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Abstract—Controlling the quality of Chinese herbal medicines 

(CHMs) is a challenging issue due to the complex and diverge 

specification of components in herbs. The main purpose of this 

study is to develop an algorithm for species identification of 

CHMs. An electronic nose (E-nose) was employed to collect the 

smell print of different groups of CHMs with different kinds and 

production batches. A combination of local tangent space 

alignment (LTSA) and linear discriminant analysis (LDA) 

methods was adopted for the classification of CHMs. First, the 

nonlinear manifold learning algorithm LTSA was employed to 

reduce the dimension of the feature data. The goal of this 

dimensionality reduction is to discover the hidden structure from 

the raw data automatically. Then in the reduced space, the LDA 

algorithm based on Fisher criterion was employed to implement 

a linear classifier. The results show that, the combination of 

LTSA+LDA algorithm can well distinguish six different kinds of 

CHMs and three different production batches of the same kind 
with 100% recognition rate of all tested samples. 

Keywords-Electronic nose (E-nose); Chinese herbal medicines; 

Manifold learning; LTSA+LDA; Classification and identification   

I.  INTRODUCTION 

Chinese herbal medicines (CHMs) with a profound cultural 
background have been used for the prevention and treatment of 
disease for thousands of years in the traditional Chinese 
medicine. However, due to wide varieties and complex 
sources, some poor quality of precious and rare medicines are 
often appear in adulterants of CHMs. This leads to a decline in 
the quality of CHMs with serious impact on the reputation of 
CHMs in the growing market. Therefore, the type identification 
of CHMs is an important issue for the quality control and 
boosting the treatment feature of CHMs. 

However, the identification methods based on human 
senses will be inevitably influenced by factors such as 
physiology, experience, emotion and environment. These 
factors are subject to poor reproducibility, low accuracy and 
strong subjectivity. Therefore, it is difficult to form a standard 
identification procedure.  

While physicochemical methods such as gas 
chromatography (GC), mass spectrometry (MS) and flame 

ionization detection (FID) take much longer pretreatment time, 
it is difficult to directly connect the obtained data with the odor 
of samples. Therefore, modern analysis techniques which can 
fully characterize the color, gas and flavor of CHMs have been 
considered as preferred methods for the quality control of 
CHMs. 

In recent years, with the rapid development of sensors, 
computers and signal processing technologies, the machine 
olfaction system - the electronic nose (E-nose), has been 
developed inspired by the human sensory conduction 
mechanism. The E-nose consists of gas sensors, signal 
processing and pattern recognition components, which try to 
simulate the human/animal's olfactory organs of perception, 
analysis and judgment of odor. Firstly, the gas sensitive sensors 
respond to the chemical reaction of different odorant molecules 
and convert it into an electrical signal that can be measured. 
Then the signal processing component processes the generated 
odor signal. Finally by multivariate statistical classification or 
neural network methods it identifies the measured odor and 
changes to sensory evaluation index [1]. Compared with the 
traditional odor analysis technology, E-nose has the advantage 
of being able to reflect the "odor characteristics" of CHMs with 
the advantage of determining fast, sensitive, accurate and 
nondestructive of the processed odor signals [2]. E-nose has 
been also widely used in food [3], medicine [4], agriculture [5], 
environment [6] and public safety monitoring [7]. 

 In this paper, CHMs with different odor characteristics 
have been selected and PEN3 E-nose has been employed to 
collect odor information of different kinds of CHMs. 
Moreover, common linear analysis methods such as principal 
component analysis (PCA), linear discriminant analysis (LDA) 
and independent component analysis (ICA) have been studied 
for pattern recognition of the smell prints. It was found that 
although these methods with dimensionality reduction are easy 
to implement but they fail to discover the underlying nonlinear 
structure of the high-dimensional E-nose data which is often 
nonlinear. 

Recently, manifold learning algorithm, which can learn the 
low-dimensional manifold in high-dimensional data, has been 
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used as an effective method for nonlinear dimensionality 
reduction [8]. Local tangent space alignment (LTSA) algorithm 
is a good nonlinear manifold learning algorithm that can 
effectively learn the global embedding coordinates reflecting 
the low-dimensional manifold structure of a data set [9]. The 
LDA also ensures that after the projection, the pattern sample 
has the minimum within-class distance and maximum between-
class distance in the new space. This property can be 
considered as the best separability feature of the algorithm for 
the patterns in the new space.  

In this paper, we employ the advantages of both LTSA and 
LDA, as the LTSA+LDA method, to analyze and process 
nonlinear high-dimensional odor data collected by E-nose, in 
order to achieve good classification and identification of CHMs 
with different kinds and different production batches.  

II. MATERIALS AND METHODS 

A. Materials and instruments  

First, The CHMs samples used in our experiments were 
provided by Guangzhou University of Chinese Medicine with 
similar morphology. These samples are difficult to be 
distinguished without a prior knowledge. The selected CHMs 
types are: Amomum Cardamomum, Atractylodes 
macrocephala, Atractylodes lancea, Heracleum kansuense, 
Alpinia oxyphylla and Curcuma aromatica. We chose three 
kinds of Alpinia oxyphylla of different production batches: 
Anhui Alpinia oxyphylla, Guangdong Alpinia oxyphylla and 
Hainan Alpinia oxyphylla.  

The instrument used in this experiment is PEN3, a portable 
E-nose made by German AIRSENSE Company. The PEN3 E-
nose is an analytical instrument that consists of a set of 
complex chemical sensors and recognition software. It consists 
of 10 metal oxide semiconductor (MOS) sensors with the 
sensor response is defined as the ratio of conductance: G/G0. 
Where, G represents the resistance of each sensor in the 
chamber after exposing to a target gas and G0 represents the 
resistance while each sensor is exposed to the zero gas filtered 
by the standard activated carbon. 

B. Experimental conditions and methods 

The laboratory temperature maintains at 25 ~ 27 oC and the 
relative humidity maintains at 50 ~ 60% during the 
experiments. The static headspace sampling method is used to 
collect the samples of odor information by PEN3 E-nose. The 
weight of each sample is 10g, the headspace generation time is 
60 min and the size of static headspace space is 250 ml. The 
sampling time is set to 120 s, the cleaning time of the sensor 
array is set to 200 s and the sampling interval is set to 1s. 

For six different kinds of CHMs, each kind of CHMs was 
continuously sampled 16 times, a total of 96 sample sets. We 
chose 60 sets (6x10) for training and 36 sets (6x6) for testing. 
For three kinds of Alpinia oxyphylla of different production 
batches, each kind was continuously sampled 12 times, a total 
of 36 sample sets. We chose 30 sets (3x10) for training and 6 
sets (3x2) for testing.  

C. The principle of LTSA+LDA algorithm  

1) Local Tangent Space Alignment 

Manifold learning algorithm as an important method in data 
mining can discover the low-dimensional hidden structure from 
the high-dimensional raw data and achieve dimensionality 
reduction and pattern classification of high-dimensional data. It 
has the advantages of less algorithm parameters, fast 
calculation speed, good dimensionality reduction effect and 
keeping the topology of the original data space [10-12]. The 
LTSA algorithm [9] is a kind of manifold learning algorithm 
based on local tangent space, using approximation of the 
tangent space of each sample point to construct the local 
geometry of the low-dimensional manifold. It then uses the 
local tangent space alignment to find out the global low-
dimensional embedding coordinates. For a given set of sample 

points
1 2{ , , , }, m

N ix x x x R , the local tangent space 

alignment algorithm can be described as follows: 

 Selection of neighborhood by calculating the 

neighborhood of each sample point ix  and record 

1
[ , , ]

ki i iX x x  as the k nearest neighborhood 

points including the sample point ix . 

 The local linear projection for the neighborhood of 
each sample point by calculating the right singular 
vectors corresponding to the d largest singular values 

of center matrix 1 T

i i kX x  and let the d right 

singular vectors form the matrix iV .   

 Alignment of local coordinate system by constructing 

the permutation matrix 
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Calculate the eigenvectors 1, , du u  corresponding 

to the d smallest nonzero eigenvalues of matrix , 

where 1[ , , ]T

dT u u  is the embedding result of 

the calculation.  

LTSA can well recover the subset of the equidistant low-
dimensional space of manifold while there is no claim for the 
subset being convex. LTSA can also well recover the low-
dimensional structure of the "empty" manifold.  

2) Linear discriminant analysis 

Although, manifold learning can well recover the intrinsic 
low-dimensional space of the original data, but the space may 
not be the best recognition space. Therefore, it is necessary to 
carry out the analysis in the low-dimensional space and map 
the data to the best discriminant space for classification and 
recognition. LDA is a common pattern classification algorithm, 
which constructs the discriminant function by the linear 
combination of the original data, divides the multidimensional 
space into some subspaces and distinguishes different sample 
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sets to the maximum extent. It is easy to realize the 
performance of classification as effective. Suppose the number 

of known pattern classes is N as 
1 2, , , NG G G , pattern 

nx R  is n-dimensional real vector, 
iN  is the number of 

training samples in i th class, im  is the mean feature vector 

of training samples in i th class, 
wS  is the total within-class 

scatter matrix, bS  is the between-class scatter matrix. This 

specific algorithm can be described as follows: 

 Calculate the sample mean vector 
im    

1
, 1,2, ,

i

i

x Gi

m x i N
N 

                 (1) 

 Calculate the total within-class scatter matrix 
wS  

1

( )( ) , 1,2, ,
i

N
T

w i i

i x G

S x m x m i N
 

    (2) 

 Calculate the between-class scatter matrix bS   

1
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N
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b i i

i
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                  (3) 

among, 
1

1 N

i

i

m m
N 

                       (4) 

 Find the optimal projection direction using Fisher 
criterion function defined as:  

( )
T

b
F T

w

S
J

S

 


 
                         (5) 

The Fisher discriminant criterion regards the ratio of 
between-class scatter and within-class scatter as a 
comprehensive measure of the data separability after 
projection, the Fisher optimal projection direction is the vector 
which makes the comprehensive separability measure and 
achieves the e maximum, i.e. 

* det( )
max imize

det( )

b

w

S
w

S
                  (6)               

3) The LTSA+LDA algorithm 

The LTSA is a new manifold learning algorithm, which can 
effectively learn the global embedding coordinates that reflect 
the low-dimensional manifold structure of the dataset. LTSA 
algorithm can be performed on the training sample set, but 
because there is no explicit mapping relationship, it is difficult 
to carry out training on test samples. Also, the low-dimensional 
space obtained by LTSA algorithm may not be the best 
recognition space. Therefore, it is not perfect for the 
identification of test samples. When using LDA algorithm 

directly to deal with the high-dimensional data, there may exist 
small sample size problem. While the dimension of the sample 
feature data collected from the E-nose is greater than the total 
number of samples, thus leads the within-class scatter matrix 

wS  to be singular, LDA algorithm will not proceed. We can 

make 
wS  nonsingular by dimensionality reduction method to 

solve the small sample size problem.  

 This paper employs a combined LTSA and LDA 
algorithm, as the LTSA+LDA to recognition the low-
dimensional space of manifold. It can effectively deal with new 
samples and also avoid the small sample size problem when 
LDA was used directly. We propose the use of nonlinear 
manifold LTSA as the first step to reduce the dimension of the 
feature data and simplify the data and optimize the feature 
vectors. Then we employ the feature matrix obtained by LTSA 
algorithm as the input matrix of LDA algorithm and design a 
linear classifier based on Fisher criterion to complete the 
classification and identification of CHMs. 

III. RESULTS AND DISCUSSIONS 

A. Sensors response 

The response of PEN3 E-nose to six different kinds of 
CHMs is shown in Fig.1. The horizontal axis represents the 
sampling time of 0 to 120 s, and the vertical axis is the sensor 
response value (G/G0). The PEN3 sensor array shows different 
response curves to different kinds of CHMs. Each sensor has 
the characteristic of cross sensitivity to the same odor and the 
response characteristic of each sensor to the same odor is 
different (Fig.1). Moreover, the sensitivity of the senor array to 
Atractylodes macrocephala and Heracleum kansuense is higher 
than other four kinds of CHMs. The sensitivity of the senor 
array to Amomum Cardamomum, Alpinia oxyphylla and 
Curcuma aromatica is low as they belong to the Compositae 
family of CHMs. 

 

Figure 1.  The response curves of six different kinds of CHMs. 
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Figure 2.  The radar plot of Amomum Cardamomum, Alpinia oxyphylla and 

Curcuma aromatic. 

The radar plot of Fig.2 shows different response 
characteristics of the sensor array to these three kinds of 
CHMs. Some sensors (such as S2, S6 and S8) show a better 
sensitivity than others.  

 

Figure 3.  The bar plot of three kinds of Alpinia oxyphylla with different 

production batches. 

Fig.3 shows the bar plot of the response characteristics of 
E-nose to three kinds of Alpinia oxyphylla with different 
production batches. In Fig.3, we can clearly see similar pattern 
in the response characteristic of the sensor array for these three 
kinds as they belong to the same kind of CHMs. However, due 
to the difference in the place of collection and harvesting time 
their response characteristic is different.   

B. Classification results of six different kinds of CHMs 

The classification results of using LTSA and LTSA+LDA 
algorithms as applied to the odor samples of six different kinds 
of CHMs collected by E-nose are shown in Fig.4 and Fig.5.  

In Fig.4, the horizontal axis represents the eigenvector 
corresponding to the minimum nonzero eigenvalue obtained by 
LTSA algorithm and the vertical axis represents the 
eigenvector corresponding to the second nonzero eigenvalue. 
As shown in Fig.4, when LTSA algorithm was used directly to 
reduce the high-dimensional odor data to the two-dimensional 
space, the within-class distance is large and the between-class 
distance is smaller. Atractylodes macrocephala and Heracleum 
kansuense CHMs can be distinguished from other four kinds of 
CHMs. There are a few sample points overlap between 

Atractylodes lancea and Curcuma aromatic. Also, Amomum 
Cardamomum and Alpinia oxyphylla have some overlapping 
sample points. Two test samples of Atractylodes macrocephala 
have been correctly identified as Atractylodes macrocephala 
category through the LTSA algorithm. To a certain degree, the 
LTSA algorithm can be used for classification and 
identification of six different kinds of CHMs by analyzing and 
processing the high-dimensional of their odor data.  

 

Figure 4.  The LTSA classification results of six different kinds of CHMs.  

 

 
Figure 5.  The LTSA+LDA classification results of six different kinds of 

CHMs. 

 

In Fig.5, the LTSA+LDA algorithm was used for 
classification and identification of six different kinds of CHMs 
by analyzing and processing the high-dimensional of their odor 
data in the two-dimensional space. The horizontal axis 
represents the first main axis with the variance contribution rate 
of 53.08%, the vertical axis represents the second main axis 
with the variance contribution rate of 32.54%. We can see that, 
for each kind of sample, the within-class distance becomes 
smaller and the between-class distance becomes larger. Two 
test samples of Atractylodes macrocephala have also been 
correctly identified as Atractylodes macrocephala category 
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through the LTSA+LDA algorithm. Therefore, the 
LTSA+LDA algorithm can better distinguish these six different 
kinds of CHMs in compared with the direct use of LTSA 
algorithm.  

For classification of six different kinds of CHMs, each kind 
of medicine has 10 training samples, with a total of 60 training 
samples. The E-nose with 10 sensors and the sampling interval 
120 s generated a 120 by 10 matrix for each odor sample which 
can be regarded as a sample point with the dimension of 1200. 
For processing the high-dimensional odor data of samples, we 
need to set two important parameters, the number of 
neighborhood points, k and the intrinsic dimension, d (namely 
the dimension of the embedding space). The selection of k and 
d is the key factor in the algorithm as it has a significant effect 
on the embedding results. If the value of k is too large, LTSA 
can not reflect the local characteristics, on the other hand if it is 
too small, LTSA will not keep the topological structure of 
sample points in the low-dimensional space. If the value of d is 
too large, the mapping results will contain too much noise; and 
if too small, the sample points may overlap with each other in 
the low-dimensional space. In this paper, we used MATLAB 
V.7.10 (R2010a) to analyze and process the high-dimensional 
odor data of CHMs. The optimal parameters of k and d were 
set experimentally to k=15, d=2 for the LTSA algorithm, and 
to k=15, d=10 for the LTSA+LDA algorithm.  

C. Identification results of six different kinds of CHMs 

The identification results of the test samples of six different 
kinds of CHMs based on LTSA algorithm and LTSA+LDA 

algorithm are shown in Table Ⅰ and Table Ⅱ. The overall 
recognition rate is defined as the ratio of the number of test 
samples correctly identified and the number of total test 
samples.  

TABLE I.   THE IDENTIFICATION RESULTS OF THE TEST SAMPLES BASED 

ON LTSA ALGORITHM 

Samples Test 

samples 

Correctly 

identified 

Wrongly 

identified 

recognition 

rate 

Amomum 

Cardamomum 

6 3 3 50% 

Atractylodes 

macrocephala 

6 6 0 100% 

Atractylodes 

lancea 

6 5 1 83.3% 

Heracleum 

kansuense 

6 6 0 100% 

Alpinia 

oxyphylla 

6 4 2 66.7% 

Curcuma 

aromatica 

6 5 1 83.3% 

Total 36 29 7 80.6% 

 

From Table Ⅰ, we can see that, for the 36 test samples, 7 
were wrongly identified when directly using the LTSA 
algorithm. The recognition rate of Amomum Cardamomum 
and Alpinia oxyphylla were relatively low (50% and 66.7% 
respectively) compared with other CHMs. The recognition rate 
of Atractylodes lancea and Curcuma aromatica were both 
83.3%. The recognition rate of Atractylodes macrocephala and 

Heracleum kansuense were the highest with 100%. The overall 
recognition rate for all test samples is 80.6%.   

TABLE II.  THE IDENTIFICATION RESULTS OF THE TEST SAMPLES BASED 

ON LTSA+LDA ALGORITHM 

Samples Test 

samples 

Correctly 

identified 

Wrongly 

identified 

recognition 

rate 

Amomum 

Cardamomum 

6 6 0 100% 

Atractylodes 

macrocephala 

6 6 0 100% 

Atractylodes 

lancea 

6 6 0 100% 

Heracleum 

kansuense 

6 6 0 100% 

Alpinia 

oxyphylla 

6 6 0 100% 

Curcuma 

aromatica 

6 6 0 100% 

Total 36 6 0 100% 

 

As shown in Table Ⅱ, for the 36 test samples, all test 
samples were correctly identified when using the LTSA+LDA 
algorithm. The recognition rate of the test samples of six 
different kinds of CHMs were 100%, with the overall 
recognition rate of 100%.  

Comparing the results of Table Ⅰ and Table Ⅱ we can 
find that, the recognition rate of the LTSA+LDA algorithm was 
19.4% higher than that of the LTSA algorithm in identification 
of six different kinds of CHMs. Therefore, the LTSA+LDA 
algorithm made significant improvement in recognition 
performance.  

D.  Classification results of three kinds of Alpinia oxyphylla   

with different production batches 

The classification results of using LTSA and LTSA+LDA 
algorithms as applied to the odor samples of three different 
kinds of Alpinia oxyphylla with different production batches 
are shown in Fig.6 and Fig.7.  

 

Figure 6.  The LTSA classification results of three kinds of Alpinia 

oxyphylla with different production batches. 
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As shown in Fig.6, when LTSA algorithm was used 
directly to reduce the high-dimensional odor data to the two-
dimensional space, the within-class distance is large and the 
between-class distance is small with unsatisfactory 
classification result. In Fig.6, two test samples of each kind of 
CHMs were all correctly identified as the corresponding 
category through the LTSA algorithm.  

 

Figure 7.  The LTSA +LDA classification results of three kinds of Alpinia 

oxyphylla with different production batches. 

 

In Fig.7, the LTSA+LDA algorithm was used for 
classification and identification of three kinds of Alpinia 
oxyphylla with different production batches by analyzing and 
processing the high-dimensional of their odor data in the two-
dimensional space. The variance contribution rate of the first 
main axis is 96.67%, the variance contribution rate of the 
second main axis is 3.33%. We can see that, for each kind of 
sample, the within-class distance is significantly reduced and 
the between-class distance is increased. Therefore, the 
LTSA+LDA algorithm can better distinguish these three kinds 
of CHMs in compared with the direct use of LTSA algorithm. 
Also, two test samples of each kind of CHMs were all correctly 
identified as the corresponding category through the 
LTSA+LDA algorithm. 

In the classification of three kinds of Alpinia oxyphylla 
with different production batches, each kind of medicine has 10 
training samples and 2 test samples, which have a total of 30 
training samples and 6 test samples. Each sample is a 120 by 
10 matrix and can be regarded as a sample point with the 
dimension of 1200. In this experiment, the optimal parameters 
of k and d were set to k=10, d=2 for the LTSA algorithm, and 
to k=16, d=10 for the LTSA+LDA algorithm. 

IV. CONCLUSIONS 

In this paper, a novel algorithm based on LTSA+LDA 
which integrates the characteristic of both LTSA and LDA 
algorithms is proposed. It employs LTSA to learn the global 
embedding coordinates that reflect the low-dimensional 
manifold structure of the dataset and uses the advantage of 
the LDA algorithm that maps the datasets to the best feature 

space for classification and recognition. Therefore, the 
proposed algorithm can perfectly solve the problem of 
dimensionality reduction and discover the hidden structure 
of the E-nose smell print data for classifying different 
varieties of CHMs. 

 When we analyze and process the high-dimensional odor 
data collected by PEN3 E-nose, the LTSA+LDA algorithm can 
well distinguish six different kinds of CHMs. Moreover, it can 
also classify three kinds of Alpinia oxyphylla with different 
production batches. The proposed algorithm performs correct 
identification of six different kinds of CHMs and three kinds of 
Alpinia oxyphylla with different production batches with the 
correct recognition rate of 100% for all test samples. The 
classification results and the recognition rate of the proposed 
algorithm are significantly better than that of applying only 
LTSA algorithm. The superiority of the LTSA +LDA 
algorithm is mainly due to the advantage of using LDA 
algorithm for minimizing the within-class scatter and 
maximizing the between-class scatter. However, identification 
other kinds of CHMs with herbs collected at different places or 
different harvesting time has yet to be further studied. 
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