
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03– Issue 02, March 2014

www.ijcit.com 263

Class Clustering for Program Comprehension: A

Case Study in Java

Jauhar Ali
College of Engineering
Abu Dhabi University

Abu Dhabi, United Arab Emirates
Email: jauhar.ali {at} adu.ac.ae

Abstract—Program comprehension is the most time

consuming activity during software maintenance. Programmers

need support to help them in understanding large software

systems. This paper presents an approach to extract useful

knowledge from Java byte code, and apply hierarchical

clustering to discover groups of closely related classes. The

groups of classes can assist programmers to know the high level

structure of large software systems without prior knowledge, and

programmers can learn the classes in the same group together.

The distance among classes is determined by considering their

organizational structure and various kinds of couplings. A

prototype system has been developed and evaluated using a
medium and a large sized Java application.

Keywords- Program comprehension, hieararchical clustering,

Java, data mining

I. INTRODUCTION

Software maintenance is considered a very important phase
in software lifecycle typically consuming 50-70% of the total
effort allocated to a software system [1], [2]. Program
comprehension is an important part of this phase, especially
when the program is complex and documentation is not up to
date. Software maintenance engineers spent 50-90% of their
time on program comprehension [3]. Software reuse is a
common technique which attempts to save time and energy by
reducing redundant work. It is one of the goals of object-
oriented technology and is the reason for the existence of
software libraries [4], [5]. Program comprehension plays a very
important role in software reuse as without understanding the
functionality of a program, it cannot be reused effectively.

The purpose of this work is to assist programmers in
comprehending the structure of a software system. We present
an approach to apply clustering on class information extracted
from Java byte code. The clusters of classes can support
programmers to know related classes, thus helping them
comprehending the modules and functionality of the system.

The rest of the paper is organized as follows: Section II
reviews the work done on using data mining techniques for

software comprehension. In Section III, we present our

approach of extracting useful knowledge from Java byte code.

Section IV explains our prototype tool. Section V presents the

results of a case study using the prototype. Finally, conclusions

and directions for future work are given in Section VI.

II. BACKGROUND

Data mining can produce high level overviews of source
code and interrelationships among program components thus
facilitating software systems understanding [6], [7]. It is
considered a suitable solution in assisting program
comprehension, often resulting in remarkable results [8], [9],
[10], [11].

Clustering is one of the well-known and well-studied

techniques of data mining [12]. It does not require prior

knowledge of possible groups to which the objects under study

belong, thus making it suitable for discovering groups of

related entities in a software system without prior knowledge.

Clustering as a means of supporting software comprehension

and maintenance has been used for software systems developed

in different programming languages and addressing varying

levels of abstractions [7], [9], [10], [11].

III. PROPOSED APPROACH

We have developed a prototype system in which we apply

clustering to find groups of closely related classes in a Java

application. These groups of classes can assist a programmer to

have an overview of the whole system and to comprehend the

classes in the same group together. To apply clustering, we

need to (1) define an appropriate data model and metrics, (2)

use proper data-extraction technique, and (3) apply a suitable

clustering algorithm. In the following subsections, we explain

these steps.

A. Data Model and Metrics

To be able to apply clustering to classes in a Java

application, we need to have a metrics for determining distance

between any two classes. The classes having small distance are

considered as closely related classes compared to those having

large distances. The distance is calculated by considering a

number of aspects. Each aspect contributes to the overall

distance between the classes. The distance determined by

considering a particular aspect is in the range of 0 and 1, where
a distance close to 0 means closely related and a distance of 1

means not related. All these component distances are weighted

and summed up to calculate the overall distance between any

two classes. We consider the following component distances

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03– Issue 02, March 2014

www.ijcit.com 264

for determining the overall distance between two classes.

Components 1 to 4 are based on the organizational structure of

classes while the remaining components are based on various

kinds of coupling among classes [13].

1) Package Distance: If both classes belong to the same

Java package they are closely related. Package Distance of

class A and B (PkDAB) is 0 if they belong to the same package,

otherwise it is 1.

2) Inheritance Distance: When classes have inheritance

relationship they are closer to each other, compared to other

classes. If one class is a direct subclass of the other, their

inheritance distance (IhDAB) is 0; if one is an indirect subclass

of the other, IhDAB is 0.5; in all other cases IhDAB is 1.

3) Subling Distance: If both classes are subclassed from

the same superclass, their subling distance (SbDAB) is 0,

otherwise it is 1.

4) Interface Distance: When two classes implement the

same interface(s), they both have impementations for all the

methods declared in the interface(s). Such classes are closer to

each other as they have somewhat similar behavior. If two

classes do not implement the same interface, their interface

distance (ItDAB) is 1, otherwise it is calculated as below.

nmBnmA

nmI
ItDAB

1

Equation 1: Interface distance betweeen class A and B

Where nmA and nmB are the number of methods in class A

and B respectively, and nmI is the number of methods in the

interface(s) implemented by both class A and B.

5) Field Distance: If class A has a field (instance variable)

whose type is class B, there is a coupling between the two

classes. Such coupling becomes stronger when we have more

of such fields in the two classes. The field distance between

classes A and B (FdDAB) is the average of the field distance

from A to B (FdDA→B) and from B to A (FdDB→A).

2

ABBA
AB

FdDFdD
FdD

nfB

nfBA
FdD

nfA

nfAB
FdD ABBA ,

Equation 2: Field distance between classes A and B

Where BAFdD represents field coupling from class A to

class B; nfAB is the number of fields in class A whose type is

class B; and nfA is the total number of fields in class A whose

type is any other class.

6) Parameter Distance: If class A has a constructor’s or

method’s parameter whose type is class B, there is a coupling

from class A to class B. The parameter distance (PmDAB) of

two classes is calculated as below.

2

ABBA
AB

PmDPmD
PmD

npB

npBA
PmD

npA

npAB
PmD ABBA ,

Equation 3: Parameter distance between classes A and B

Where BAPmD represents parameter coupling from class

A to class B; npAB is the number of parameters in class A

whose type is class B; and npA is the total number of

parameters in class A whose type is any other class.

7) Method Distance: If class A has a method which returns

data of type B, there is a coupling from class A to class B. The

method distance (MtDAB) of two classes is calculated as below.

2

ABBA
AB

MtDMtD
MtD

nmB

nmBA
MtD

nmA

nmAB
MtD ABBA ,

Equation 4: Method distance between classes A and B

Where BAMtD represents method coupling from class A

to class B; nmAB is the number of methods in class A whose

return data type is class B; and nmA is the total number of

methods in class A whose return data type is any other class.

Overall Distance: The overall distance between two classes

is calculated by summing up all the above seven component

distances. Before summing up, each component distance is

multiplied by a proper weight that indicates the importance of
the component in the overall calculation, as below.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03– Issue 02, March 2014

www.ijcit.com 265

MtWMtD

PmWPmDFdWFdD

ItWItDSbWSbD

IhWIhDPkWPkDD

AB

ABAB

ABAB

ABABAB

Equation 5: Overall distance between classes A and B

B. Data Extraction

To calculate the values for different kinds of distances

discussed in the previous subsection, we need to extract all

relevant data from the classes of the system under study. The

data includes the following.

 Names, packages and super classes of all classes

 Interfaces implemented by any class and the methods

declared in those interfaces

 Fields, methods’ parameters, and methods’ return types
of all classes

The above data can be extracted from the source code, but

we choose to retrieve the data from the Java classes’ byte codes

using the Java reflection facilities. The main advantage of this

approach is that compiled Java systems without source code

and having only byte code can also be analyzed by our system.

C. Clustering

For clustering, we use the Hierarchical Agglomerative

algorithm [12] because it does not need the number of desired

clusters to be specified. This algorithm produces sets of

clusters in order of decreasing similarity. The algorithm

requires that the distance among classes be measured and

stored in a dissimilarity matrix [12]. Each attribute of this

matrix is going to be assigned a numerical value. This

numerical value is the distance between two Java classes and is

calculated by using Equation 5.

IV. PROTOTYPE

To evaluate our approach we implemented a prototype tool.

The process used in the tool is shown in Figure 1. The tool has

the following parts:

Data Extraction Engine (DEE): This part loads the Java

classes of the target system from Java class files or JAR file

(byte code) and then uses the Java reflection facilities

(java.lang.reflect.*) [14] to retrieve the data needed for

calculating distances among classes as described in the

previous section.

Distance Calculation Engine (DCE): This part creates a

dissimilarity matrix [12] using the data retrieved by DEE. A
dissimilarity matrix for n classes is represented by an n-by-n

table where DAB is the distance or dissimilarity between classes

A and B (Error! Reference source not found.). The

calculation of DAB is based on Equation 5.

0...

:::::

...0

...0

...0

321

33231

22321

11312

nnn

n

n

n

DDD

DDD

DDD

DDD

Figure 2: Dissimilarity Matrix

Clustering Engine (CE): This part takes the dissimilarity

matrix produced by DCE as input and applies the Hierarchical

Agglomerative Clustering (HAC) algorithm [12] to find

clusters of closely related classes. A number of methods are

available for hierarchical clustering, such as single link,

average link, complete link, and wards link [15]. We have used

wards link method because of it giving better results than the

others. The resulting class clusters are presented as a

Java Byte Code

Data Extraction

Engine

Clustering

Engine

Class

Clusters

Dissimilarity

Matrix

Distance

Calculation

Engine

Class Info

Figure 1: Prototype tool parts and dataflow

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03– Issue 02, March 2014

www.ijcit.com 266

dendrogram graph [16], as well as text. To implement this part,

we used Java Numerical Library [17].

V. CASE STUDY

Our tool groups Java classes that are closely related to each

other. To evaluate whether the groupings of classes found by

the tool match intended by the original developers, we used

one of our previous moderate-size Java application, called

Mudrik [18]. Mudrik has 76 classes organized into 9 packages.
Table 1 shows the values of the weights we used for different

component distances in Equation 5.

Table 1: Weights for component distances.

Distance Type Variable Weight

Package PkW 3

Inheritance IhW 5

Subling SbW 3

Interface ItW 3

Field FdW 5

Parameter PmW 2

Method MtW 2

The tool has identified clusters as shown in the dendrogram

of Figure 3. The clusters closely match the original grouping of

classes we intended while developing Mudrik. The labels on

the vertical axis are class names and the values on the

horizontal axis are inter-clusters distances.

In another evaluation of the tool we tried to find the class

clusters for open source 3D Java library called Jun [19]. Jun is

a large library having 695 classes and 85 packages. We are
familiar with Jun as we used it while developing Mudrik.

Figure 4 shows the Jun class clusters discovered by our tool.

To be able to read the classes names, the figure needs to be

zoomed in. The clusters match closely to the groupings of

classes we expected for Jun. The tool took around 7 minutes to

process all Jun classes and produce the clusters. For Mudrik, it

took less than a minute.

VI. CONCLUSIONS

We proposed an approach to extract useful knowledge from

Java byte code and apply clustering to group Java classes that

are close to each other. The grouping of classes can assist

programmers in comprehending large Java systems developed
by others. This can save considerable time usually spent by

maintenance programmers, especially when documentation of

the system is not up to date. A prototype tool has been

developed as proof of concept. The tool has been evaluated

using a moderate and a large sized Java application. The results

are encouraging.

REFERENCES

[1] Pigoski, T. M.: Practical Software Maintenance: Best Practices for
Managing Your Software Investment. John Wiley, (1997).

[2] Sommerville, I.: Software Engineering, 9
th
 ed. Addison Wesley, (2011).

[3] Tjortjis, C., Layzell, P.J.: Expert Maintainers’ Strategies and Needs
when Understanding Software: A Qualitative Empirical Study. In Proc.

IEEE 8
th
 Asia-Pacific Software Engineering Conf. (APSEC 2001), IEEE

Comp. Soc. Press, pp. 281-287, (2001).

[4] Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future.

IEEE Transactions on Software Engineering, 31(7), pp. 529-536, (2005).

[5] Code reuse, http://en.wikipedia.org/wiki/Code_reuse. Retrieved on
December 27, 2012.

[6] Sartipi, K.., Kontogiannis, K., Mavaddat, F.: Architectural Design

Recovery Using Data Mining Techniques. In Proc. 2nd European
Working Conf. Software Maintenance Reengineering (CSMR 00), IEEE

Comp. Soc. Press, pp. 129-140, (2000).

[7] Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.:
Using Automatic Clustering to Produce High-Level System

Organizations of Source Code. In Proc. 6th Int’l Workshop Program
Understanding (IWPC 98), IEEE Comp. Soc. Press, pp. 45-53, (1998).

[8] Oca, C. M., Carver, D. L.: Identification of Data Cohesive Subsystems

Using Data Mining Techniques. In Proc. Int’l Conf. Software
Maintenance (ICSM 98), pp. 16-23, (1998).

[9] Kanellopoulos, Y., Dimopulos, T., Tjortjis, C., Makris, C.: Mining
Source Code Elements for Comprehending Object-Oriented Systems and

Evaluating Their Maintainability. SIGKDD Explorations, Vol. 8, No. 1,
pp. 33-40, (2006).

[10] Xiao, C., Tzerpos, V.: Software Clustering on Dynamic Dependencies.

In Proc. IEEE 9
th
 European Conf. Software Maintenance Reengineering

(CSMR 05), pp. 124-133, (2005).

[11] Zhong, S., Khoshgoftaar, T. M., Seliya, N.: Analyzing Software

Measurement Data with Clustering Techniques. IEEE Intellegent
Systems, Vol. 19, No. 2, pp. 20-27, (2004).

[12] Han, J., Kamber, M.: Data Mining Concepts and Techniques, 3
rd

 Ed.

Mourgan Kaufmann Publishers, (2011).

[13] Chidamber, S. R., Kemerer, C. F.: A Metrics Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering, Vol.20, No.6,

pp.476-493, (1994).

[14] Java API documentation. http://docs.oracle.com/javase/7/docs/api/.
Retrieved on February 3, 2014.

[15] El-Hamdouchi, A., Willett, P. Comparison of Hierarchic Agglomerative
Clustering Methods. The Computer Journal, Vol. 32, No. 3, pp. 220-227,

(1989)

[16] Dendrogram. http://en.wikipedia.org/wiki/Dendrogram. Retrieved on
February 3, 2014.

[17] Java Numerical Library. http://www.roguewave.com/products/imsl-

numerical-libraries/java-library.aspx. Retrieved on January 3, 2014.

[18] Ali J.: Cognitive support through visualization and focus specification
for understanding large class libraries. Journal of Visual Languages and

Computing, 20, pp. 50-59, (2009).

[19] Jun4Java. ftp://ftp.sra.co.jp/pub/lang/java/jun4java/. Retrieved on
February 3, 2014

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03– Issue 02, March 2014

www.ijcit.com 267

Figure 3: Mudrik class clusters

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03– Issue 02, March 2014

www.ijcit.com 268

Figure 4: Jun class clusters

