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Abstract—Considering that inputs of a process neural network 

(PNN) are generally time-varying functions while the inputs of 

many practical problems are discrete values of multiple series, in 

this paper, a process neural network with discrete inputs is 

presented to provide improved forecasting results for solving the 

complex time series prediction. The proposed model first makes 

the discrete input series carry out Walsh transformation, and 

then submits the transformed series to the network for training, 

which can solve the problem of space-time aggregation operation 

of PNN. In order to examine the effectiveness of the proposed 

method, the two examples are employed. First, the developed 

model is tested on the Mackey-Glass time series and has 

comparison with the results in literatures, and then, taking the 

actual data of sunspots during 1749-2007 as examples, the 

number of sunspots is predicted and the suitability of the 

developed method is examined in comparison with the other 

models to show its superiority. The proposed method provides a 
new way for the space environment prediction in future. 

Keywords- Process neuron; Process neural networks; Learning 

algorithm; Time series predication; sunspot number 

I.  INTRODUCTION (HEADING 1) 

More than half a century, the research on neural networks 
(NNs) has been rapidly developed by people's continuous 
efforts, which is widely applied to various subjects. Especially, 
that a multi-layer neural network was proved to be a consistent 
approximator for continuous function in 1989 laid a theoretical 
foundation for neural networks and accelerated the 
development of neural networks. There are a lot of NNs 
architectures in the literature that work well when the number 
of inputs is relatively small, however when the complexity of 
the problem grows or the number of inputs increases, their 
performance decreases very quickly. In recent years, many new 
models and algorithms of NNs have emerged one after another. 
In general, neural networks have been maturing in addressing 

the issues on 2L  space map either in theory or in practical 

applications. On the other hand, the inputs of a system are 
generally time-related process in practical problems, such as 
the process of chemical reaction, the process of stock market 
volatility, etc. It has attracted considerable attention that NNs 
are used to solve the above problems. However, because of the 

time-dependent samples containing the large volume of data, 
the traditional neural networks are difficult to solve the 
problems of large sample learning and generalizing. Thus, new 
models are expected to solve these problems. Aiming at the 
problems that the inputs of many systems are continuous 
functions of time, and that the outputs of some control signals 
depend on the spatial aggregation of input functions, and are 
related to accumulation effect of time, a process neural network 
model is proposed by [1]. For the training of process neural 
networks, [2,3] give a learning algorithm based on orthogonal 
function basis expansion. Using the orthogonality of base 
function, aggregation operation in time field can be simplified 
effectively. However, for many practical problems, there are no 
accurate mathematical models or difficult to find them for a 
system, and the accurate analytic formulas of functions are 
difficult to determine. Therefore, it is necessary to study the 
learning algorithm of PNN with the discrete inputs. 

In this paper, a learning algorithm of process neural 
networks with discrete input is presented based on discrete 
Walsh transformation. In order to explain effectiveness of the 
proposed method, the two complicated time series examples 
are used. First, the presented method is tested on the Mackey-
Glass time series; then, take the actual data of sunspots during 
1749-2007 as examples, to predict the number of sunspots. The 
results indicate that the presented method does not only solve 
those problems of large sample learning and generalizing, but 
also improve the approximation and prediction ability of 
networks. 

II. PROCESS NEURAL NETWORK MODEL 

A. Process Neuron 

Process neuron is mainly composed of three operations, 
including weighting, aggregation and activation. The difference 
between process neuron and traditional neuron is that the 
inputs and weights of process neuron change with time, which 
can be functions of time. The aggregation operation can be the 
multi-input aggregation of space, and can be the accumulation 
of time. Therefore, it is the extension of traditional neuron in 
time-domain. The traditional neuron can be considered as the 
special case of process neuron.   
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The structure of process neuron is shown in Fig.1, and the 
Eq. (1) is its input-output relationship of process neuron. 
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Figure 1.  Process neuron.

B. Process Neural Network Model 

Process neural network (PNN) is a network that is 
composed of several process neurons based on a certain 
topology. The topological structure is shown in Fig.2. 

 

Figure 2.  A process neural networks with a hidden-layer. 

Here, there are n  units in the input-layer; there are m  units 

in the hidden-layer and the activation function is f ; there is a 

unit in the output-layer. The relationship between procedure 
inputs and output is as follows: 
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In Eq.(2), )(twij is the weight function of process neurons 

between input-layer and hidden-layer; jv is the weight of 

process neurons between hidden-layer and output-layer; j is 

the output-threshold of process neurons in the hidden-layer; 
[0,T] is the interval of time sampling. 

III. FUNCTIONAL APPROXIMATING CAPABILITY OF PROCESS 

NEURAL NETWORKS 

Functional approximation capability is an important 
property of a process neural network, and it determines the 
applicability and the modeling capability of the process neural 
network for solving problems. In this section, the functional 
approximation capability of a process neural network will be 
discussed in detailed by the following definitions and 
theorems. 

Definition1 Suppose that K(·): R
n → VR is a random 

continuous function from Rn to R, and is denoted as KC(Rn). 

Define functional class ∑n(K)={f:U→V| 
T

ttxKtxf
0

d))(())((  
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Definition2 Suppose that T
21 ))(),...,(),(()( txtxtxtX n , 

where ],0[)( TCtxi  . If |||)()(| 2121 ttLtxtx ii   with 0L  

for any ],0[, 21 Ttt  , )(txi  is called to satisfy Lipschitz 

condition, if ||| |)()(| | 2121 ttLtXtX x  with 0xL , )(tX  is 

called to satisfy Lipschitz condition, and if | |))(())((| | 21 tXKtXK   

| |)()(| | 21 tXtXLK  , )()( nCK R   is called to satisfy Lipschitz 

condition. 

The research on the traditional neural network has already 
proved the following well-known approximation theorem. 

Theorem 1
 [4]

 For any continuous function gC(Rn) there 
exists a feedforward neural network with only one hidden 
layer, which can approximate g with any accuracy. 

Theorem 2 Traditional neural network is a special case of 
process neural network. 
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let 0T , ii xtx )(  and ijij wtw )( , then it can be simplified as 
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This is a time-invariant traditional feed forward neural 
network with a single hidden layer. Thus, the proof is 
completed. 

Theorem 3 For any continuous functional G(x(t)) ∑n(K) 
defined by Definition 1 and any ε>0, if G(x(t)) satisfies 
Lipschitz condition, then there exists a process neural network 
P such that ||G(x(t))−P(x(t))||<ε. 

Proof: For any G∑n(K), we have 
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Without loss of generality, let 1T , K is regarded as the 
composite function with respect to t, and the integral interval is 
divided into N equal parts, here ti=i/N (i=1, 2, …, N) is the 
partition point, then 
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Because ))(( txK is continuous with respect to t, by the 

interval mean value theorem, there exists ]/,/)1[( NiNii   

such that 
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where 
K

L  and 
x

L  are respectively Lipschitz constants of 

)(xK  about x and x(t) about t. Therefore, 
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Let x(ti)=x(i). Because K(x(i)):Rn→V is the continuous function 
in C(Rn), according to Theorem 1 , it can be approximated by a 
traditional neural network, and based on Theorem 2, this 
traditional feed forward neural network can certainly be 
replaced by a process neural network Pi, i.e. 
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where εi>0 is an arbitrarily small value, i=1, 2, …, N. Might as 
well let εi<ε/(2N), from Eq.(9), there exists N0, when N>N0, we 
have 
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))(( txP is solved. 

IV. THE LEARNING ALGORITHM OF PNN WITH DISCRETE 

INPUTS 

For many practical problems, the inputs of systems are 
generally the time-dependent processes, such as the 
concentration change process of chemical reaction, the process 
of stock market volatility, the change process of temperature, 
humidity, fertilizer and light intensity for crops growth, etc. 
These processes are generally complex non-linear functions of 
time, and difficult to be determined by mathematical 
expressions. Hence, the application of the algorithm in [5] is 
limited. At present, the method to solve the limitation is that, 
firstly, curve fitting is adopted to acquire the approximate 
analytic formulas of input functions from discrete series, and 
then these mathematical functions are submitted to PNN [6]. 
There are mainly two disadvantages of this method. Firstly, the 
method exist fitting error, which has an influence on the 
precision of prediction. Secondly, the method increases the 
computational complexity of the algorithm. Therefore, a novel 
learning algorithm based on discrete Walsh transformation is 
proposed in this paper. The algorithm directly submits the 
discrete series of the system to the network inputs, which 
overcomes the limitation of the algorithm in [5]. 

A. Walsh Transformation 

It can be seen from [7] that, any square-intergrable function 
in the interval [0,1]can be expanded as Walsh series. If the 
given function is a periodic function with a period of 1, the 
function can be expanded as Walsh series in the interval (-
∞,+∞), and the series have general convergence. That is 
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The above Eq.(14) and Eq.(15) are a Walsh transformation 
pair of continuous functions. In the discrete condition that there 
are N sampling points, the Walsh transformation pair is as 
follows 
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Using Eq.(16) and Eq.(17), the input information can 
implement discrete Walsh transformation. 

Lemma 1: The sum of N discrete values of the product of two 
Walsh functions with different frequency in the interval [0,1]  
is equal to zero. As follows 
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Lemma 2: The sum of N discrete values of the product of 

two Walsh functions with same frequency in the interval [0,1]  

is equal to N. As follows 
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Theorem 4: For any discrete series )12,,1,0(,  n
ii iwx  in the 

interval [0,1] of two continuous functions )(),( tWtX , the 

following integral formula is tenable. 
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where nN 2 , )( ii tXx  , )( ii tWw  and )( iwal  and i are 

the Walsh transformation pairs. 

Proof: Suppose 
N

i
ti  )1,,1,0(  Ni   are nN 2  equal-

division points in the interval [0,1]. According to Eq.(17), 
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From Lemma 1 and Lemma 2, such results can be given as 
follows 
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When N tends to infinity, from the limitation of the above 
formula and the definition of definite integral, the following 
integral formula is obtained. 
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B. Learning Process 

Give K learning samples with sequence length of p2 as 

follows. If the sequence length is not equal to p2 , it can be 
obtained by interpolating. 
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where Ki ,,2,1  , 12,,2,1  pj  .  

In Eq. (21), p is any natural number that meets the precision 

requirement. di is the expected output. Let 
pN 2 , by Walsh 

transforming, such discrete series is obtained as follows 
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where 1,,1,0,,2,1  NjKi  . 

For the process neural network described in Fig.2, 
according to the above theorem, the output of Eq. (2) can be 
simplified as follows 
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The error function of the network can be taken as 
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In Eqs.(23-24), the ))(( lki txwal is the Walsh transformation 

series of the ith component sequence of the kth learning 
sample. The traditional BP algorithm is adopted to train the 
process neural network. The learning rules of network weights 
may be described as follow 
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where, α, β, γ are learning ratios. 
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If the activation function is chosen as sigmoid function, then 

))(1)(()( ufufuf                               (31) 

C. Algorithm Description 

The learning algorithm is described as follows. 

Step1 The process data of inputs are carried out discrete 
Walsh transformation; 

Step2 Give the maximal iteration times M; set the current 
iteration times s=0; 

Step3 Initialize the network’s connection weights and 

activation thresholds j
l

ijj wv ,, )( ; 

Step4 Calculate the output and the error according to 
Eqs.(23)-(24); 

Step5 Modify the connection weights and the thresholds 
according to Eqs.(25)-(30); s+1→s; If Ms  go to Step 4; 

Step6 Output the learning result and stop. 

There are two methods to determine the input information 
of process neural networks: one is the theoretical model based 
on practical application systems or the analytic function based 
on statistical law. In this situation, the discrete values that meet 
the precision requirement can be acquired by analytic 
functions; the other is to obtain discrete process data based on 
experiment sampling that can reflect the relationship between 
inputs and outputs. After the Walsh transformation, using the 
above algorithm can avoid the complex integral operation, and 
can improve the efficiency of network training. 

V. THE PREDICTION OF MACKEY-GLASS TIME SERIES 

In this section, the actual application of the proposed 
method in this paper is illuminated and its effectiveness is 
verified with the prediction of disordered Mackey-Glass time 
series [8], which is widely researched in literatures. Mackey-
Glass time series is generated by the following formula 
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where t and   are integers, and the other parameters are given 

as 17,1.0,2.0  ba . 

According to Eq. (32), we can obtain the discrete series 
1074

51)}({ iix  with 1024 items of data. By dividing the continuous 

24 items of data into 3 groups, 8 items of data in each group, 
which are used as three discrete input series of PNN, and 
taking the 25th data as the corresponding expected output of 
the network, we can obtain 1000 groups of samples. The first 
800 groups are used as the training sample set, and the next 
200 groups as test sample set. According to “trial method”, a 
PNN with the topology of “3-10-1”is constructed. The learning 
rate of the network is set to 0.003, and the maximum iteration 
steps to 10000. The training results are as follows: the 
maximum error is 0.06434, the minimum error is 0.00001, the 
mean square error is 0.02134, and the average relative error is 
0.67652%. By applying the well-trained network to the test 
sample set, the prediction results are as follows: the maximum 
error is 0.06774, the minimum error is 0.00003, the mean 
square error is 0.02546, and the average relative error is 

http://dict.cnki.net/dict_result.aspx?searchword=%e8%af%95%e6%8e%a2%e6%b3%95&tjType=sentence&style=&t=trial+method
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1.43848%. The comparison between the prediction values and 
the real values is shown in Fig.3. 

For the prediction of Mackey-Glass time series, in [9], by 
applying process neural network with time-varying threshold 
functions to the sample set with 106 discrete series data, the 
average relative error of self-recognition results reaches to 
1.52%. However, in our model, the average relative error is 
only 0.67652% for the training sample set with 800 discrete 
series data, and only 1.43848% for the testing sample set with 
200 discrete series data. The simulation result shows that the 
proposed perdition method of time series based on discrete 
PNN in the paper has both the better generalization capability 
and the prediction ability. 

 

Figure 3.  The comparison between prediction result and actual result. 

VI. THE PREDICTION OF SUNSPOTS TIME SERIES 

The predication of sunspot number is a typical predication 
problem of time series. Sunspots are the dark spots that often 
appear in the solar photosphere, which is the basic symbol of 
solar activities. As it is known to all that the sunspot activity 
has great influence on the human environment, people have 
already paid attention to it for a long time. Sunspot number is 
an important index of sunspots, which reflects the intensity 
changes of solar activities and has great influence on the earth. 
Many phenomena are related to the number of sunspots, such 
as geomagnetic variation, atmospheric motion, climate 
anomaly, variability of the ocean, etc. [9,10]. Therefore, it is 
significant to predicate the number of sunspots accurately in 
future. Since the sunspot activity has certain regularities, 
physicists have already built some prediction models and 
obtained some achievements in the past years. In fact, human 
beings have already accumulated much observation data about 
sunspot activity during the long process of the sun observation. 
Obviously, they are the typical time-varying process records. 
Because it is highly complex that the number of sunspots 
changes with time, there exists great difficulties when we use 
modeling to describe the variation of sunspot number [11,12]. 

The data of sunspots include monthly data and daily data. If 
the months in a year are considered as continuous time-domain 
intervals, and each quarterly datum is considered as a discrete 
sampling point, thus, we can conveniently build a prediction 

model of sunspot activity with process neural network method 
with discrete inputs. First, the time is divided into several 
sections, e.g., one year is considered as an interval, and then 
the observation results in the time interval are considered as a 
time-varying function. The observation results in the previous 
time interval are considered as the network inputs, and the 
observation results in the next time interval are considered as 
the network outputs. Accordingly, we can construct the training 
samples and finish the training of network, so as to build a 
prediction model. 

A. Predication Scheme of the yearly average of sunspots 

The experiment adopts the quarterly and yearly data of 
continuous 259 years (1749-2007) of sunspots [13]. The 
quarterly data is the average number of sunspots in a quarter; 
the yearly data is the average number of sunspots in four 
quarters. The predication scheme in this paper is described as 
follows: Use the quarterly data of the first n years to predicate 

the yearly data of the 1n  th year. For example, we use the 
quarterly data of years during 1850-1852 to predicate the 

average number of sunspots in 1853, where 3n . 

B. Sample construction 

The original data of sunspots series are shown in Table 1. 

TABLE I.  THE ORIGINAL DATA OF SUNSPOTS SERIES 

Years 
Quarterly data Yearly 

data 1st 2nd 3rd 4th 

1749 63.53 74.73 79.00 106.43 80.9 

1750 64.83 92.77 93.20 68.13 83.4 

1751 52.93 55.93 49.87 31.90 47.7 

… … … … … … 

2007 10.67 9.07 6.03 4.23 7.50 

 

According to the predication scheme, we can use the original 
data of sunspots to construct the sample data for network 

training and predication. Take 5n  for an example, and parts 
of samples are shown in Table 2. 

TABLE II.  PARTIAL DATA OF SUNSPOTS SERIES ( 5n ) 

No. 
Inputs(the quarterly data) Outputs 

14~11x  24~21x  34~31x  44~41x  54~51x  y  

1 1749
th
 1750

th
 1751

th
 1752

th
 1753

th
 1754

th
 

2 1750
th
 1751

th
 1752

th
 1753

th
 1754

th
 1755

th
 

3 1751
th
 1752

th
 1753

th
 1754

th
 1755

th
 1756

th
 

4 1752
th
 1753

th
 1754

th
 1755

th
 1756

th
 1757

th
  

5 1753
th
 1754

th
 1755

th
 1756

th
 1757

th
 1758

th
 

6 1754
th
 1755

th
 1756

th
 1757

th
 1758

th
 1759

th
 

… … … … … … … 
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No. 
Inputs(the quarterly data) Outputs 

14~11x  24~21x  34~31x  44~41x  54~51x  y  

254 2002
th
 2003

th
 2004

th
 2005

th
 2006

th
 2007

th
 

C. Network Structure 

According to the predication scheme, the inputs of the 
process neural network are n discrete value of sunspots 
quarterly series; the output is a single value; so there 

are n input nodes for each sub-network; the number of discrete 
sampling points is L=4, which is generally determined by 
experience or experiment. In this paper the number of hidden-
layer nodes is 2 n  and the number of output-layer nodes is 1. 

D. Network Training 

In all samples, the data of previous 180 years (1749-1928) 
are chosen to finish the network training, which makes the 
network approximate the complex mapping relationship of 
sunspots series between different intervals. The data of next 59 
years (1929-2007) are chosen to test the generalization ability 

of network. Obviously, the value of input node n of each 
network will have effect on the performance of network. 
Denote the maximum error, the minimum error, mean square 

error and average relative error of network as maxE , minE , 

avgE , relE ; the step number of training is 104. When 

9,7,5,3n , the training results of network are shown in 

Table3. 

TABLE III.  THE TRAINING RESULTS OF SUNSPOTS SERIES PREDICATION  

n  
maxE  minE  avgE  

relE  

3 3.7218 0.0016 0.6358 2.3136% 

5 2.2353 0.0011 0.5984 1.5812% 

7 3.0536 0.0023 0.6413 2.0513% 

9 2.8198 0.0019 0.6257 1.9632% 

 

As shown in Table 3, when 5n , the performance of 
network is optimal. The comparison of the training results is 
shown in Fig.4. Therefore, the structure of the networks is 
determined as 5-10-1. 

 

Figure 4.  The comparison between the training results and the actual results 

during 1754-1928. 

E. Predication Results 

Use the sample data during 1929-2007 to test the network 

that has been trained, the predication results are maxE =2.3525; 

minE =0.0015; avgE =0.4886; relE =1.7629%. The comparison of 

the predication results with the actual results are shown in 
Fig.5. 

It is clear from Fig.5 that the predication results accurately 
show the change trends of the actual results. Although there is 
a relatively larger predication error in some years in which the 
sunspot number is in the peak or the trough of the curves, the 
predication result is very satisfactory in the vast majority of 
other years. It can be seen that, the relative errors of this model 
is only 1.7629%. However, for the method in [9], the average 
relative error reaches to 2.30%. In PNN model, the process 
inputs are submitted that contains a large number of as decision 
making information, which enhance the approximation and 
predication capabilities of PNN. In addition, because the 
discrete series are directly submitted to PNN, this method is 
more practical than the one in [9] where the discrete series are 
transformed the continuous functions by fitting method before 
submitting to PNN. 
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Figure 5.  The comparison of the predication results with the actual results 

during 1934-2007. 

F. Predication Scheme of the monthly average of sunspots 

The experiment adopts the monthly and daily data of 
continuous 159 years (1849-2007) of sunspots [13]. The daily 
data is the number of sunspots in a day; the monthly data is the 
average number of sunspots in a month. The predication 
scheme is described as follows: Use the daily data of the k-th 
month in the previous n  years to predicate the average value 
of the k-th month in the (n+1)-th year. For example, we use the 
daily data of March during 1850-1854 to predicate the monthly 

average value of March in 1855. Here 5n , 3k . 

According to the predication scheme, the original data of 
sunspots can be used to construct the sample data for networks 

training and predication. Taking 5n , 3k  for example, the 
parts of samples are shown in Table4. 

TABLE IV.  THE PARTIAL DATA OF SUNSPOTS SERIES ( 5n  , 3k  ) 

No. Inputs(daily data in March)  
Outputs 

(monthly data) 

1 1849.3 1850.3 1851.3 1852.3 1853.3  1854.3 

2 1850.3 1851.3 1852.3 1853.3 1854.3  1855.3 

… … … … … …  … 

154 2002.3 2003.3 2004.3 2005.3 2006.3  2007.3 

 

According to the predication scheme, the inputs of 

networks are n discrete series of daily sunspots data; the output 

is single value; so there are n input nodes; the number of 

hidden-layer nodes is set to n2  and the number of output-layer 
nodes is set to 1. 

In all samples, the data in March of first 100 years (1849-

1948) are chosen to train networks. The data in March of next 

59 years (1949-2007) are chosen to test the generalization 

ability of networks. Obviously, the number of input nodes will 

have effect on the performance of networks. Denote the 

maximum error, the minimum error, mean square error and 

average relative error of network as maxE , minE , avgE , relE ; 

the step number of training is 104. When 9,7,5,3n , the 

training results of networks are shown in Table5. 

TABLE V.  THE TRAINING RESULTS OF SUNSPOTS IN MARCH(1849-1948) 

n  maxE  minE  avgE  
relE  

3 10.4670 0.0119 3.1049 0.11% 

5 12.6838 0.0157 3.9552 0.22% 

7 17.6565 0.0187 4.4907 0.40% 

9 20.1948 0.0359 6.3106 0.99% 

 

It is clear from the Table5 that, the performance of 
networks is the most optimal when n=3. Therefore, the 
structure of networks is determined as 3-6-1. 

By applying the sample data in March during 1949-2007 to 
the trained networks, the predication results are below: 

15.9981max E ; 0.0352min E ; 4.6322avgE ; 

%21.0relE . The comparison of the predication results with 

the actual results are shown in Fig.6 

 

Figure 6.  The comparison of the predication results with the actual results 

during 1954-2007. 

It is clear from Fig.6 the predication results accurately show 
the change trends of the actual results. The experimental results 
show that the developed model that can use the information in 
first interval to predicate the information in the next interval 
provides a new way to complex time series predication 
problems. 

VII. CONCLUSIONS 

In this paper, a process neural network model with discrete 

input is presented for complex time series predication. A novel 

learning algorithm of PNN based on discrete Walsh 

transformation is proposed in order to overcome the limitation 

of the traditional learning algorithm in deal with the time-

dependent processes. The developed model adopts procedure 

inputs, which shows the temporal and spatial aggregation of 

biological neurons and adopts discrete data series to the input 

of PNN, which can be applied to build models for the complex 

practical problems. The two complicated time series examples 

are examined, and the performance results in comparison with 

the literature show the developed model is suitable for the 

predication time-related problems that can use the information 

in first interval to predicate the information in the next interval. 

The analyses of the results indicate that the performances of the 

developed model are significantly improved if the discrete 

series are submitted to the networks inputs to model building. 

The results of study are highly encouraging and suggest that 

the developed model in this paper is a recommendable 

predication method for complex time series and it has a 

theoretical and practical value for the space environment 

prediction in future. 
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