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Abstract—Program comprehension is the most time 

consuming activity during software maintenance. Programmers 

need support to help them in understanding large software 

systems. This paper presents an approach to extract useful 

knowledge from Java byte code, and apply hierarchical 

clustering to discover groups of closely related classes. The 

groups of classes can assist programmers to know the high level 

structure of large software systems without prior knowledge, and 

programmers can learn the classes in the same group together. 

The distance among classes is determined by considering their 

organizational structure and various kinds of couplings. A 

prototype system has been developed and evaluated using a 
medium and a large sized Java application.  

Keywords- Program comprehension, hieararchical clustering, 

Java, data mining 

I.  INTRODUCTION 

Software maintenance is considered a very important phase 
in software lifecycle typically consuming 50-70% of the total 
effort allocated to a software system [1], [2]. Program 
comprehension is an important part of this phase, especially 
when the program is complex and documentation is not up to 
date. Software maintenance engineers spent 50-90% of their 
time on program comprehension [3]. Software reuse is a 
common technique which attempts to save time and energy by 
reducing redundant work. It is one of the goals of object-
oriented technology and is the reason for the existence of 
software libraries [4], [5]. Program comprehension plays a very 
important role in software reuse as without understanding the 
functionality of a program, it cannot be reused effectively. 

The purpose of this work is to assist programmers in 
comprehending the structure of a software system. We present 
an approach to apply clustering on class information extracted 
from Java byte code. The clusters of classes can support 
programmers to know related classes, thus helping them 
comprehending the modules and functionality of the system. 

The rest of the paper is organized as follows: Section II 
reviews the work done on using data mining techniques for 

software comprehension. In Section III, we present our 

approach of extracting useful knowledge from Java byte code. 

Section IV explains our prototype tool. Section V presents the 

results of a case study using the prototype. Finally, conclusions 

and directions for future work are given in Section VI. 

II. BACKGROUND 

Data mining can produce high level overviews of source 
code and interrelationships among program components thus 
facilitating software systems understanding [6], [7]. It is 
considered a suitable solution in assisting program 
comprehension, often resulting in remarkable results [8], [9], 
[10], [11]. 

Clustering is one of the well-known and well-studied 

techniques of data mining [12]. It does not require prior 

knowledge of possible groups to which the objects under study 

belong, thus making it suitable for discovering groups of 

related entities in a software system without prior knowledge. 

Clustering as a means of supporting software comprehension 

and maintenance has been used for software systems developed 

in different programming languages and addressing varying 

levels of abstractions [7], [9], [10], [11]. 

III. PROPOSED APPROACH 

We have developed a prototype system in which we apply 

clustering to find groups of closely related classes in a Java 

application. These groups of classes can assist a programmer to 

have an overview of the whole system and to comprehend the 

classes in the same group together. To apply clustering, we 

need to (1) define an appropriate data model and metrics, (2) 

use proper data-extraction technique, and (3) apply a suitable 

clustering algorithm. In the following subsections, we explain 

these steps.  

A. Data Model and Metrics 

To be able to apply clustering to classes in a Java 

application, we need to have a metrics for determining distance 

between any two classes. The classes having small distance are 

considered as closely related classes compared to those having 

large distances. The distance is calculated by considering a 

number of aspects. Each aspect contributes to the overall 

distance between the classes. The distance determined by 

considering a particular aspect is in the range of 0 and 1, where 
a distance close to 0 means closely related and a distance of 1 

means not related. All these component distances are weighted 

and summed up to calculate the overall distance between any 

two classes. We consider the following component distances 
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for determining the overall distance between two classes. 

Components 1 to 4 are based on the organizational structure of 

classes while the remaining components are based on various 

kinds of coupling among classes [13]. 

1) Package Distance: If both classes belong to the same 

Java package they are closely related. Package Distance of 

class A and B (PkDAB) is 0 if they belong to the same package, 

otherwise it is 1. 

2) Inheritance Distance: When classes have inheritance 

relationship they are closer to each other, compared to other 

classes. If one class is a direct subclass of the other, their 

inheritance distance (IhDAB) is 0; if one is an indirect subclass 

of the other, IhDAB is 0.5; in all other cases IhDAB is 1. 

3) Subling Distance: If both classes are subclassed from 

the same superclass, their subling distance (SbDAB) is 0, 

otherwise it is 1. 

4) Interface Distance: When two classes implement the 

same interface(s), they both have impementations for all the 

methods declared in the interface(s). Such classes are closer to 

each other as they have somewhat similar behavior. If two 

classes do not implement the same interface, their interface 

distance (ItDAB) is 1, otherwise it is calculated as below. 

 

nmBnmA

nmI
ItDAB


1  

Equation 1: Interface distance betweeen class A and B 

 

Where nmA and nmB are the number of methods in class A 

and B respectively, and nmI is the number of methods in the 

interface(s) implemented by both class A and B. 

5) Field Distance: If class A has a field (instance variable) 

whose type is class B, there is a coupling between the two 

classes. Such coupling becomes stronger when we have more 

of such fields in the two classes.  The field distance  between 

classes A and B (FdDAB) is the average of the field distance 

from A to B (FdDA→B) and from B to A (FdDB→A).  
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Equation 2: Field distance between classes A and B 

 

Where BAFdD  represents field coupling from class A to 

class B; nfAB is the number of fields in class A whose type is 

class B; and nfA is the total number of fields in class A whose 

type is any other class. 

6) Parameter Distance: If class A has a constructor’s or 

method’s parameter whose type is class B, there is a coupling 

from class A to class B. The parameter distance (PmDAB) of 

two classes is calculated as below. 
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Equation 3: Parameter distance between classes A and B 

 

Where BAPmD  represents parameter coupling from class 

A to class B; npAB is the number of parameters in class A 

whose type is class B; and npA is the total number of 

parameters in class A whose type is any other class. 

7) Method Distance: If class A has a method which returns 

data of type B, there is a coupling from class A to class B. The 

method distance (MtDAB) of two classes is calculated as below. 
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Equation 4: Method distance between classes A and B 

 

Where BAMtD  represents method coupling from class A 

to class B; nmAB is the number of methods in class A whose 

return data type is class B; and nmA is the total number of 

methods in class A whose return data type is any other class. 

Overall Distance: The overall distance between two classes 

is calculated by summing up all the above seven component 

distances. Before summing up, each component distance is 

multiplied by a proper weight that indicates the importance of 
the component in the overall calculation, as below. 
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Equation 5: Overall distance between classes A and B 

B. Data Extraction 

To calculate the values for different kinds of distances 

discussed in the previous subsection, we need to extract all 

relevant data from the classes of the system under study. The 

data includes the following. 

 Names, packages and super classes of all classes 

 Interfaces implemented by any class and the methods 

declared in those interfaces 

 Fields, methods’ parameters, and methods’ return types 
of all classes 

The above data can be extracted from the source code, but 

we choose to retrieve the data from the Java classes’ byte codes 

using the Java reflection facilities. The main advantage of this 

approach is that compiled Java systems without source code 

and having only byte code can also be analyzed by our system. 

C. Clustering  

For clustering, we use the Hierarchical Agglomerative 

algorithm [12] because it does not need the number of desired 

clusters to be specified. This algorithm produces sets of 

clusters in order of decreasing similarity. The algorithm 

requires that the distance among classes be measured and 

stored in a dissimilarity matrix [12]. Each attribute of this 

matrix is going to be assigned a numerical value. This 

numerical value is the distance between two Java classes and is 

calculated by using Equation 5. 

 

IV. PROTOTYPE 

To evaluate our approach we implemented a prototype tool. 

The process used in the tool is shown in Figure 1. The tool has 

the following parts: 

 

Data Extraction Engine (DEE): This part loads the Java 

classes of the target system from Java class files or JAR file 

(byte code) and then uses the Java reflection facilities 

(java.lang.reflect.*) [14] to retrieve the data needed for 

calculating distances among classes as described in the 

previous section.  

Distance Calculation Engine (DCE): This part creates a 

dissimilarity matrix [12] using the data retrieved by DEE. A 
dissimilarity matrix for n classes is represented by an n-by-n 

table where DAB is the distance or dissimilarity between classes 

A and B (Error! Reference source not found.). The 

calculation of DAB is based on Equation 5. 
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Figure 2: Dissimilarity Matrix 

Clustering Engine (CE): This part takes the dissimilarity 

matrix produced by DCE as input and applies the Hierarchical 

Agglomerative Clustering (HAC) algorithm [12] to find 

clusters of closely related classes. A number of methods are 

available for hierarchical clustering, such as single link, 

average link, complete link, and wards link [15]. We have used 

wards link method because of it giving better results than the 

others. The resulting class clusters are presented as a 
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Figure 1: Prototype tool parts and dataflow 
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dendrogram graph [16], as well as text. To implement this part, 

we used Java Numerical Library [17]. 

V. CASE STUDY 

Our tool groups Java classes that are closely related to each 

other. To evaluate whether the groupings of classes found by 

the tool match intended by the original developers, we used 

one of our previous moderate-size Java application, called 

Mudrik [18]. Mudrik has 76 classes organized into 9 packages. 
Table 1 shows the values of the weights we used for different 

component distances in Equation 5. 

Table 1: Weights for component distances. 

Distance Type Variable Weight 

Package PkW 3 

Inheritance IhW 5 

Subling SbW 3 

Interface ItW 3 

Field FdW 5 

Parameter PmW 2 

Method MtW 2 

 

The tool has identified clusters as shown in the dendrogram 

of Figure 3. The clusters closely match the original grouping of 

classes we intended while developing Mudrik. The labels on 

the vertical axis are class names and the values on the 

horizontal axis are inter-clusters distances. 

In another evaluation of the tool we tried to find the class 

clusters for open source 3D Java library called Jun [19]. Jun is 

a large library having 695 classes and 85 packages. We are 
familiar with Jun as we used it while developing Mudrik. 

Figure 4  shows the Jun class clusters discovered by our tool. 

To be able to read the classes names, the figure needs to be 

zoomed in. The clusters match closely to the groupings of 

classes we expected for Jun. The tool took around 7 minutes to 

process all Jun classes and produce the clusters. For Mudrik, it 

took less than a minute.  

VI.  CONCLUSIONS 

We proposed an approach to extract useful knowledge from 

Java byte code and apply clustering to group Java classes that 

are close to each other. The grouping of classes can assist 

programmers in comprehending large Java systems developed 
by others. This can save considerable time usually spent by 

maintenance programmers, especially when documentation of 

the system is not up to date. A prototype tool has been 

developed as proof of concept. The tool has been evaluated 

using a moderate and a large sized Java application. The results 

are encouraging. 
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Figure 3: Mudrik class clusters 
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Figure 4: Jun class clusters 


