miss Meetings."

Must have a client available for telephone calls, emails,
Skype, or other forms of communication within the day when
questions arise. Questions need answers in near real-time and
cannot often wait for convenience. This requires a major
commitment from client and developers.

B. Collaborative Lifecycle Management Solution.

1) What we did: In that the two developers on the team

were familiar with Team Foundation Server (TFS), TFS was

used. Products were then imported into the CLM. This was

done in the interest of time and the need to eschew learning

CLM. This is not the way to proceed.....

The use of CLM [3] must be a total buy-in at the beginning
of the project and at least one or two must be the master of this
solution. S/he must be able to provide guidance and learn how
to use the vast array of capabilities within CLM and advise the
team as to these capabilities.

2) Better ways to go: The professor instructor is much

more familiar with CLM for this coming year than he had

been in the past. Too, a student not in this course developed a

thesis wherein he looked very carefully into Rational

Requirements Composer (RRC) and how to use the use-case

ability within CLM to capture use cases and to trace activities

from that point forward. Team members must use the

facilities within RRC.

The professor must insist on using CLM as the framework
for the solution. He/she must not allow TFS or any other
lifecycle management solution to become integrated with
CLM.

Technical support must preload a version of CLM onto
local servers and obtain a necessary number of licenses so that
this hurdle need not be addressed once the semester (or
quarter) begins. This is essential. The environment must be
stable, and both the instructor and technical support must
agree that this is the case at the beginning of the semester.

C. Client Project Manager (PM)

1) What we did: Because there was no designated project

manager from the COJ supplied, the development team

essentially developed our own iterations and sprints and back-

fit the development into the two-semester project. We met

with the client a time or two, but the client was an end user

and had very little knowledge of the impact such a system

would have on the COJ environment once ultimate handover

took place. She was delightful but did not possess software

development expertise.

2) Better way to go: While this might appear to be obvious,

it is not always easy to have a single point of contact from the

systems point of view to be available. But this is definitely

needed. The PM took the bull by the horns, so to speak, and

forced the development team to designate deliverables and

ultimately handover. Further, she also took on a dominant role

with the Product Backlog oftentimes realigning priorities for

the development team, which turned out to be excellent and the

way things should be.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1272

The customer representative must be able to act for the
client-side and prioritize features cited in the Product Backlog
in order for the development to proceed in a customer-oriented
prioritized manner. As it turned out, the PM was very
aggressive. And, while the team had a number of conference
calls, she always provided minutes of the calls and emails of
'understanding' which proved to be essential. She would
capture the content of the meetings and assert these via email.
This proved to be critically important to the team in that we
could no always physically meet with the PM. The conference
calls coupled with follow up confirmation emails was a good
move. More meetings and conference calls are great bearers of
fruit. The more face-to-face meetings that can occur, the more
power the communications and the assurance that the
development team is meeting client expectations and that
things are proceeding on track. This point of contact is a
must, and the authors strongly recommend that this point of
contact as well as a definite schedule of F2F meetings and
scheduled conference calls be established up front.

D. Changing Requirements

1) What we did: Perhaps due to inexperience and perhaps

due to the length of semesters, and perhaps due to

expectations, the development of iterations and sprints for the

two stages reasonably encapsulated the two semester span

time. This seemed reasonable. But it did not allow for

change. Because the PM did not become actively engaged

from the COJ, the team was plodding along feeling reasonably

secure despite the heavy development responsibilities. Once

the project manager became a major player (and again, this is

essential), things changed and formal meetings / conference

calls and changes were suddenly identified. The team did not

allow for change when planning the development effort.

Taking the product backlog and the sprint backlogs (assuming

little changes) allowed the team to plan the workload out such

that the workload mapped into the semester.

2) Better way to go: Plan on two additional sprints. If

they are not needed, great. But they likely will be needed.

The software engineering program at UNF requires a

software practicum course that is used by various faculty
members for various reasons. It is a catch-all course. The
team elected to extend the project into the short six-week
software engineering practicum course during the summer.
This provided flexibility to accommodate three additional
sprints that the team used. This worked out very well and is an
alternative to merely planning for two additional sprints - if the
time allows.

E. Version Control and Politics

1) What we did: So, UNF developed a good project that

was incompatible with the software on which it was to run at

the City level.

Undaunted, the development team downgraded the
development to be compatible with an older version of the
software only to later learn that this too was insufficient to
accommodate handover, despite all the discussion, preparation
of user manuals, and more.

2) Better Way to Go: While this might appear to have been

avoidable, the politics and poor communications sometimes

exhibited during development did not foreshadow this

development. So, clearly, compatibility of development

versions and implementing versions of software between the

developers and the clients must be pre-established. Needless to

say, to discover after over two semesters of work that the

product would not be implemented did not set well with the

developers.

III. RETROSPECTIVE

A. Team Composition and Work Schedules

Plans must be made for solid, reliable communications
between team members and their individual schedules and
those of the client. Dates / conference calls and all
mechanisms of communications must be pre-determined as
well as what the focus of these communications is to be.
Agenda must be planned; feedback accommodated. Dates set
and met.

B. Collaborative Lifecycle Management (CLM) Solution

There is so much power in these approaches, and IBM's
CLM is outstanding. However, that said, it is an imperative
that some expertise be developed by one or more team
members so that the real collaborative power and great
capabilities within CLM can be brought to bear. Perhaps a
local professional can come to your class and present some of
the basic methods on how to use Rational Requirements
Composer, Rational Team Concert, and Rational Quality
Manager. There are a number of good tutorials, but our
recommendation is to have a local person with expertise in
CLM present some of the basic techniques on accessing the
components of CLM. While an application system may
certainly be developed without CLM, application lifecycle
management (ALM) tools that encompass a comprehensive
number of tools, charts, methodologies covering all phases of
lifecycle development as well as management and tracking of
these processes legislates the use of an ALM. Our
recommendation is the use of IBM's CLM. Our personal
experience can attest to the power of this solution [4].

C. Client Project Manager (PM)

Be certain to have a single point of contact as a client. The
PM needs to be well-established. The authority /
responsibilities that this person possesses must be articulated
as well as the role s/he may play. The PM is the
representative of the client, and all matters of requirements,
prioritizing features for development as well as validation,
change requests, handover, and more need to be centralized in
this individual.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1273

D. Changing Requirements

These are simply a fact of life in software development.
The development team needs to be made aware of this fact,
but more importantly scheduling is best served to have a little
flexibility in deliverables.

E. Version Control and Politics

Versioning and control must be assured early on in the
project. If there is to be a problem, then any risks associated
with this potential must be mitigated early - very early in the
development effort. Also, ensuring that all the team members
have some knowledge or acceptable level of experience using
the selected technologies assures a more productive
environment and avoids schedule delays on the project related
to this issue.

IV. CONCLUSIONS

Developing applications is not for the faint of heart. But a
well thought out development scenario with appropriate tools
(both development and management) plus clear relationships
with clients and their environment as well as the constraints on
the developers themselves is crucially important.

REFERENCES

[1] P. Kruchten, The Rational Unified Process: An Introduction, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, 2003.

[2] R.T. Nishijima and J. G. Dos Santos, “The Challenge of Implementing
Scrum Methodology in a Traditional Development Environment,”

International Journal of Computing & Technology, vol. 5, issue 2, 2013,
pp. 98-108.

[3] M. Göthe, C. Pampino, P. Monson, K. Nizimi, K. Patel, B. M. Smith,

and N. Yuce, Collaborative Application Lifecycle Management with
IBM Rational Products, IBM Redbook, IBM Corp, 2008.

[4] D. Castilla, “A Hybrid Approach Using RUP and Scrum as a Software

Development Strategy,” Masters’ Thesis, University of North Florida,
August 2014.

