
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 515

Review of Memory/Cache Management Technologies

used on Heterogeneous Computing Systems

Mustafa Ali

Computer Science and Engineering Department

American University of Sharjah

Sharjah, UAE

Tarik Ozkul

Computer Science and Engineering Department

 American University of Sharjah

Sharjah, UAE

Tozkul {at} aus.edu

Abstract— Traditional ways of increasing computer performance

has been increasing speed and bit size. Although this kept us

going for more than half of a century, methodology has hit a

major road block due to power consumption and heat

dissipation. The remedy found for this problem has been creating

multiple cores/heterogeneous computing systems on a single chip.

By introducing multiple cores, efficient memory execution and

correct data sharing the performance can be increased without

paying power penalty. In this paper, we discuss the implications

caused by integrating multiple cores on a single chip and review

some of the techniques generated for solving these complications.

Among these are techniques for establishing effective
communications, data integrity and buffer management.

Keywords-heterogeneous computing; memory mangement;

cache management

I. INTRODUCTION

Hardware evolution of CPU, in terms of speed and
performance followed the Moore’s law. In the past 50 years,
CPU hardware has provided exponential growth as predicted
by Moore’s law with a significant accuracy. Moore’s law states
that “the number of transistors on integrated circuits doubles
approximately every two years”. However it is now believed
that CPU has reached its threshold in terms of increasing
number of transistor on integrated circuits. The reason for
reaching this threshold is the power consumption and heat
dissipation issues which are the direct result of increased
number of transistors and density. Therefore, researchers
shifted momentum towards next paradigm i.e. heterogeneous
computing systems such as Graphical Processing Units (GPU);
which contains multiple cores or computing kernels on a single
chip. Rather than increasing speed and clock rate for a single
computing unit, multiple core units running in parallel at
optimized speed can increase the computational performance.

Nowadays computers include both CPU and a GPU on
separate chips combined on a single motherboard or,
alternatively CPU’s can be located on mother boards and
GPU’s located on graphic cards.

As we have entered in the Era of GPU Computing [1], there
is expectation that the exponential growth may continue at a
higher emergent level. GPU’s have brought immense cost –

effectiveness in terms of computing and visualization, which
has shifted the focus to develop GPU’s with more and more
cores and with greater computing powers. In the future, it is
expected that GPU’s shall be employed to handle all the
computing challenges in place of CPUs [2].

The performance benefits of GPUs are enormous, but as
always with new technologies, it gives birth to new
complexities. The applicability and performance of computing
on heterogeneous computing systems (GPU) is limited and
constrained by CPU–GPU memory/cache communication. In
heterogeneous computing systems (GPU) and CPU both have
separate memories where each of them is able to efficiently
access their own memories [3].

 However, when a program running on CPU or GPU needs
data, there needs to be fast way of sharing data correctly and
efficiently. These data–structures and management rules can be
addressed as “cache management” in memory operations.
However, incorrect communication can cause programs to
access stale or inconsistent data. Another major issue of with
this architecture is the fact that global memory of the GPU is
located outside the chip or graphic card. This is the only way in
which all the computing systems of GPU can communicate
together. The fetching of data again and again from global
memory can be costly. This can result in slowness and threads
can starve if data is not available. Moreover, the computing
units within the GPU also include instructions that can manage
global memory in the GPU. This may result in wasting of clock
cycles which can be computationally inefficient [4].

In this paper, discussion will start with the background of
heterogeneous computing systems (GPUs) which include their
architecture, performance and usability; and will continue with
recent technological innovations that deals with complexity of
CPU–GPU memory/cache communication and how multiple
computing units within a GPU communicate without fetching
data again and again from global memory.

There are innovative techniques used for executing threads
on different work items so that;

• They can share data correctly and efficiently,

• How work items communicate without accessing
GPUs global memory,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 516

• How to handle a response for an instruction from a
work items,

• Determination of visibility rules for a data item so that
how it can be made visible to other work items,

• How cache operations are executed during the
execution of an instruction.

II. HISTORICAL EVOLUTION

The graphical processing unit (GPU) is a chip that contains
high number of parallel microprocessors. It was originally
manufactured to accelerate 2D or 3D graphic processing to
reduce the work load of CPU. However, recent GPUs are
composed of large number of computing cores which are able
to perform operations in parallel with a very high memory
bandwidth which enables them to process large amount of
memory data. Due to this reason, researches were then
interested in applying its computing power in everyday life.

The development of GPU hardware began from a single
core and fixed function hardware pipeline application towards
a combination of highly parallel programmable cores which
can be used for general purpose computation and scientific
computation. GPU technology always progressed by adding
more programmability and parallelism in its core architecture.
As a result of which it seems that eventually look like CPU
core.

The graphic pipelining was first introduced in GPUs. This
graphic pipelining led to the introduction of conceptual model
of stages, through these stages graphic data was processed for
computation with the help of hardware (GPU cores) and CPU
software (OpenGL, DirectX) combination. The purpose for all
the above idea was to simply convert coordinates from 3D
space into 2D pixel space so that it can be displayed on the
screen.

The evolution of GPU’s started in early 1980’s at that time
they were just integrated frame buffers. They were boards of
TTL logic chip that relied on the CPU. Professional Graphics
Controller (PGA) was the first 2D/3D video card introduced by
IBM. It used an on-board Intel 8086 microprocessor doing all
the video related tasks instead of CPU. In late 1980’s SGI
(Silicon Graphics Inc.) was founded which was a high
performance computer graphics hardware and software
company. They introduced platform independent 2D/3D
application programming interface (API) with the introduction
of OpenGL which became a complex part of the design of
modern graphics hardware. By 1993 Reality Engine board for
graphic processing was released by SGI, due to which GPU
hardware and graphics pipeline started to take real shape. At
that time GPUs were only able to output one pixel per clock
cycle, therefore CPU still had capacity to send more data to
GPU for processing. Hence more pipelines were added in
parallel to increase pixel processing in parallel for each clock
cycle.

First GPU at consumer level was introduced in 1999 as
NVIDIA’s GeForce256 and ATI's Radeon 7500. In these
systems PCI bus was replaced by Accelerated Graphics Port

(AGP). These systems used “fixed function” pipeline, as once
graphic was data sent, it could not be modified. In 2001
NVIDIA released GeForce 3. This was the first GPU with
programmable pipeline and had the ability to program non –
programmable parts of the pipeline. In next one year fully
programmable graphic cards were invented and first wave of
GPU computing started with introduction of DirectX9, by take
advantage of the programmability now in the GPU hardware
[5].

In 2006 NVIDIA introduce GeForce 8 series. This was a
great evolution in the history of GPU because it contained
massive parallel processors [6].

The first GPGPU (General Purpose Graphical Processing
Unit) was introduced in 2009 as NVIDIA’s Fermi architecture
featuring true HW cache hierarchy, concurrent kernel
execution, better double precision performance, combined
memory address space and dual warp schedulers. After that, we
had rapid progress in the development of GPUs since 2009.

The evolution of GPU hardware started from single core,
fixed function pipeline which were only used for graphic
processing, to a set of highly parallel programmable cores to be
used for general purpose computations. Hence, the new GPU
architecture has started looking like multi–core general purpose
CPUs.

TABLE I. Most recent GPUs with their configurations

CARD CORES CORES/SM SM Comp.

POWER

GTX Titan 2688 192 14 3.5

GTX 780 2304 192 12 3.5

GTX 770 1536 192 8 3.0

GTX 760 1152 192 6 3.0

GTX 690 3072 192 16 3.0

GTX 680 1536 192 8 3.0

GTX 670 1344 192 7 3.0

GTX 580 512 32 16 2.0

III. MOTIVATION BEHIND THE TRANSITION

The limitations in the programming environment led GPUs
to be only used for graphics acceleration. The graphics
acceleration included two dimensional (2D) and three
dimensional (3D) graphics processing, this graphic processing
was used in graphics and video application programming
interfaces (APIs). With the introduction of multi – vendor
supported OpenCL®, DirectCompute®, standardAPIs and
supporting tools, GPUs are no longer limited to graphical
processing only. However, there were still limitations about the
environment which allowed the combination of a CPU/GPU to
be used as easily as a CPU in programming tasks. Existing

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 517

computing systems now include multiple processing devices
such as CPU on mother board and a GPU on graphic card. This
arrangement in a single computing system still includes
significant challenges associated with:

(i) Necessity of having separate memory systems for
both GPU and CPU,

(ii) Necessity of efficient scheduling of instruction as
programs are now divided to be executed on CPU and GPU,

(iii) The service quality,

(iv) Necessity of having an efficient programming model
as it will be now executed on both host and device.

All these facts have to be considered along with the
necessity of minimizing power consumption.

As discussed above, CPU and GPU are located on different
components, and even on boards. CPU typically located on the
mother board and GPU on the graphic card. In some cases both
of them may be integrated on a same motherboard. CPU and
GPU both need to have their own system and global memory.
So when a program is running on both CPU and GPU they
need to communicate data amongst them, so for this, they need
to exchange data among them which negatively affects
memory latency and power consumption.

The purpose of this paper is to address the challenges
mentioned above for a system consisting of GPU and CPU as
both of them have separate memory and address spaces, CPU
and GPU needs to communicate effectively and efficiently with
some kind of rules so that they are able to perverse data and
keep data integrity. However, another issue with the GPU is
that multiple cores or work items can communicate only with
the global memory, which is located off chip to the GPU. So if
they share data they have to do off chip access which creates
latency, slowness and cores or processor may remain idle while
data is being fetched. To resolve this issue, there exist a
technological innovation that defines “visibility rules” that
specifies how CPU and GPU can communicate with each other
and buffers and buffer management unit which help cores
within a GPU to fetch data from global memory and keep it in
their cache memories to avoid latency, slowness and starvation.

A. Some important Definitions:

In this section definitions of the terminologies that will be
used throughout the paper will be summarized. These will be
frequently used in the sections below; therefore it is important
to elaborate them, so that the reader can have proper
understanding of the terminologies used [7].

Shaders: Shaders are referred to as programmable
computing units which may execute graphical and non –
graphical operations (For example, programs written in
OpenCL® or C Language).

Heterogeneous Computing System: It refers to computer
system that consists of more than one processing units.

Accelerated Processing Devices (APDs): APDs is a
combination of CPU, GPU, Multiprocessing devices, Data
Parallel Devices.

Processing Logic: It contains control flow instructions,
instructions for performing computations and instructions to
access resources.

Visibility Ordering: Visibility ordering refers to an order
which is represented by partial order in which data items are
made visible to work items across multiple processors.

Data Visibility: Data visibility refers to visibility of the
data items present in the core’s local memory which accessible
to that core. Data item is visible when it present in the global
memory and shared by all the cores.

B. Memory and Cache Management:

In this section technological solutions to problems that
occur between CPU to GPU memory and cache
communication are discussed.

The solution for CPU to GPU memory and cache
communication provides how the threads and the other work
items are executed on multiple processors while maintaining
the integrity of data items when accessed by each computing
kernel. Integrity of the data refers to the reading of latest values
of the data items regardless on which work item data was
updated last.

The solution for reducing latency and communication
overhead between the GPU’s global memory and computing
kernels within a GPU is dealt by introducing on chip solution
to the GPU. We introduce buffer management unit on GPU
chip and buffers within the local cache memory of each
computing kernels and global memory of GPU. In process
details are mentioned in the sections below.

1) Processing System:

The Fig. 1 below [7] shows the block diagram of
heterogeneous computing system.

Figure 1: Block diagram of heterogeneous computing system

This is a heterogeneous computing system which consists
of one or more CPU, APDs, system memory, persistent storage
device, at least one system bus, memory order and a cache

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 518

updater. All these components are embedded on single silicon
die chip combining CPU and APD and providing unified
programming environment.

The CPU is treated as host device which is responsible for
the initiating and controlling the execution of the applications
across CPUs and ADPs. The programming model followed on
heterogeneous computing system is mainly SIMD (Single
Instruction Multiple Data). Therefore instruction has to be
initiated on host and executed on APD or GPU for parallel
execution. Furthermore, a CPU is capable of two or more
cores; each of them has access to system memory and cache
memory to save data.

As discussed earlier APD is responsible for executing
applications that can be executed in parallel such as graphic
functions, graphic pipeline computations and geometric
computations. APD normally consist of a global, one or more
computing kernels and a graphic memory. Each computing
kernel consists of its own private cache memory. Only global
memory in GPU can communicate with CPU’s local memory.

All the logical instructions, constant values and variable are
kept in the system memory of the CPU during the execution of
applications. System memory of CPU is connected to GPU’s
global by a system bus which is responsible for transporting the
data between CPU and GPU.

Responsibility of memory order determiner and cache
updater is to hold processing logic so that it can determine the
visibility of data items and execute a cache operation according
to it. For example, on issuance of load or store instruction
memory order has to find data items and cache updater should
perform cache operation according to the visibility rules.
Visibility rules shall be discussed later in the paper.

System memory also holds sequence of instructions.
Sequence of instructions is a representation of instructions
appearing in source code or it’s the order made by the compiler
for the source code instructions.

According to system configuration global memory for the
GPU lie on the common chip with other hardware components.
The global memory is the only way different work items can
work together if they have a common data to be shared
amongst them. Although it is shown that each computing
kernel has its own local memory, but this local memory is very
limited in size and threads which are working outside this
computing unit are not able to see this local memory. So it’s
quite clear that if computing kernel requires the data it has to
go on global memory and fetch from there. This fetching of
data again and again from global memory can be costly in
terms of speed and latency and threads can starve for data.

To resolve this issue, buffers and buffer management
techniques are introduced as a part of innovative solution
introduced in [7]. These buffers are first in first out buffers and
ring buffers. The main idea to resolve this issue is by including
a Pipeline Management Unit (PMU) on integrated circuit (IC)
which is on the same chip as GPU. This unit keeps the state
information of buffers on the global memory. By this
information GPU does not need to perform off chip memory

access any more. In the sections below describes the
functionality and working of pipe management unit along with
buffer management techniques to enhance the communication.

a) Buffer Management in GPU:

The PMU functions by storing the starting address and the
ending address of the buffers in the global memory. It can also
store address of the buffer among many buffers with in buffers
in global memory for the consumer thread to read data. It can
also keep the track of generation of data from producer thread
so that consumer thread can utilize this data for the execution.
PMU is generally used to handle producer consumer requests.
It may receive a request to store the data for the producer and
to store the buffer address so that it is able to entertain the
request from consumer without going to global memory of
GPU. The Fig. 2 below illustrate the solution for the re–
accessing of GPU to global memory, by including on chip
pipeline management unit, which keeps the state information of
all the buffers in the global memory.

Figure 2: Pipeline Management Unit (PMU) on GPU

Global memory contains the common data for all the work
items to be shared. We can see that CPU, GPU and PMU all
are integrated on one chip. However, it’s not necessary that
CPU and GPU should be integrated on same chip. CPU can be
referred as host machine; it can run many application
programs. Executing instructions for those programs may lie
on global memory or system memory. To exploit the power of
GPU, CPU unloads the execution of tasks to the GPU which
require massive parallel operations.

b) Block Diagram on Pipe Line Management Unit:

 The Fig. 3 illustrates the block diagram in more detail.
The inner structure of the GPU and Global Memory is
explained in here [7].

In this block diagram it can be seen that GPU further
consist of fixed computing units (ALU’s) and programmable

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 519

computing units (Shader processor), PMU (Pipeline
Management Unit), an internal cache, scheduler and registers.
Shaders are referred to as programmable computing units
which may execute graphical and non – graphical operations,
e.g. programs written in OpenCL® or C Language) [7].

Shader processors are composed of N programmable
computing units which may be considered as shader cores,
depending on the specifications for the device. Fixed function
units are composed of N fixed-function compute units.

The local memory of each programmable computing unit is
inaccessible to other computing unit. Producer may store data
in one of the buffers in global memory and consumer thread
may retrieve it from there. The integrated chip also contains the
cache memory, rather than keeping it limited to the GPU. This
cache memory can also be utilized to store some intermediate
results produced by the producer thread and complete data may
reside on global memory. These intermediate results are stored
on buffers in the cache memory. These buffers normally
functions as a cache memory such that they store partial
amount of the produced data, so that it is accessible quickly as
compared to accessing data from the global memory. The
buffers are included in cache memory to avoid latency and
power consumption associated with accessing off – chip
memory. But due to space constraints it is not practical to use
these buffers completely. Therefore strategy is to split data
between these cache and global memory. These buffers in local
cache and global memory allow threads to communicate with
each other in a pipelining fashion.

A scheduler is also included which has the responsibility
for assigning threads to various programmable compute units
and fixed function units. For example a scheduler can perform
load balancing task on programmable compute unit so that
none of them is over utilized or underutilize.

In this block diagram we also include buffers in the global
memory. These buffers and buffers in the local cache memory
GPU are supposed to assist in organizing the workload
scheduling for programmable compute unit and fixed –
function unit.

The main component in this block diagram is PMU
(Pipeline Management Unit). The functionalities for which
PMU is responsible for stated below:

1. Managing states of buffers in global memory and
states of buffer in local cache memory.

2. Storing the lengths of buffers and the number of
buffers that are available to store the data.

3. PMU stores the header pointer, current offset,
maximum depth of the on – chip registers.

4. In many cases buffers may require management
such that which buffer to store data in or from
which buffer to retrieve the data, determining
where to store data and from where to retrieve the
data inside the buffers.

5. Avoiding invalid accessing of data from buffers,
so that data doesn’t get corrupted.

6. PMU can store atomic counter on the registers.
This atomic counter usually express whether one
or programmable compute units are available. (For
example, data is available to be read or whether
two or more kernels are attempting to write or read
at the same time from the same buffers).

7. Avoids re – ordering of the data by storing
additional counter in registers, re – ordering of the
data might cause threads to read in correct data.
This additional counter can be referred as device
atomic counter.

8. Avoid deadlock by storing information in
registers.

c) Functioning of Pipeline Management Unit (PMU) :

As for the start programmable computer units execute one
or more thread of a kernel on shader processor, as a result
PMU receives a request to store data into or retrieve the data
from the global memory. PMU must determine whether access
is to be allowed for the request or not. If access is not allowed
compute unit must start executing additional thread of the
kernel. After this, PMU also indicates when access is available.
If access is available PMU will determine the address within
global memory, i.e. where the data is to be stored or from
where data is to be retrieved for the requesting compute unit
and bring it to the cache memory of GPU. This allows GPU to
store or retrieve the data from the determined location within
buffers. PMU is capable of determining the location within one
of the buffers where the data is to be stored or retrieved from in
global memory. In this case, kernel does not include the
instruction for determining the location.

PMU also has ability to read more data than the requested
data. In such cases, PMU may store data in local cache
memory. PMU is also capable of storing state information of
buffers within IC registers. This information may be received
from CPU, which contains one or more starting and ending
addresses of buffers in global memory along with the buffer
where produced data is to be stored and buffer where data is to
be retrieved.

The above functioning of PMU is applicable for two or
more threads executed on same computing kernels. In such
conditions priority is always given to producer thread so that
data can be produced before consumer can retrieve it.
However, if two threads are executed on different computing
kernels, PMU will check will check whether data is available
or not by producer thread because there can be a possibility that
PMU may receive the request from consumer thread and
producer thread simultaneously, prior to, or after receiving the
request. In such situations if data is not ready, PMU may
indicate other thread to execute and keep it waiting until the
data is available.

a) Memory Operations:

Returning back to CPU – GPU memory communication, in
this section we discuss how the memory operations are
executed in a heterogeneous computing system. The Fig. 4
describes the sequence of memory operations [7].

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 520

One more computing units on CPU and APD are executed
with a sequence of instructions which can be similar to the one
executing CPU and GPU or they can different as well. CPU
and APD are able to share a common address space which
allows CPU cores and APDs processing elements to access
system memory. A sequence of instructions is received from
either CPU or APD computing cores; this sequence of
instructions received may contain load or store operation which
may perform one or more cache operation. As soon as the
sequence of instructions is received, visibility ordering of the
date items is determined. These visibility rules help data items
to maintain their integrity and execution order when they are
accessed by multiple computing kernels of APD or CPU. There
are chances that compiler may re-order the sequence of
instruction in order to enhance its performance, therefore the
values of data items may different when executing on same or
different processors as latest values might not have been
propagated to system memory. Also the multiple computing
units are executed they are modified first on their local
memories and after that propagated to common memory.
Visibility rules make sure that all the work items read or write
the correct values.

Figure 3: Flow chart for Pipeline Management Unit

After determining the visibility rules for memory
operations, the cache operations which include cache flush and
cache validation are performed. The purpose of cache flush
operation is to write data items to system memory which are
already updated in local or cache memory so that they can be
accessed globally. Cache invalidate is performed to invalidate
the copy of a data item when that data item is updated in any of
the local memory of work items. The visibility rules are
described in next section [7].

Figure 4: Sequence of memory operations

d) Visibility Rules:

Before the cache operations are executed, it is necessary to
analyze visibility rules for the data items in the sequence of
instructions in accordance with a received instruction.
Following are the rules on the basis of which a certain data
item X or certain data item Y is being flushed or invalidated.

 Sequence before ordering. It is a kind of
asymmetric, transitive, pairwise relation, and it
enforces partial ordering among those
instructions. Let suppose if X is sequenced before
Y, then X shall precede Y and vice versa. Let
suppose if X is not sequenced before Y and Y is
not sequenced before X. X and Y are not
sequenced. “X sb Y” (X sequenced before Y)
which basically means, X>>Y that Y must only
be visible after X is visible. It applies transitivity
as well such that if X>>Y and Y>>Z then X>>Z.

 Ordering of the sequence of instructions should
be according to conditions that include the
following [7].

i. If X and Y are to same address or lie in same
memory area, then X>>Y

ii. If X and Y are to different address or lie in
different memory area and there is
barrier() or synchronization operation
between them, then X>>Y

iii. If X is load acquire or atomic (un –
interrupted) operation and Y is any other
operation then, X>>Y

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 521

iv. If X is a load operation and Y is any other
memory operation such that an address
dependency exists with the value
returned by X, where the value of the
address changes to the value returned by
X then, X>>Y.

v. If instruction X refers to a memory operation
and Y is a store release, then X>>Y.

 Rules below are specified among multiple work
items.

i. Sequential consistency must be obtained by
all load acquire and store release
operations.

ii. There is single order for all stores per
memory location, by any work item.

iii. X->Y implies that a store in X in any work
item synchronizes with a load Y, in
another work – item.

iv. If X is an operation such as an atomic store
from a work item, which provides data
to any load Y on another work item, X
will be visible to all Z instructions such
that Y>>Z and X->Y>>Z.

v. The barrier and sync operation synchronize
work – items and act as full A>>B.

e) Determination of Visibility Rules:

In this step the relative visibility ordering of data items
accessed are determined. Fig. 5 below, shows the sequence of
operation performed to enforce visibility ordering.

Figure 5: Sequence of cache operations

f) Sequence of Memory Operations:

This flow chart explicitly explains how the sequencing is

carried out on heterogeneous computing system. The Fig. 6

below shows the flow chart diagram.

Figure 6: Sequence of memory operations

First, which kind of memory operation needs to be
performed should be determined (whether store release or load
acquires). If it is store release or atomic store the semantics for
it should be determined which means an instruction Y writing
data item Y to a memory and ensuring that, for any data item X
such that X sb Y, then X is visible to Y [5]. In case of load
acquire the semantics for the instructions would be an
instruction Y reading data item Y only after any other data item
X such that, X sb Y have already been made visible to Y. After
deriving the visibility rules for store or load instruction, we
determine which cache operation is to be performed, which can
be cache flush or cache invalidate. It may be applied to all the
data items or selected ones according to visibility rules. Hence,
after cache operation we are able to write the data in system or
local memory or read the data from system or local memory.

g) Sequence of Cache Operations:

The cache operations mainly performed are cache
invalidate and cache flush operations. This flow of operations
may be repeated for each memory operation for store release
and load acquire instruction. The Fig. 7 represents the flow of
cache operations.

We determine which cache operation to perform either
cache flush or invalidate. If both load and store instruction
requires one or more cache flush operation such that store Y
instruction may require cache flush operation for any data item
X, such that X sb Y and X is visible to work items before Y is
written and load acquire Y instruction may require cache flush
operation for any data item X, such that X sb Y and X is visible
to work items before Y is read we perform flush operation.
Usually cache flush is used to enforce “sequence before”
ordering rules.

In case of cache invalidate operation, store release
instruction normally requires cache invalidate operation. It
used when store Y instruction writes the new value of data item

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014

www.ijcit.com 522

Y, it needs to invalidate all cache copies. Load instruction
might not need cache invalidate operation.

IV. TECHNOLOGICAL IMPROVEMENTS:

As CPU reached its limitations in terms of increasing speed
and computation power, the paradigms shifted to next
generation GPU (Graphical Processing Units) to exploit speed
up and enhancement in computation power. Due to dense
architecture of GPUs which contain hundreds of computing
cores, massive parallelism increases computational power. In
the beginning due to limited programming environment GPUs
were mainly used for graphic processing, but as the era
progressed and due to multi–vendor support technologies
GPUs were able to be utilized for general purpose
computations. However CPU and GPU memory
communication and communication within the cores of GPU
remained a great challenge. The technologies discussed above
brought solutions to CPU–GPU memory/cache
communication. The visibility rules for data items were
enforced on memory operation to make them atomic and
synchronize with all the threads executed and computing cores
which are executed in parallel. The main purpose of these
visible rules was to have data integrity when an instruction is
being executed on CPU as well as on GPU. The cores on the
GPU are not able see CPU system memory; therefore all the
accessible data items are required to be transported to GPU
global memory with correctness for efficient computation. This
is why visibility rules and visibility ordering was established to
maintain data integrity.

Figure 7: Cache operations

Another problem with the GPU was that, the computing
cores with in a GPU does not have access to each other local
memory, so if the these cores are sharing some kind of data
they have to fetch it from off chip global memory, which could
be expensive in terms of speed and latency, and if data is not
available threads or computing kernels may result in starvation.

This technological issue has been handled by innovative
solution of introducing buffers in the global memory as well as
in the cache memory of GPU along with buffer management
unit [7]. This buffer management unit is able to keep track of
starting and ending addresses of the buffers, where to store the
data inside the buffers of the global memory, where to retrieve
the data from in the buffers of global memory and bringing in
with additional information from the global memory and
saving it on local caches. This solution provided with less
latency, reduction in slowness and starvation free threads
execution on GPU. Hence both the technologies had a great
impact towards the progress of heterogeneous computing
systems. One can expect more better and efficient solutions
coming up in next few years.

V. CONCLUSION:

No doubt, the future of the computing speed lies with
GPUs. But as we introduce new technologies there are always
some consequences. In case of GPUs the consequence is
communication between CPU and GPU and communication
between the cores in the GPU. In this paper, we review two
technologies; each one of them addresses one problem with its
functionality. However, researchers are still working on the
issue, and trying to have more effective communication
between them to enhance the performance, speed and latency.

REFERENCES

[1] Chien – Ping Lu (nVIDIA) K3 Moore's Law in the Era of GPU

Computing .In Inter national Symposium on VLSI Design Automation
and Test (VLSI-DAT) 2010.

[2] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I.

August. Automatic CPU-GPU communication management and
optimization. In PLDI, 2011.

[3] R. Moussalli, R. Halstead, M. Salloum, W. Najjar, V.J. Tsotras, Efficient

xml path filtering using gpus, in: ADMS, 2011.

[4] R. Yang, Processing Dependent Tasks on a Heterogeneous GPU
Resource Architecture, 2nd IEEE International Conference on Parallel

Distributed and Grid Computing (PDGC), 2012.

[5] C. McClanahan. History and Evolution of GPU Architecture. A Paper
Survey http://mcclanahoochie.com/blog/wp-

content/uploads/2011/03/gpu-hist-paper.pdf

[6] A. V. Bourd, V. Goel Graphics processing unit buffer management, US

Patent Application 20130194286 A1.

[7] A.Asaro, K. Normoyle, M. Hummel, N. Rubin, M. Fowler Cache
Management for Memory Operations US Patent Application

20130262775 A1.

