
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 706

An Automatic Approach to Verify Business Process

Models Using INA Petri Nets Analyzer

Elhillali Kerkouche

Computer Science. Deptt.

MISC Laboratory

 University of Jijel.

Jijel, Algeria.

elhillalik{at}yahoo.fr

Raida Elmansouri

Computer Science. Deptt.

MISC Laboratory

 University of Constantine 2.

Constantine, Algeria.

Allaoua Chaoui

Computer Science. Deptt.

MISC Laboratory

 University of Constantine 2.

Constantine, Algeria.

Khaled Khalfaoui

Computer Science. Deptt.

MISC Laboratory

 University of Jijel.

Jijel, Algeria.

Abstract—Business process models describe how a business

works. More specifically, they map out how a business

accomplishes missions, activities or tasks. The control and the

coordination of business processes is made possible by task

control constructs that model behaviors like parallel works,

decisions, synchronization and repetition. However, the lack of

precise semantics for these constructs makes the detection of

control flow anomalies and behavioral inconsistencies difficult.

The use of formal methods makes such flaws detection possible.

Petri Nets provide a powerful formal modeling language based

on solid mathematical fundament and provide various analysis

techniques through which properties of the Petri Net model can

be analyzed. In this paper, we propose an approach and a tool

support to facilitate the analysis and the verification of Business

process models using Petri Nets formalism. To make the analysis

easier, The Petri Nets INA (Integrated Net Analyzer) tool is used.

To achieve this goal, we use the Model-Driven Engineering

(MDE) approach which is based mainly on Meta-modeling and

Model Transformations, and we employ well-known standards

and tools under Eclipse to realize the approach. Our approach is
illustrated through an example.

Keywords- Business Process Modeling; Petri Nets; Model-

Driven Engineering (MDE); Meta-Modeling; Model

Transformations; Eclipse Modeling project.

I. INTRODUCTION

Business process models specify how a business works.
They represent how a business carries out given missions,
activities, or tasks [1]. A single model shows how a business
accomplishes a single task. It would take many process models
to fully detail the “hows” of most real world enterprises. A
single process can consist of many actors (people,
organizations, systems) performing many tasks. In order to
accomplish the overall task, the actors must complete specified
sub-tasks in a coordinated manner. These sub-tasks can be
performed in parallel or sequential. Moreover, they may
require repetition of sub-tasks. Most of these processes have
decision points where process flow can branch depending on
either the condition of the system or the particular process
execution. In cooperative processes, actors must pass

information. This information transfer can be the trigger for an
actor to begin a sub-task. In fact, other triggers are possible,
such as time or interrupts. Some processes are ad-hoc. That is,
the sub-tasks do not have well defined triggers. Actors may
not need to complete all of a subtask before they (or another
actor) start working on another dependent subtask. Finally, a
process can look differently when described from the
viewpoint of different actors [2].

A Business process modeling methodology needs to be able
to represent these different aspects of a process description.
Business Process Modeling (BPM) provides a conceptual basis
for the specification of all business procedures [3]. The control
and the coordination of business processes is made possible by
task control constructs that model behaviors like
synchronization, decisions, parallel works and repetition.
However, the lack of firm semantics for these constructs makes
the detection of control flow anomalies and behavioral
inconsistencies difficult. Formal methods are well suited for the
detection of such flaws. Petri Nets provide a powerful formal
modeling language based on solid mathematical fundament and
provide various analysis techniques through which properties
of the Petri Net model such as liveness, reachability and
deadlock can be analyzed.

In this paper, we focus on the modeling and analysis issues
involved in establishing logical and syntactical correctness of
Business process specifications before they are implemented.
More precisely, we propose an approach and a tool support to
facilitate the modeling and the verification of Business process
models using Petri Nets formalism. To make the analysis
easier, The Petri Nets INA (Integrated Net Analyzer) [4] tool is
used. The work is based on ideas presented in [5], [6], [7] and
[3]. In order to achieve our objective, we propose to use the
Model-Driven Engineering (MDE) approach which is based on
Meta-modeling and Model Transformations, and to employ
well-known standards and tools under Eclipse to realize our
automatic approach.

The rest of the paper is organized as follows. Section II
outlines the major related work. In section III, we present some

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 707

concepts of process modeling that are relevant with our work.
In section IV, we present the Petri nets formalization of
Business process. In section V, we give an overview of the
Eclipse Modeling project. In section VI, we propose our
approach and apply it on an example in section VII. The last
section concludes the paper and gives some perspectives of this
work.

II. RELATED WORKS

Many researche works have been done on the formalization
of Business process. Most approaches are developed to give
formal semantics to Business process models using formal
methods. They use several formalisms methods like automata
as a base model of formal specifications, π-calculus as a
mathematical formalism or Petri Nets as a mathematical
modeling language. In [8], the author presents a survey of
existing proposals for formal verification techniques of
Business process models.

Petri-nets [9] offer the advantage of graphical appeal
coupled with a rigorous formalism that has found tremendous
use in behavior systems and processes that exhibit
asynchronism, concurrency, and determinism [10]. Petri nets
are especially attractive for formalizing and analyzing business
processes for the following reasons [5]: (i) clear and
unambiguous description of process logic, (ii) intuitive ease of
a self-documenting graphical formalism that retains complete
conceptual clarity, and (iii) extensive analysis capabilities.
Moreover, Petri nets allow for a study of both (a) structural
properties pertaining to the static aspects of the process’s
definition, and (b) Behavioral properties pertaining to the
dynamic aspects of the process observed during its execution
[9].

In this paper, we propose an automatic approach for the
analysis of Business process models by using INA Petri nets
analyzer. More precisely, the proposed approach transforms
Business process model into an equivalent Petri Nets model
according to the translation schema defined in [5]. For the
automatic analysis and verification, the approach translates the
obtained Petri Nets model to the input language of INA tool.

III. BUSINESS MODELING

Process modeling aims to produce an abstraction of the
process that serves as a basis for detailed definition, study, and
possible reengineering to eliminate non-value added activities.
The process model must allow a clear and transparent
understanding of the activities being undertaken, the
dependencies among the activities, and the roles (people,
machines, information, etc.) necessary for the process. An
activity-centered modeling methodology is used for defining
process models in the sense that a process is viewed as a
sequence of inter-related tasks. The transfer of control between
them is determined by logical operations [5]. For the remainder
of this work, we will consider a Business process model to be a
collection of elements, where an element is either a task or a
task control operand that serves to route the flow of control
between the tasks. Figure 1 represents an example showing
control flow only.

Figure 1. Business process modeling – an example.

We note that the ability for representing and modeling
behaviors like concurrency and choice using task control
operands increases the chances of defining logically incorrect
models with control flow anomalies, the execution of which
could result in deadlock, livelock, etc. The focus of this paper
is to highlight the use of Petri nets as a technique for
formalizing Business process models to analyze verification
issues, and to support performance evaluation studies. INA is
used to illustrate these issues.

IV. PETRI-NET FORMALIZATIONS OF BUSINESS PROCESS

MODELS

Any process can be understood to be a collection of events,
the conditions that enable these events to occur and the
conditions that are satisfied following the completion of these
events. Petri Nets ideally describe this intuition. They explicitly
separate the conditions and the events involved in a process.
The places model the conditions required to enable events
which are modeled by the transitions, and state changes are
modeled through a simulated movement of tokens.

To map the Business processes to Petri Nets, we have used
the ideas proposed in [5]. For example, the Petri Net model in
Figure 2 is the mapping of the Business process model in
Figure 1.

Figure 2. Petri Nets Representation of the Business process model in Figure

1.

A1

A7

A3 A4

A6

Start

 A9

A5 A8

A2

Stop

PXor PXor

PAnd PAnd

Choice Parallel

Synchronization Sequential activities

A1 AND

XOR

A9

A5

A2

A7

A6

XOR A8

A3 A4

AND

Sequential control Synchronization

Choice Control

Parallel control

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 708

V. ECLIPSE MODELLING PROJECT: AN OVERVIEW

The Eclipse Modeling project [11] is a collection of
frameworks and tools for model driven Engineering under
Eclipse platform. In short, they provide a wide range of
solutions for various aspects of model driven development,
from language definition to editor construction to code
generation as well as model verification and validation.

In the following, we introduce some of the tools from
Eclipse Modeling project that have been used in this work.

A. Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) [12] forms the
basis for all Eclipse Modeling Project tools. It represents the
modeling Framework and the code generation facility for
specifying meta-models and managing model instances. More
precisely, EMF includes its own meta-model called Ecore
which is used for defining the abstract syntax of modeling
languages. From a modeling language specification defined by
Ecore meta-model, EMF generates a simple tree oriented editor
that enable viewing and editing instances of the modeling
language.

B. Graphical Editing Framework (GEF)

The Graphical Editing Framework (GEF) [13] provides
technology to aid developers in creating rich graphical editors,
which are not easily built using native widgets found in the
base Eclipse platform. It contains an entire set of tools to define
a graphical concrete syntax for each entity of the meta-model
according to its appropriate graphical notation.

C. Graphical Modeling Framework (GMF)

The Graphical Modeling Framework (GMF) [14] provides
a generative component and runtime infrastructure for
developing graphical editors based on EMF and GEF. In other
words, it provides a generative bridge between the EMF (that
allows the meta-model definition) and GEF (a lightweight
graphical framework, based on MVC architecture) to help
developers creating enhanced graphical editors.

D. ATLAS Transformation Language (ATL)

The ATLAS Transformation Language (ATL) is a model
transformation language that allows both declarative and
imperative style for transforming definitions [15]. The
preferred style of transforming writing is declarative, which
means that simple mappings can be expressed easily. However,
imperative constructs are provided so that some mappings, too
complex to be declaratively handled, can still be specified. An
ATL transformation definition is composed of rules that define
how source model elements are matched and navigated to
create and initialize the elements of the target model [16]. The
source models, the target models and the transformation
definition conform to their meta-models as shown in Figure 3.

In addition to model-to-model transformation, ATL uses
queries for model to primitive type value transformation. The
queries can be seen as operations which calculate values from
input models.

Figure 3. Overview of ATL transformational approach.

In our work, ATL is a means used to specify how to
convert Business process model into Petri Nets model, and how
to produce INA analyzer code which is a String value from
Petri Nets model.

VI. OUR APPROACH

In this section, we describe our automated approach that
transforms Business process models into their equivalent Petri
Nets models for properties verification using the INA Petri
Nets analyzer. The approach is based on the use of well-known
standards defined in MDE approach under Eclipse platform. In
order to derive the Petri Nets model from Business process
specification, we have automated the approach proposed in [5].
To make the analysis easier, we have also automated the
generation of the equivalent description of the obtained Petri
Nets model in the input language of the INA analyzer (see
Figure 4).

Our approach consists of a process with two steps:

The first step consists of Meta-Modeling business process
and Petri Nets formalism. Then, we have built graphical editors
for both languages according to their proposed Meta-Models.

The second step is to define the model transformations. In
order to reach an automatic and correct process of
transformation, we have proposed to use ATL transformation
language to define and implement the transformations. For this
end, we have proposed two model transformations. The first
one converts the Business process model to Petri Nets model,
whereas the second transformation rebuilds the Petri Nets
model in the input language of the INA Petri Nets analyzer
tool.

Figure 4. The Proposed Approach .

Develop Editor

INA
Description

BP

Meta-Model

BP Editor PN Editor

Code
Generation

Transformation

Develop Editor

PN

Meta-Model

BP

Model

PN

Model

PN2INA.atl

BP2PN.atl

MOF

MMa ATL MMb

Ma Mb

MMa2MMb.atl

source target

: Conforms to

: Executes

: Transformation

http://wiki.eclipse.org/GMF
http://www.eclipse.org/gmf
http://www.eclipse.org/emf
http://www.eclipse.org/gef

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 709

A. Meta-Modeling of Business Process and Petri Nets

To define a modeling language, one has to provide abstract
syntax (i.e meta-model denoting constructs, their attributes,
relationships and constraints) as well as concrete graphical
syntax information (the appearance of constructs and
relationships in the graphical editor). In Eclipse EMF, a meta-
model is created and defined in the Ecore format, which is
basically a sub-set of UML Class diagrams.

Since business processes consist of activities (Tasks) and
two kinds of connectors (XOR connector and AND connector)
and each task may be linked to a connector by an input arc or
an output arc, we have proposed to meta-model business
processes with the Ecore model shown in Figure 5.

Figure 5. Business Process meta-model in Ecore.

A Petri Nets model is composed of places, transitions, and
arcs from places to transitions and from transitions to places.
To meta-model Petri Nets, we have proposed the Ecore model
shown in Figure 6. The number attached to an arc (weight
attributes) specifies the number of tokens that are consumed in
the source place or produced in the target one. Petri Nets
marking is defined by the numOfToken attributes of places.

From those proposed Ecore models, we have used EMF to
generate a simple tree oriented editor for each one that enables
viewing and editing models instances. To develop their
graphical modeling editors, we have used GEF and GMF to
define the graphical concrete syntax for both languages
according to their appropriate graphical notations as shown in
Figure 9 and Figure 10.

Figure 6. Petri Nets meta-model in Ecore.

B. Model Transformations

As we mentioned earlier, we have defined two model
transformations in ATL language. Two kinds of
transformations are used: model-to-model transformation for
transforming Business process model into Petri Nets model,
and model-to-text transformations for Rebuilding Petri Nets
model in the input language of the INA Petri Nets analyzer
tool. The transformation process is achieved by the application
of rules. A transformation rule consists in transforming a
concept outlined in the source meta-model to a corresponding
concept in the target meta-model.

In the following subsections, we describe the rules for these
model transformations for our approach.

 1st Model Transformation (BP2PN.atl): Transforming a
Business Process model into a Petri Nets model. To transform
the Business processes to Petri Nets, we have used the ideas
proposed in [5]. The translation schema is given in section IV.
This transformation is defined using seven rules. Figure 7
shows some representative rules. The first translates a Business
Process activity into a Petri Nets transition. The second rule
converts an Xor link into Petri Nets place. The last rule
considers the whole Business Process model and builds the
associated Petri Nets model.

2nd Model Transformation (PN2INA.atl): Generating the
equivalent INA description of the resulted Petri Nets model. In
order to manipulate the obtained Petri Nets model inside INA
analyzer tool, we have composed the preceding transformation
with a query PN2INA (see Figure8) that translates the Petri
Nets model into a textual form (.pnt) conforming to the textual
syntax of the INA tool.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 710

Figure 7. 1
st
 MT: Somme ATL Rules.

Figure 8. 2
nd

 MT: ATL query PN2INA.

VII. CASE STUDY

To evaluate the practical usefulness of proposed approach,
we consider a simple example of Business process model
which represents a deadlock situation. Figure 9 presents the
model created in our editor.

Figure 9. An example of Business process model.

In order to analyze this Business process model, we have to
transform this specification into its equivalent Petri Nets
model. To realize this transformation in our approach, we have
to execute the BP2PN.atl. The resulted Petri Nets model of the
automatic transformation is shown in Figure 10. We have
added two places: Start place with one token and Stop place.

Figure 10. Resulted Petri Nets model.

In order to perform the analysis of the resulted Petri Nets
model using the INA analyzer, we have to generate its
equivalent INA description. To generate INA description in our
approach, we have to execute the PN2INA.alt defined in the
previous section. The automatic generated file which contains
the INA description is shown in Figure11.

To verify the properties of the model, we have invoked the
INA tool with the generated INA specification file as input.
Then, the INA tool provides the properties of the Petri Net as
shown in Figure 12.

query PN2INA =

 Default!PetriNet.allInstances()->asSequence()->

 first().generatePN().writeTo('C:/result_PN.pnt');

helper

context Default!PetriNet

def : generatePN() : String =

'P M PRE,POST NETZ 1:' +

self.name.toString()+'\r\n'

+ Default!Place.allInstances()->iterate(a;acc :

String=''|acc + a.generateNetStructure().toString()) +

'@' + '\r\n' +

'place nr. name capacity time'+'\r\n' +

Default!Place.allInstances()->iterate(a;acc :

String=''|acc + a. generatePlace().toString()) +

'@' + '\r\n' +

'trans nr. name priority time'+'\r\n' +

Default!Transition.allInstances()->iterate(b;acc :

String=''|acc + b. generateTransition().toString()) +

'@ '

;

helper

context Default!Place

def : generateNetStructure() : String = …

helper

context Default!Place

def : generatePlace() : String = …

helper

context Default!Transition

def : generateTransition() : String = …

module BP2PN;

create OUT : PetriNet from IN : BusinessProcess;

--- Transformation rules

rule Activity2Transition{-- rule N°01: transforms

activities into their equivalent transitions.

 from actv :BusinessProcess!Activity

 to

 trans:PetriNet!Transition

 (

 name<-actv.name

)

}

rule XorLink2Place{-- rule N°02: transforms XorLinks into

their equivalent Places.

 from Xor_Link :BusinessProcess!Xor

 to

 P_ForXor:PetriNet!Place(

 name<-Xor_Link.name

 , numOfTokens <- 0

)

}

rule SequenceArc2Place{ -- rule N°03 …

rule XorInArc2Trans_OutArc{-- rule N°04 …

rule XorOutArc2Trans_InArc{-- rule N°05 …

rule AndOutArc2Trans_InArc{ -- rule N°06 …

rule BusinessProcess2PetriNet{-- rule N°07: builds the

equivalent PN model

 from BP:BusinessProcess!BusinessProcess

 to

 PN:PetriNet!PetriNet(

 name<-BP.name

 , containsPlaces<-

PetriNet!Place.allInstances()

 , containsTransitions<-

PetriNet!Transition.allInstances()

 , containsInputArcs<-

PetriNet!InputArc.allInstances()

 , containsOutputArcs<-

PetriNet!OutputArc.allInstances()

)

}

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 04, July 2014

www.ijcit.com 711

Figure 11. The Generated INA specification.

We can see from INA screen that the Net is not live, not
safe and the deadlock-trap property is not valid. So, there is a
deadlock situation.

We have also used our approach to verify the situations of
multiple repetition and livelock and we have obtained the
expected results.

Figure 12. Verification of the obtained Petri Nets model.

VIII. CONCLUSION

In this paper, we have reported the use of Model-Driven
Engineering principles for automatic verification of Business
process models using INA Petri Nets analyzer. More precisely,
we have proposed an automated approach that transforms
Business process models into their equivalent Petri Nets
models for analysis purposes. These transformations aimed to
bridge the gap between informal notation (Business process
models) and more formal notation (Petri Nets). It produces
graphical and rigorously-analyzable models that facilitate early
detection of anomalies. To make the analysis easier, we have
used the obtained Petri Nets models to generate automatically
their equivalent description in the input language of the INA
Petri net analyzer. The proposed approach is developed under
Eclipse and implemented using Eclipse Modelling Project
technologies. The Business process models and Petri Nets are
defined using Ecore models, whereas the transformation
process is defined and executed using ATL language. In a
future work, we plan to back-annotate the verification results
into the Business process model to reach the complete
automation of the transformation.

REFERENCES

[1] B. Curtis, M. I. Kellner, and J. Over, “Process Modeling”. Comm. of the
ACM, 35(9):75–90, 1992.

[2] D. Georgakopoulos,M. Hornick, and A. Sheth,“An Overview of

Workflow Management: From Process Modeling to Workflow
Automation Infrastructure”. Distributed and Parallel Databases, 3:119-

153, 1995.

[3] W. M. P. Van der Aalst, A. H. M. ter Hofstede, and M. Weske,
“Business Process Management: A Survey”, Lecture Notes in Computer

Science 2678 Springer, ISBN 3-540-40318-3 2003.

[4] INA Home page, http://www2.informatik.hu-berlin.de/~starke/ina.html

[5] E. Sivaramanm and M.Kamath, “On The Use of Petri Nets for Business
Process Modeling”, Proceeding of the 11th Annual Industrial

Engineering Research Conference, Orlando, FL. 2002.

[6] W. M. P. Van der Aalst, “Workflow Verification: Finding Control-Flow
Errors Using Petri-Net-Based Techniques”. In Aalst, W.M.P., Desel, J.,

and Oberweis, A., editors, Business Process Management – Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in

Computer Science, pages 161–183. Springer-Verlag, 2000.

[7] R. El Mansouri, "On the use of Meta-Modelling and Graph Grammars to

Generate Petri Nets models for Business Processes”, IRECOS Journal,
January, 2008 issue.

[8] S. Morimoto, “A Survey of Formal Verification for Business Process

Modeling”. In : ICCS 2008, pp. 514-522, 2008.

[9] T. Murata, Petri Nets: Properties, Analysis and Applications, Proc.
IEEE, Vol. 77, pp. 541-580, No.4, 1989.

[10] H.J. Genrich and K. Lautenbach. System Modelling with High-Level

Petri Nets . Theoretical Computer Science, Vol. 13, pp. 109-136, 1981.

[11] EMP Home page, http://www.eclipse.org/modeling/

[12] EMF Home page, http://www.eclipse.org/emf/

[13] GEF Home page, http://www.eclipse.org/gef/

[14] GMF Home page, http://www.eclipse.org/gmf/

[15] F. Jouault and I. Kurtev, “On the architectural alignment of ATL and

QVTs”, Proceedings of the ACM Symposium on Applied Computing
(SAC'06), Dijon, France, April 23-27. 2006.

[16] F. Jouault, F. Allilaire, J. Bézivin and I. Kurtev, “ATL: A model

transformation tool”, Science of Computer Programming, Elsevier, vol.
72, no. 1–2, ,pp. 31-39 (2008).

http://link.springer.com/search?facet-author=%22Arthur+H.+M.+ter+Hofstede%22
http://link.springer.com/search?facet-author=%22Mathias+Weske%22
http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html
http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html
http://www2.informatik.hu-berlin.de/~starke/ina.html
http://www.eclipse.org/gef/

