
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1241

Function Templates for the Synthesis of Functional

Programs

Natela Archvadze

Department of Computer

Sciences

Ivane Javakhishvili Tbilisi

State University

Tbilisi, GEORGIA

Merab Pkhovelishvili
Niko Muskhelishvili

Computing Mathematic

Institute

of Georgian Technical

University

Tbilisi GEORGIA

Otari Ioseliani
Georgian – American

University

Natural Sciences and

Engineering School

Email: Otari.ioseliani {at}

gmail.com

Lia Shetsiruli

Shota Rustaveli State

University, Batumi, Georgia

Abstract—One of the main reason for emergence of the

direction, called synthesis of programs is to increase

requirements for reliability of the software, as constructed

programs by a synthesizer do not demand the verification

process. The problem of synthesis is of interest to

researches of artificial intelligence, and also to software

engineering.

The problem of automatic synthesis of programs for the

given structures of data is generally bound to a problem of

construction and after-processing of dynamic structures of

data. These problems are solved generally by means of the

functional programming, because in other paradigms it is

very difficult to construct "the main recursive" part of the

program (a set of functions) for processing of the designed

structures of data. In this work templates of the functional

languages - Lisp and Haskell - are considered for a

recursive function which are presented from a tail

recursion, recursions on the head of the list and with

parameter - with accumulators.
Index Terms— the Functional languages, recursive functions,

function templates

I. INTRODUCTION

Problem of synthesis, which is one of the most composite

problem in the field of programming, is possible to present as

development of a method of automatic generation of the

program by the computer for a task, which was not solved

earlier by it and for which it has no algorithm of solution [1,2].

The use of techniques of constructing of data structures in a

paradigm of the functional programming allows also to create

in parallel the standard templates (frameworks) of functions

for processing of these structures. Such frameworks can be

considered as templates for filling by necessary functionality.

The general form of such templates remains invariable, only

the content is changing, bound to requirements to functions,

which are defined according to purposes of the developer.

In this work are considered the examples of the functional

languages Lisp and Haskell.

II. PROPERTIES OF FUNCTION IN THE FUNCTIONAL LANGUAGES

To the common properties of functions in the functional

programming languages belongs purity (lack of the ghost

effects, determinancy), lazy evaluationand opportunity to

make partial calculations.

Function has property of purity if it can operate only the

memory marked out for it, without modifying memory out of

its area. The function which output value depends only on

values of input data is called determined.

If at identical input datavalues in various calls function can

return various values, in the functional paradigm are

determined. Lazy strategy of calculations is that the NOT

function makes calculations until their result will not be

necessary in program work. So values of data-ins are never

calculated if they are not required in a function body. It allows

to create potentially the infinite structures of data (lists, trees

etc.) which are limited to only the physical extent of computer

memory. Such infinite structures can quite be processed in the

lazy way as only those elements which are necessary for work

are calculated in them. Transfer on an entrance of any function

of the infinite list does not attract program cycling as it does

not calculate all this list entirely (that would be impossible).

In the functional programming languages is accepted that

function have a type and the type of function is carried, that is

has such appearance: A1 -> (A2 ->… (An ->B) …),where A1,

A2, …An— types of input data, and B—typeof result. The

carried functions means that such functions accept input data

on the single, and as a result of such individual application

new function turns out.

III. WAYS OF THE DESCRIPTION OF DYNAMIC STRUCTURES OF

DATA

Traditionally the functional programming was engaged in

studying and processing of such structure of data processing,

as a list. The first functional language Lisp is called so as"list

processing".

For representation and processing such structures of data, as

treesvarious nature (binary, balanced and other), vectors

www.ijcit.com 1242

andmatrixes, various difficult displays, the method of

syntactic oriented constructioningis applied (was offered by

Ch. Hoare) [3] . This method consists in constructing of types

of data from other types (including recursively from itself) by

means of application of two prime operations — the Cartesian

product (*) and tagged union (+). For example, the list of

elements of type A can be presented as follows:

List(A)=NIL+(A x List(A))

The use of technique of constructing data structures in a

paradigm of the functional programming allows also to create

in parallel the standard templates (frameworks) of functions

for processing of these structures. Such frameworks can be

considered as templates for filling by necessary functionality.

The general form of such templates remains invariable, only

the content is changing, bound to requirements to functions,

which are defined according to purposes of the developer.

IV. RECURSIVE FUNCTION TEMPLATES IN LISP

Let's consider Lisp's templates, which are called as "the

generalized forms of representation" and are used for Lisp's

recursive functions. These forms are consideredin details in

[4].

Thay are used for such functions where the tail recursion is

applied:

(DEFINE FUN(F F0.L)

 (COND((MEMBER NIL L)a)

 (T(g(f(M F L))

 (APPLY 'FUN(CONS 'F(CONS 'F0(M F0 L))))))

))

For such functions, where the recursion comes to the list

head, the following form was thought up on Lisp:

(DEFINE LIST21(a g f F F0.L)

 (COND((MEMBER NIL L)a)

 (T(LISTN21(APPLY* g(APPLY f(M F L))a)

 gfFF0.(MF0 L)))))

where

(DEFINE M(F L)

 (AND L(CONS(APPLY* (CAR F)(CAR L))(M(CDR

F)(CDR L)))

V. REPRESENTATIONS OF RECURSIVE FUNCTIONS IN HASKELL

Type"List of elements of typeA"

Further it is meant, that data structure as the list of elements

of some type Ais presented within a method of syntactic

oriented constructioning as follows [3]:

List(А) = NIL + (А * List(А)).

prefix=constructor List(A)

head,tail=selector List(A)

isNil, isNonNil=predicate List(A)

nil, nonNil=parts List(A)

Each function for processing of List (A) values has to

support at least two patterns. The first processes NIL, the

second — nonNIL. To these two List (A) parts in the Haskell

language usually there correspond exemplars [] and (x:xs).

Two patterns can be united in one with use of technology of

protection. In a body of the second pattern (or the second

expression of protection) xs element processing (or tail) is

carried out by the same function.

 Templates for functions with a tail recursion and the

recursion on the list head

It is possible to copy the Lisp-and forms defined by us and

for Haskell-I and to offer as a standard template for the

function processing lists. The example considers the function

receiving on an entrance one argument list [5,6]:

1 . tail recursion

f [] = g1 []

f (x : xs) = g2 (g3 x) (g4 (f (g5 xs)))

2 . The recursion comes to the list head

f [] = g1 []

 f (x : xs) = g2 (f (g3 x)) (g4 (g5 xs))

The g1, g2, g3, g4 and g5 functions depend on the

purposes of developers.

g1-function for processing of the empty list;

g2-function for a hitch of results of processing of the head

and the rest of the nonempty list;

g3-function for head processing nonempty list;

g4-function for processing of result of a recursive call for

the rest of the nonempty list;

g5-function for a pretreatment of the rest of the nonempty

list before recursive a call.

Example 1: For example, for the length function calculating

length of the given list, whose definition looks so:

length :: [a] -> Int

length [] = 0

length L = 1 + length (tail L)

g1 is the constant returning value 0. The g2 function is

addition operation +. The g3 function is the constant returning

value 1. And the g4 and g5 functions are identifiers, that is

returning the arguments transferred to an entrance. Thus, it is

possible to write length function definition so:

gl _ = 0

g2 a b = а + b

g3 _ = 1

g4 x = х

g5 x = х

length [] = gl []

length (x:xs) = g2 (g3 x) (g4 (length (g5 xs))

www.ijcit.com 1243

Example 2: function returns a posledny element of argument

list, e.g. calculation of last [1,2,3,4] yields result 4.

last :: [a] -> a

last [] = error « empty list»

last [x] = x

last (_:xs) = last xs

gl _ = error

g2 a b = b

g3 x = х

g4 x = х

g5 x = х

g1 Is the error function. The g2 function returns the second

argument. The functions g4, g5 and g6 are identifiers, which

are returning the arguments transferred on input. Therefore,

it’s possible to write last function definition so:

f [] = gl []

f (x:xs) = g2 (g3 x) (g4 (f (g5 xs)))

Example 3: the function last, argument of this function is the

list from lists, values are the last members of each element,

e.g. last’ [[1,2,3],[2,4],[3,5,7,9]] gives the list [3,4,9].

last’ :: [[a]] ->[a]

last’ [x] = (last x):[]

last’(x:xs) = (last x) :last’ xs

gl is the function-constructor. The g2 function returns the

last element of the head. And the g4, g5 and g6 functions are

identifiers, therefore returning the arguments transferred to an

input.

Templates for functions with accumulators

There are defined several ways of representation of

functions In Haskell. We will consider functions with

collecting parameters (accumulators).

Sometimes is happening that during execution of function,

seriously becomes actual the problem of memory.

The recursion is very recourse-intensive way of the

organization of computing processes which demands large

expenses of memory than simple iterations therefore within a

paradigm of the functional programming there is very often an

exclusive problem of an expense of memory. This problem

can be explained on the example of the function, given

number factorial calculation:

Example 4:

 factirial 0=1

factorial n=n*factorial (n-1)

If review an example of calculation of this function with

argument 3, it will be possible to see the following sequence:

factorial 3

==>3*factorial 2

==>3*2*factorial 1

==>3*2*1*factorial 0

==>3*2*1*1

==>3*2*1

==>3*2

==>6

On the example of these calculations visually seen that

during recursive calls of functions the memory is using hard as

for storage of intermediate results of calculations and on

storage of addresses of return from the enclosed recursive

calls as well. In this case the quantity of memory is

proportional to value of argument, but arguments can be in a

larger number, and also calculations can be much more

difficult.

In such cases it is possible can be used the accumulator or

the store accumulating parameters.

Example 5: For this purpose it is possible to review an

example of function a factorial calculation with the

accumulator:

factorial_acc n = fun n 1

 fun 0a = a

fun n a=fun(n-1)(n*a)

The second parameter of function carries out a role of

accumulating parameter. It contains the result which is being

returned after the end of recursion. It contains the result which

is being returned after the end of recursion. In this case

recursion becomes tail recursion, the memory is spending for

storage addresses an returns function values.

The other example – function definition using accumulate

parameter, which is calculating average arrhythmic value of

list members:

Example 6:

funl = fun’ l 0 0

fun’ [] s n =s/n

fun’ (x:xs) s n =fun’ xs (x+s) (n+1)

The “fun” function has two accumulators: first is to

summarize the elements of list which has been set and the

second one is the list – elements counting. The result of

function is the division of these values. The tail recursion is

the special case of recursion which contains only one call of

the recursive function, thus this call is being performed after

all of the calculations.

During performing calculations of tail recursion, can be

performed by the iteration in constant in memory “size”. On

practice it means that the “good “translator of functional

language should be able to recognize the recursion and

implement it as cycle. The method of the accumulating

parameter not always leads to a tile recursion, however it

unambiguously helps to reduce the total amount of memory.

VI. MAIN PRINCIPLS OF CREATION OF FUNCTIONS WITH THE

ACCUMULATING PARAMETER

It’s possible to determine main principals of construction

www.ijcit.com 1244

the definitions with accumulated parameter [7]

1. It’s being entered new function with additional

argument (accumulator) in which are collected the results of

calculations.

2. The initial value of accumulated arguments is being

set in equality which connects old and new functions.

3. These equalities of an assumed function which

correspond exiting are being changed by accumulator

returning.

4. The equalities corresponding recursive definition

appearing like a call to a new function in which the

accumulator gets value which is returned by main function.

It’s impossible to generate each function for calculating with

accumulator. Construction of function by accumulated

parameter, this method is not universal, and doesn’t guarantee

receiving a tail recursion; on the other hand, creation of

definition with accumulating parameters is a matter of

creativity.

In [6] we presented the generalized forms for functions with

tail recursion for Haskell. Let’s represent similar generalized

forms for functions with padding argument (accumulator).

funn =fun’ na - - call of this function parameters n and a have

a specific values.

fun’n a= g1 a

fun’ (x : xs) = g2 (g3 x)(g4 (fun’ (g5 xs) g6 a))

g1 is a function which accepts that value which is returned

by the initial function;

g2 is a function which connects two of results of list’s head

an tile processing;

g3 is a function which is processing the head of the list;

g4 is a function which is processing recursive call for list’s

tail;

g5 is the function which tentatively is processing recursive

call for list’s tail ;

g6 is a function which is processing the accumulator.

Example 7: in such a representation of recursive functions

Factorial_A is build function with accumulator F and

arguments N, 1

(a=1). g5 - is the function of argument by unit. g6- is

function of multiplication and g2, g3 an g4 – are identifiers

which are returning the arguments given on input. Therefore

the definition of factorial function can be written like:

g1 _=1

g2 x=x

g3 x=x

g4 x=x

g5 x=x-1

g6 x y=x*y

The technique of automatic creation of recursive forms or

function templates for processing data-structures was created

within area of functional programming because depends only

on dynamic data structure construction, which is using only in

functional programming.

VII. CONCLUSION

We provided regularity proofs for the generalized forms of

recursive functions [8]. The generalized forms for recursive

function and for the functions with accumulator-parameter are

using in resolving the problems of verification of functional

programs [9, 10]. These forms will be used during synthesis of

functional programs particularly for synthesis Haskell

programs in the future

REFERENCES

[1] N.Archvadze, M.Pkhovelishvili, L.Shetsiruli. The complexity of
program synthesis from examples. Proceedings of the Eleventh
International Conference Pattern Recognition and Informaton
Processing (PRIP’2011). ISNB 978-985-448-772-7. pp. 275-
279. http://lsi.bas-net.by/conferences/prip2011/ . 2011.

[2] Archvadze N.N., Pkhovelishvili M.G., Shetsiruli L.D. Several
issues of programs synthesis. Proceedings of the International
Conference on System Analysis and Information Technologies.
ISSN 2075-4086. pp. 403.
http://sait.kpi.ua/books/sait2011.ebook.pdf/view 2011.

[3] Doushkin R.B. Functionalnoe programirovanie na Haskell.
2007.

[4] N. Archvadze,M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze.

Program Recursive Forms and Programming Automatization for
Functional Languages. WSEAS TRANSACTIONS on
COMPUTERS. Volume 8, pp. 1256-1265, ISSN: 1109-2750
http://www.wseas.us/e-library/transactions/computers/2009/29-
531.pdf. 2009

[5] N.Archvadze, M.Pkhovelishvili, L.Shetsiruli . Automatically
building the "basic recursive" part of the data structures
programs descriptions. Proceedings of the System Analysis and

Information Technologies 14-th International Conference SAIT
2012. р.323.
http://sait.kpi.ua/books/sait2012.ebook.pdf/view

[6] N. Archvadze. M. Nizharadze. Typical Template Verification
for List Editing In Haskell Language. Proceedings of the
International Conference Management systems and modern
information technologies. pp 170–172. ISSN 1512-3979.

[7] Graham Hutton. Programming in Haskell. Cambridge, 2007.
[8] N. Archvadze, M. Pkhovelishvili, L.Shetsiruli. Construction of

the Generalized Recursive Forms for Functional Languages and
their Application Verification of. Electronic Scientific Journal:
“Computer Sciences and Telecommunications”. No. 3(26), pp.
133-141. ISSN 1512-1232. http://gesj.internet-academy.org.ge .
2010.

[9] N.Archvadze, M.Pkhovelishvili. PRESENTATION OF THE
GEORGIAN LANGUAGE DICTIONARY WITH
FUNCTIONAL PROGRAMMING LANGUAGES, AND

SEARCH BY THE METHOD "WAVE". Electronic Scientific
Journal: “Computer Sciences and Telecommunications”. ISSN
1512-1232. 2012|No.2(34)[2012.06.30], pp. 59-70. Impact
Factor: 0.8125

[10] N.Archvadze, M.Pkhovelishvili. POSSIBILITY OF
FUNCTIONAL PROGRAMS VERIFICATION THROUGH
APPLICATION OF MODEL CHECKING. Electronic
Scientific Journal: “Computer Sciences and

Telecommunications”. ISSN 1512-1232. 2013|No.4(40)
[2013.12.31]. pp. 51-58. Impact Factor: 0.8125

http://lsi.bas-net.by/conferences/prip2011/
http://sait.kpi.ua/books/sait2011.ebook.pdf/view
http://www.wseas.us/e-library/transactions/computers/2009/29-531.pdf
http://www.wseas.us/e-library/transactions/computers/2009/29-531.pdf
http://sait.kpi.ua/books/sait2012.ebook.pdf/view
http://gesj.internet-academy.org.ge/
http://www.uifactor.org/SearchJournal.aspx?q=1512-1232

