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Abstract— In this paper we investigate the quinary Hamming 

code for 2r . We construct the code and establish its 

perfectness. Using the MDS property of the code, we find its 

weight distribution. We also investigate the dual code and other 

codes having relation with the Hamming code. Finally we 

illustrate how this Hamming code can be decoded. 
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I.   INTRODUCTION 

Let )(qGF be the Galois field with q elements. An 

],[ kn linear code over )(qGF is a k dimensional 

subspace of 
nqGF )( , the space of all n tuples with 

components from )(qGF . Since a linear code is a vector sub-

space it can be given by a basis. The matrix whose rows are 

the basis vectors is called a generator matrix. For an 
acquaintance with coding theory at a basic level the reader 

may consult ]3,2,1[ .  

A very important concept in coding is the weight of a 

vector v . By definition, this is the number of non-zero 

components v  has and is denoted by ).(vwt  The minimum 

weight of a code, denoted by ,d is the weight of a non-zero 

vector of smallest weight in the code. A well-known theorem 

[1] says that if d is the minimum weight of a code C , then 

C  can correct 






 


2

1d
t  or fewer errors, and conversely. 

An ],[ kn linear code with minimum weight d  is often called 

an ],,[ dkn code. A quinary code is a ],,[ dkn code over 

)5(GF . Recall that )5(GF denotes the Galois field of 

order 5 comprising of 3,2,1,0 and 4 with the following 

addition and multiplication tables: 

 

 

 

 

 

+    0   1     2     3    4                         0   1   2   3    4  

0     0   1     2    3     4                    0    0   0  0   0    0  

1      1    2    3    4     0                    1     0   1   2   3    4  

2     2   3    4    0     1                     2    0   2  4   1     3  

3     3   4     0    1     2                    3     0   3  1    4    2  

4     4   0     1     2    3                    4     0   4  3   2    1  

 

            II.     CONSTRUCTION OF THE CODE    

 Throughout this paper )5(GF will denote the Galois       

field of order 5 . Then the Cartesian product 

)5()5( GFGF  comprises of the following 25 pairs: 

).4,4(),3,4(),2,4(),1,4(),0,4(

),4,3(),3,3(),2,3(),1,3(),0,3(

),4,2(),3,2(),2,2(),1,2(),0,2(

),4,1(),3,1(),2,1(),1,1(),0,1(

),4,0(),3,0(),2,0(),1,0(),0,0(

 

We split the 24 nonzero elements of )5()5( GFGF   

into 6 disjoint sets: 

)},4,0(),3,0(),2,0(),1,0{(

)}0,4(),0,3(),0,2(),0,1{(

)}1,4(),2,3(),3,2(),4,1{(

)},2,4(),4,3(),1,2(),3,1{(

)},3,4(),1,3(),4,2(),2,1{(

)},4,4(),3,3(),2,2(),1,1{(

6

5

4

3

2

1













S

S

S

S

S

S

 

where any two pairs of the same set are multiples of each 

other over )5(GF . 

We take 6 pairs, one from each set, namely 

)1,0(),0,1(),4,1(),3,1(),2,1(),1,1( from 621 ,...,, SSS  and 

use their transposes to form the following 62 matrix: 
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





1

1
H  

2

1

3

1

4

1

0

1





1

0
 

where each column is a transpose of a pair, like 








1

1
is the 

transpose of ),1,1( 








2

1
is the transpose of )2,1( and 

thereafter. The matrix H is called Hamming or parity check 

matrix in literature. 

Let }0)5(),...,({ 6

61  THxGFxxxC . Then C is 

a subspace of 
6)5(GF , and therefore a linear code over 

)5(GF . Notice that 0THx implies the following system: 









0432

0

64321

54321

xxxxx

xxxxx
)1(  

which then yields: 

43215 4444 xxxxx   and 

43216 234 xxxxx  . 

Since 321 ,, xxx and 4x are free variables we can assign  

Them conveniently chosen values. Thus 

setting 0,0,1 321  xxx and 04 x , we obtain 

45 x and 46 x . Thus (1,0,0,0,4,4) is a solution of )1( . 

Similarly ),3,4,0,0,1,0( )2,4,0,1,0,0( and )1,4,1,0,0,0( are 

three other solutions of )1( .Thus (1,0,0,0,4,4), 

),3,4,0,0,1,0( )2,4,0,1,0,0( and )1,4,1,0,0,0(  are four 

code-words of C . Since they are independent, we can use 

them to build a generator matrix G of C with 












0

0

0

1

G

0

0

1

0

0

1

0

0

1

0

0

0

4

4

4

4










1

2

3

4

. 

 
III. THE WEIGHT DISTRIBUTION 

We now show that the minimum weight of the code C is3 .  

 
Theorem(3.1). The minimum weight of the Hamming code 

C over )5(GF is 3 . 

Proof. Notice that the weight of each row of G  is three.  

Now let 0,  , ,ji  4,1  ji . Then 

),4(),4( ji   ),4(),4( ji  

)),(4( ji    

Two cases may arise here. 

Case 1: 0  .  

Then   and 0)(  jijiji  as 

ji  . 

Case 2: 0  . 

Then 04)(   . 

Hence for 

0,  , ,ji  4,1  ji , )0,0(),4(),4(  ji  . 

Hence a linear combination of two rows of G with nonzero 

scalars from )5(GF has weight at least3 . On the other hand 

a linear combination of 3 or 4 rows of G has obviously wt at 

least3 . Hence the minimum weight ofC is3 .▄ 

 

Corollary. The ]4,6[  Hamming code over )5(GF  corrects 1   

error. 

Proof. Follows from the fact that if d is the minimum weight 

 of a code C , then C  can correct 






 


2

1d
t  or fewer 

errors. Since the d of C is ,3 the t is .1 ▄ 

By singleton bound [1], for an ],,[ dkn code, 

1 knd and when 1 knd , the code is called 

an MDS or maximum distance separable code. Hence our 

]3,4,6[ code C is an MDS code. We then can apply the 

following theorem [3] on C . 

 

Theorem(3.2). Let C  be an ],,[ dkn MDS code over 

)(qGF and iA  be the number of code-words of weight i . 

Then 10 A , 0iA , di 1 and  

),1()1( 1

0


















 





 jdi
di

j

j

i q
j

i

i

n
A nid  . 

By the theorem above, there is exactly one code-word of 

weight 0 in C  and no code-word of weight 1  and 2 .  

Moreover 

80
!3!3

!6
)15(

3

6

)15(
3

)1(
3

6
1

0

0

3




























 



 j

j

j

j
A

, 

120)15(
1

4
)15(

0

4

4

6

)15(
4

)1(
4

6

12

2
1

0

4






















































 



 j

j

j

j
A

, 
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264)15(
2

5
)15(

1

5
)15(

0

5

5

6

)15(
5

)1(
5

6

23

3
2

0

5






























































 



 j

j

j

j
A

 and 

 

Thus we have the following theorem. 

160)15(
6

)1(
6

6
3

3

0

6 
















 



 j

j

j

j
A  

 

Theorem (3.3). The codeC has the following weight 

distribution. 

 
Weight             Number of Words 

          0    1 

         3    80 

         4    120 

         5    264 

              6                                        160 

IV. A PERFECT CODE  

 

Recall from Section1 above that an ],[ kn linear code 

C over )(qGF is a k dimensional subspace of 
nqGF )( . 

A linear code C of minimum weight d is called perfect if all 

the vectors in 
nqGF )( are contained in the spheres of 

radius 






 


2

1d
t about the code-words. In this case the 

spheres are said to cover the space
nqGF )( . It is well known 

[2] that if there exists a perfect ],,[ dkn code over )(qGF  

then the polynomial )(xLt defined by  




















 






jt

xn

j

x
qxL

t

j

jtj

t

1
)1()1()(

0

 

has t distinct integer roots in the interval ],1[ n . Hence if a 

]3,3,6[ code is perfect the polynomial xxL 525)(1   is 

sure to have an integer root in the interval ]6,1[ , which indeed 

it does, namely5 . Hence we expect a ]3,3,6[ code to be 

perfect and indeed it turns out to be perfect. 

 

Theorem(4.1) A ]3,4,6[ code over )5(GF is perfect.  

Proof. Recall that a ]3,4,6[ code C over )5(GF is a subspace 

of
6)5(GF . Hence a code-word Cc has the following 

form ),,,,,( 654321 ssssssc  where )5(GFsi  . We 

would like to find out the number of elements in )(1 cS , the 

sphere of radius1with center in c . Notice that )(1 cS contains 

the vectors in
6)5(GF which do not differ with c at all or differ 

with c in just one coordinate. The only vector in 
6)5(GF that 

do not differ with c is c itself. We now go after the vectors of 
6)5(GF which differ with c  in just 1  coordinate. Let 

6)5(GFv and the distance 1),( cvd . Without loss let 

v differ from c in 1st coordinate. 

Then ),,,,,( 65432 sssssv  where )5(GF , 

but 1s . Hence there are four choices for  . Similarly for 

each ,i which is one of the five remaining coordinates, there 

exist 4 vectors in 
6)5(GF that differ with c in the 

thi coordinate. Thus there are in total 2446  vectors in 
6)5(GF that differ with c in just 1 coordinate. Hence taking 

c into account there are 25241  vectors that differ with 

c in at most1coordinate. Thus there are in total 25 vectors in 

)(1 cS . Since it is well known [1] that 

)( 11 cS  )( 21 cS  for 21 cc  , Ccc 21, , the 

spheres )(1 cS , Cc together contain 

624 55525|| C vectors of
6)5(GF .Thus )(1 cS s 

cover the whole space
6)5(GF and a ]3,4,6[ code over 

)5(GF
 
is perfect. ■ 

V. DUAL AND OTHER RELATED CODES 

Let 0|)5({ 6  cuGFuC for all }Cc . Then 

C is called the dual or orthogonal code of C . It is well 

known [1] that if C  is an MDS code then 
C is also an MDS 

code. Since 
C  is generated by H in Section 2, 

C is a 

]2,6[ code with minimum distance 5126  . Thus 

C can correct 2 errors.  

Next we use Theorem (3.2) to compute the weight distribution  

of 
C .By this theorem, there is exactly one code-word of 

weight 0 in C  and no code-word of weight 1  through 4 . 

Moreover  

24)45(
0

5
6

)15(
5

)1(
5

6
515

0

5




























  j

j

j

j
A
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6
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)15(
6
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6

6

2
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0
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0

6
























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














j

j

j

j

j

j

j

j
A

 

Thus we have the following theorem. 

 

Theorem(5.1) Each non-zero code-word of 
C has weight 5 . 

Let us now check if C  is cyclic. Notice that  





























3

4

0

0

1

0

H 




1

1
 
2

1

3

1

4

1

0

1





1

0



























3

4

0

0

1

0











0

0
 

but 



























4

0

0

1

0

3

H 




1

1
 
2

1

3

1

4

1

0

1





1

0













































0

0

0

4

4

0

0

1

0

3

.  

Hence C is not cyclic. Also notice that 
















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
















0

0

0

1

4

2

3

4

0

1
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
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
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







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




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
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
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
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
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




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0
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but 



















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


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4
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
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









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0

0
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1

4

4

.  

Hence 
C is not cyclic. 

Next we investigate .CC The generator matrix 

M of
CC is given by 



















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

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
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. 

Using elementary row operations one can reduce it to the 

following form 














0

0

0

0
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1
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

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









0

1

1

2

3

4

. 

Hence 5)dim(  CC and 1)(  CCwt . Thus 

CC has no error-correction capacity.  

Recall that 

)dim(dimdim)dim(   CCCCCC . 

Hence 1)dim(  CC . We notice that )0,1,1,1,1,1( is the 

first row of H and it is also obtained when we add all the 

rows of G . Hence 
CC comprises of all multiples of 

)0,1,1,1,1,1( over )5(GF and has minimum weight 5 . Thus 

we have the following theorem. 

 

Theorem(5.2) The following hold. 

i. Neither C  nor 
C is cyclic. 

ii.
CC has dimension 5  and minimum weight 1 . Hence 

CC can not correct any error. 

iii. 
CC has dimension 1  and minimum weight 5 . 

Hence 
CC can correct 2  errors. 

 

VI. DECODING ALGORITHM 

Below we illustrate how decoding is done with a 

]3,4,6[ quinary code. By Section 2 above 







1

1
H  

2

1

3

1

4

1

0

1





1

0
. 

Suppose we send the code-word )0,1,1,1,1,1(c , but due to 

 noise in the transmission channel an error occurs and the 

received vector is )0,1,1,4,1,1(r . Then 

)0,0,0,3,0,0( cr . This vector is called error vector and 
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is denoted by e . To recover the code-word c from the 

received vector ,r we compute
tHr as follows: 

tHr  
tcrcH ))((   

tecH )(   

tt HeHc  . 

Since ,KerHc .
0

0








tHc  

tHr  




















3

1
3

0

0
 

 3 3rd column of H . 

This shows that the error vector e contains the field 

element 3 in the 3rd bit and error has occurred in the 3rd bit of 

the code-word c . Since ,ecr  we obtain c from er  : 

)0,1,1,1,1,1()0,0,0,3,0,0()0,1,1,4,1,1(  erc . 

Thus we have the following decoding algorithm: 

1. Form H using the basis vectors of KerG  

2. Compute
tHr  

a. If 
tHr  j

th
column of 

H where }6,5,4,3,2,1{j and )5(GF su

ch that 0 , then the error has occurred in the 
thj bit of the sent code-word and the error vector 

e has field element  in its 
thj coordinate 

position and zeros in others 

i.e. )0,0,..,,..,0,0( e where is the 
thj bit 

of e . 

b. If 
tHr is zero vector, no error has occurred 

during transmission. 

Compute er  to recover the code-word c . 
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