
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 246

A Novel Process Neural Networks Model Based on

Quantum Computing

Xiande Liu

School of Computer & Information Technology

Northeast Petroleum University

Daqing, Heilongjiang, China

Panchi Li

School of Computer & Information Technology

Northeast Petroleum University

Daqing, Heilongjiang, China

E-mail: lipanchi {at} vip.sina.com

Abstract—This work is a research on integrating quantum

computing with process neural networks. To enhance the

approximation and generalization ability of process neural

networks (PNN), by studying the quantum implementation of

information processing of process neuron, a new designing idea

of process neuron, based on the quantum rotation gates and the

multi-qubits controlled-Hadamard gates, is proposed in this

paper. In the proposed approach, the discrete inputs are

represented by the qubits, which, as the control qubits of the

controlled-Hadamard gates after being rotated by the quantum

rotation gates, control the target qubits for reverse. The model

outputs are described by the probability amplitude of state 1| in

the target qubits. Then the quantum-inspired process neural

networks (QPNN) are designed by applying the quantum-

inspired process neurons to the hidden layer and the classical

neurons to the output layer. The algorithm of QPNN is derived

by employing the principles of quantum computing and the {\it

Levenberg-Marquardt} algorithm. Simulation results of a

benchmark problem show that, under a certain condition, the
QPNN is obviously superior to the classical PNN.

Keywords-quantum computation, quantum rotation gates,

multi-qubits controller-hadamard gates, quantum-inspired process

neuron, quantum-inspired process neural networks

I. INTRODUCTION (HEADING 1)

Many neurophysiologic experiments indicate that the
information processing character of the biological nerve
system mainly includes the following eight aspects: the spatial
aggregation, the multi-factor aggregation, the temporal
cumulative effect, the activation threshold characteristic, self-
adaptability, exciting and restraining characteristics, delay
characteristics, conduction and output characteristics [1].
From the definition of the M-P neuron model, we can know
that traditional ANN preferably simulates voluminous
biological neurons' characteristics such as the spatial weight
aggregation, self-adaptability, conduction and output, but it do
not fully incorporate temporal cumulative effect because the
outputs of ANN depend only on the inputs at the moment
regardless of the prior moment. In the process of practical
information processing, the memory and output of the
biological nerve not only depend on the spatial aggregation of
each input information, but also are related to time delay and
cumulative effect, or are even related to the multi-factor

aggregation. Therefore, the process neural networks proposed
by Chinese scholars in the early of this century are a new
model of being able to simulate these important information
processing characteristics of the biological neurons [2].
General neural networks can only be used to describe the
instantaneous mapping relationship between input values and
output values. The process neural networks (PNN) can
describe the accumulation or aggregation effect of the output
towards the input at the time axis. It is the extention of
traditional neural networks in the time domain. Process neural
networks have a wealth of research content. Because this
model is proposed relatively late, there are many issues on
algorithm design to be further studied and improved. For the
networks training, Refs.[3-5] proposed an orthogonal basis
expansion-based algorithm, which simplifies the time-domain
aggregation operation by using the orthogonality of basis
functions. In the networks performance, Ref.[6] studied some
theoretical properties such as continuity, approximation ability
and computing power. Refs.[7-9] investigated some
application of PNN. The current PNN exists mainly as follows
shortcomings. First, PNN can not directly deal with discrete
inputs. In PNN, the inputs are time-varying continuous
functions, but in many practical problems, the system inputs
are discrete data. Secondly, when the input functions are
expanded by the orthogonal base functions, the number of
orthogonal basis functions is not easy to determine. In theory,
the number of orthogonal basis functions is infinite, and a
finite number of basis functions will inevitably lead to loss of
information. The above shortcomings lead directly to the
decline in PNN's approximation ability and generalization
ability.

Currently, the integration of quantum computing and
neural networks has attracted the attention of international
scholars, and has made some interesting theoretical models
[10-14]. In order to avoid fitting and orthogonal basis
expansion in existing PNN, and effectively enhance the
approximation and generalization ability, this paper presents a
quantum-inspired process neural networks (QPNN) model. In
our approach, the PNN's aggregation operations in time-
domain are simulated through applying the evolution of the
target qubit in a multi-qubits controlled-Hadamard gates, and
the QPNN algorithm is derived from the physical meaning of
quantum rotation gates and multi-qubits controlled-Hadamard

This work was supported by the National Natural Science

Foundation of China (Grant No. 61170132).

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 247

∑ ∫ f

∑ ∫ f

∑ ∫ f

┇ ┇

∑ g

x1(t)

x2(t)

xn(t)

wij(t)
1

2

p

vjk

┇

∑ g y1

∑ g

y2

ym

┇ ┇

∑ g

gates. Experimental results show that, compared with existing
PNN, QPNN's approximation and generalization ability are
obviously improved under a certain condition.

II. PROCESS NEURAL NETWORKS

Suppose that the input layer of a PNN has n nodes, the
middle layer (process neuron hidden layer) has p nodes, and
the output layer has m classical M-P neurons. Its topological
structure is shown in Fig.1, where X(t)=[x1(t), x2(t), … , xn(t)]

T
denote the networks input, wij(t) denote the connection weight

functions, p ,,, 21  denote the threshold values in hidden

layer, vk denote the connection weight values in the output
layer, and Y=[y1, y2, … , ym]T denote the networks output. The
input-output transform relationship of the PNN can be
represented as follows

)))()(((

1 1
0

 
 



p

j

n

i

j

T

iijjkk dttxtwfvgy  

where k=1, 2, … , m, [0, T] is an interval of the input process.

Figure 1. Process neural networks model.

Suppose that the input space of process neural networks is

[0, T]
n
, b1(t), b2(t), …, bl(t), … are a group of standard

orthogonal basis functions defined in [0, T}]
n
, and xi(t) can be

expressed as the following series form of a group of
orthogonal basis functions










L

l

lil

l

lili tbatbatx

11

)()()(, 

where L denotes an integer to meet the accuracy requirements,
and ail denotes the coefficient of the lth basis function.

Using the a group of same basis functions as the
previously mentioned, the connection weight function wij(t)
can be expressed as follows






L

l

l
l

ijij tbwtw

1

)(
)()(, 

where l
ijw is the coefficient of the lth basis function bl(t), and it

is actually a PNN parameter that need to be trained.

Substituting the basis function expansions of xi(t) and wij(t)
into Eq.(1), the input-output transform relationship of the PNN
can be represented as

)))()(((

1 1 1 1
0

  
   



p

j

j

n

i

L

l

L

s

T

sl
l
ijisjkk dttbtbwafvgy  , 

where b1(t), b2(t), … , bL(t)$ are a group of standard

orthogonal basis functions defined in [0, T]
n
 and satisfy to








 sl

sl
dttbtb

T

sl
,0

,1
)()(

0
, 

hence, the input-output relationship of the PNN given by Eq.(4)
can be simplified as

))((

1 1 1

 
  



p

j

n

i

L

l

j
l
ijiljkk wafvgy  . 

It is clear that the existing PNN can only deal with the samples
described by continuous functions instead of the discrete
sequences.

III. QUBITS AND QUANTUM GATES

A. Qubits

In quantum computing, a qubit is described by quantum

state wave function )(| t , where notation like | is called the

Dirac notation, and we will seeing it often in the following
paragraphs, as it is the standard notation for states in quantum
mechanics. In a time],0[Tt , the qubit has two possible state

such as 0| and 1| . The difference between bits and qubits is

that a qubit can be in a state other than 0| and 1| , it is also

possible to form the linear combinations of the states, namely
superposition

 1|)(0|)()(| ttt  , 

where)(t and)(t are complex numbers, called probability

amplitudes. Hence, the qubit can also be described by

probability amplitudes as Ttt)](),([ .

B. Quantum Rotation Gate

In the quantum computation, the logic function can be
realized by applying a series of unitary transforms to the qubit
states, which the effect of the unitary transform is equal to that
of the logic gate. Therefore, the quantum services with the

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 248

┇

)(| t

)(| 1 tx

)(| 2 tx

)(| txn

)('| t H

logic transformations in a certain interval are called the
quantum gates, which are the basis of performing the quantum
computation. The definition of a single qubit rotation gate is
given by








 


)(cos)(sin

)(sin)(cos
))((

tt

tt
tR




 . 

Let the quantum state 









))(sin(

))(cos(
)(|

0

0

t

t
t




 , and )(| t can be

transformed by))((tR  as follows















))()(sin(

))()(cos(
)(|))((

0

0

tt

tt
ttR




 . 

It is obvious that))((tR  shifts the phase of )(| t .

C. Hadamard Gate

The Hadamard gate is defined as 











11

11

2

1
H . This

gate turns the computational basis }1|,0{|  into the new basis

}|,{|  , whose states are a superposition of the states of the

computational basis  |2/)1|0(|0|H and

 |2/)1|0(|1|H . Since H2 = I, H is equal to it own

inverse, H-1=H. Note that H is Hermitian [15]. Indeed, it is
evident from the matrix representation that (HT)*=H.

D. Multi-qubits Controlled-Hadamard Gate

In a true quantum system, a single qubit state is often
affected by a joint control of multi-qubits. A multi-qubits

controlled-Hadamard gate C
n
(H) is a kind of control model.

The multi-qubits system is also described by the wave

function nxxx 21| . In a (n+1)-bits quantum system, when

the target bit is simultaneously controlled by n input bits, the
dynamic behavior of the system can be described by a multi-
qubits controlled-Hadamard gate in Fig.2.

Figure 2. Multi-qubit controlled-Hadamard gate.

In Fig.2, there are n+1 qubits, and H denotes a Hadamard
gate. Then we define the controlled operation Cn(H) as
follows





)(|)()()(|

)(|)()()(|)(

)()()(
21

21

21 tHtxtxtx

ttxtxtxHC

txtxtx
n

n
n

n 





 , 

where x1x2...xn in the exponent of H means the product of the
bits x1, x2, ... , xn. That is, the operator H is applied to last a
qubit if the first n qubits are all equal to one, and otherwise,
nothing is done.

Suppose that the  1|)(0|)()(| tbtatx iii are the control

qubits, and the  1|)(0|)()(| tdtct is the target qubit. From

Eq.(10), the output of C
n
(H) is written by the equation













1111|))()()(()()(5.0

0111|))()()(()()(5.0

1111|)()()()(

0111|)()()()(

)(|)(|)(|)(|

|)()()(|)(

21

21

21

21

21

21

















n

n

n

n

n

n

n

n

n

n
n

tdtctbtbtb

tdtctbtbtb

tdtbtbtb

tctbtbtb

ttxtxtx

txtxtxHC





. (11)

We say that a state of a composite system having the
property that it can't be written as a product of states of its
component systems is an entangled state. For reasons which
nobody fully understands, entangled states play a crucial role
in quantum computation and quantum information. It is

observed from Eq.(11) that the output of C
n
(H) is in the

entangled state of n+1 qubits, and the probability of the target

qubit state )('| t , in which 1| is observed, equals to

2222
21)())()(2)()(())()()((5.0)(tdtdtctdtctbtbtbtP n   .(12)

At this time, after the joint control of the n input bits, the

target bit )('| t can be defined as

 1|)(0|)(1)('| tPtPt . (13)

IV. QUANTUM-INSPIRED PROCESS NEURAL NETWORKS

MODEL

A. Quantum-inspired Process Neuron Model

In this section, we first propose a quantum-inspired
process neuron model, as illustrated in Fig.3. This model
consists of quantum rotation gates and multi-qubits controlled-

Hadamard gates. The input is the wave functions )(| txi

defined in time domain interval [0, T], the output is the spatial

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 249

y
})1('{| t

┇

)(| t

)(| 1 tx

)(| 2 tx

)(| txn

)(1 t

)(tn

)(2 t

y|
H

)(11 t

)(21 t

)(1 tn

┇

)(12 t

)(22 t

)(2 tn

)(2 tp

)(tnp

┇

┇

)(| 1 tx

)(| txn

)(| 1 t

)(| 2 t

)(| tp

1| h

2| h

ph|

)1(| 1 t

)1(| 2 t

)1(| tp

1y

2y

my

┇

kjw ,

)(| 2 tx

)(1 tp

1h

2h

ph

H

H

H

and temporal aggregation results y| in [0, T], and the control

parameters are the rotation angles)(ti , i=1, 2, … , n.

Figure 3. Quantum-inspired process neuron model.

Let the Tttt q  210 represent the sampling time

points, then the )(| txi in [0, T] can be written in discrete form

as follows

qrtttx ririri ,,2,1,1|)(sin0|)(cos)(|   . (14)

Suppose  0|)(| 1t . according to the definition of quantum

rotation gates and multi-qubits controlled-Hadamard gates, the
)('| 1t is given by

 1|)(sin0|)(cos)('| 111 ttt  , (15)

where)))()(sin(5.0arcsin()(
1

111  


n

i
ii ttt  .

Let rtt  , qr ,,3,2  , from )1('|)(| tt  , the )('| rt

can be derived by

 1|)(sin0|)(cos)('| rrr ttt  , (16)

where



























)(sin))()((sin

5.0))(2sin)(2(cos

arcsin)(
1

2

1

2

11

r

n

i
riri

rr

r
ttt

tt

t




 .

The aggregate results of quantum-inspired process neuron
in [0,T] is finally derived by

 1|)(sin0|)(cos)('|| qqq ttty  . (17)

In this paper, we define the output of the quantum-inspired
process neuron as the probability amplitude of the
corresponding state, in which 1| is observed. Thus, the actual

output of the quantum-inspired process neuron is rewritten as
follows

)(sin))()((sin5.0))(2sin)(2(cos 1
2

1

2
11 


   q

n

i
qiqiqq ttttty  .(18)

B. Quantum-inspired Process Neural Networks Model

In this paper, the QPNN model is shown in Fig.4, where
the hidden layer consists of quantum-inspired process neurons,
and the output layer consists of classical neurons. The

)(|,,)(|,)(| 21 txtxtx n denote the inputs, the)(tij denote

the rotation angles of quantum rotation gates, the

phhh ,,, 21  denote the hidden outputs, the wjk denote the

connection weights in output layer, and the y1, y2, … , ym
denote the networks outputs. The Sigmoid functions are used
as the activation function in output layer. Suppose

 1|)(sin0|)(cos)(| tttx iii  , the [0,T] denotes the time-

domain aggregate interval, and the Tttt q  210

denote the discrete sampling time points, set  0|)(| 1tj ,

pj ,,2,1  .

Figure 4. Quantum-inspired process neural networks model.

Let  


n

i
rijrijr tth

1
))()(sin(5.0  . According to

Eq.(18), in interval [0, tr], the aggregate results of the jth
quantum-inspired process neuron in hidden layer can be
written as













)()(

)(

1
2

1,
2

11

rjrjjrrj

jj

thhhth

hth

, (19)

where)(1)(2)(21 1
2

11
2

1,   rjrjrjrj thththh .

The jth output in hidden layer (namely, the aggregate
results in [0,T]) is given by

)(qjj thh  . (20)

The kth output in output layer can be written as

)exp(1

1

1 



p

j
jjk

k

hw

y , (21)

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 250

where ni ,,2,1  , pj ,,2,1  , mk ,,2,1  .

V. QUANTUM-INSPIRED PROCESS NEURAL NETWORKS

ALGORITHM

A. Pretreatment of Input and Output Samples

Let the sampling time points Tttt q  210 . For

the thl continuous function sample in n-dimensional Euclidean

space Tl
n

lll txtxtxtX)](,),(,)([)(21  , we discretize)(tX l into

the following form

T
r

l
nr

l
r

l
r

l txtxtxtX)](,),(,)([)(21  , (22)

where qr ,,2,1  , Ll ,,2,1  , L denotes the total number

of samples.

Let












))(,),(),(min(

))(,),(),(max(

21

21

r
L
iririir

r
L
iririir

txtxtxMin

txtxtxMax




, (23)


























0,0

0,2/

,
2

)(

)(

irir

irir

irir
irir

irr
l
i

r
l
i

MinMaxif

MinMaxif

MinMaxif
MinMax

Mintx

t 



 . (24)

These samples can be converted into the following
quantum states

T
r

l
nr

l
r

l
r

l txtxtxtX }])({,},)({},)([{})({| 21   , (25)

where  1|))(sin(0|))(cos()(| r
l
ir

l
ir

l
i tttx  .

Similarly, suppose the thl output sample
Tl

m
lll yyyY],,,[21  , where Ll ,,2,1  . Let












),,,min(

),,,max(

21

21

L
kkkk

L
kkkk

yyyMin

yyyMax




, (26)

then, these output samples can be normalized by the following
equation


























0,0

0,1

,

kk

kk

kk
kk

k
l
k

l
k

MinMaxif

MinMaxif

MinMaxif
MinMax

Miny

y , (27)

where mk ,,2,1  .

B. Parameters Adjustment Method

The QPNN adjustable parameters include the rotation
angles of quantum rotation gates in hidden layer, and the

weights in output layer. Suppose l
m

ll yyy ,,, 21  denote the

normalized desired outputs of the thl sample, and
l
m

ll yyy ,,, 21  denote the corresponding actual outputs. The

evaluation function is defined as follows

||maxmax||maxmax
1111

l
k

l
k

mkLl

l
k

mkLl
yyeE 


. (28)

Let
















))(1)(2)(21()(

))()(sin(5.0

1
2

11
22

1

rjrjrj
l
jr

l
jr

n

i
rijr

l
i

l
jr

thththhS

tth 
. (29)

According to the gradient descent algorithm, the gradient of
the rotation angles of the quantum rotation gates can be
calculated as follows














































)(

))()(cot(

)(

)(

))((1)(

)1))((2()())((1)())(21(

)(

)(

)1(
)(

2
1

2
1

22
11

2

1

r
l
j

rijr
l
i

l
jr

rij

r
l
j

r
l
jr

l
j

r
l
j

l
jrr

l
jr

l
j

l
jr

r
l
j

r
l
j

jk
l
k

l
k

q
l
j

l
k

th

ttS

t

th

thth

thhththh

th

th

wyy
th

e





.(30)

Based on the above Eq.(30), we obtain


 

















q

rs rij

r
l
j

s
l
j

s
l
j

q
l
j

l
k

rij

l
k

t

th

th

th

th

e

t

e

1 1
)(

)(

)(

)(

)()(
, (31)

where qr ,,2,1  .

The gradient of the connection weights in output layer can
be calculated as follows

)()1(q
l
j

l
k

l
k

jk

l
k thyy

w

e





. (32)

Because the number of parameters is greater and the
gradient calculation is more complicated, the standard gradient
descent algorithm is not easy to converge. Hence we employ
the Levenberg-Marquardt algorithm in [15] to adjust the
QPNN parameters.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 251

Let p denote the parameter vector, e denote the error
vector, and J denote the Jacobian matrix. p, e and J are
respectively defined as follows

],,,),(,),(),([1211211111
T

pmqnp wwwttt  P , (33)

],,,,,,,,,,,[)(21
22

2
2
1

11
2

1
1

T L
m

LL
mm eeeeeeeee Pe , (34)















































































































































pm

L
m

L
m

L
m

qnp

L
m

L
m

L
m

pm

LLL

qnp

LLL

pm

mmm

qnp

mmm

pmqnp

w

e

w

e

w

e

t

e

t

e

t

e

w

e

w

e

w

e

t

e

t

e

t

e

w

e

w

e

w

e

t

e

t

e

t

e

w

e

w

e

w

e

t

e

t

e

t

e















1211211111

1

12

1

11

11

211

1

111

1

1

12

1

11

11

211

1

111

1

1
1

12

1
1

11

1
1

1
1

211

1
1

111

1
1

)()()(

)()()(

)()()(

)()()(

)(









PJ .(35)

According to Levenberg-Marquardt algorithm, the
iterative equation of adjusting QPNN parameters is written as
follows

)()())()((T1T
1 ttttttt PePJIPJPJPP


   , (36)

where t denotes the iterative steps, I denotes the unit matrix,

t is a small positive number to ensure the matrix

IPJPJ ttt )()(T invertible.

If the value of the evaluation function E reaches the
predefined precision within the preset maximum number of
iterative steps, then the execution of the algorithm is stopped,
else the algorithm is not stopped until it reaches the predefined
maximum number of iterative steps.

VI. SIMULATIONS

To examine the effectiveness of the proposed QPNN, two
example of Time series prediction are used to compare it with
the classical PNN (CPNN) in this section. In these
experiments, our QPNN has the same structure and parameters
as the CPNN, and the same Levenberg-Marquardt algorithm is
applied in two models. To facilitate comparison, some relevant
concepts are defined as follows.

Approximation error Suppose l
ky and l

ky denote the

desired output and actual output after training, respectively.
The approximation error is defined as

||maxmax
11

l
k

l
k

mkLl
yyE 


, (37)

where L denotes the total number of the training samples.

Average approximation error Suppose NEEE ,,, 21 

denotes the approximation error over N training, respectively.
The average approximation error is defined as

 


N

i
iavg E

N
E

1

1
. (38)

Convergence ratio Suppose E denotes the approximation
error after training, and  denotes the target error. If E ,
the network training is considered to have converged. Suppose
N denotes the total number of training trials, and C denotes
the number of convergent training trials. The convergence ratio

is defined as NC / .

Iterative steps In a training trial, the times of adjusting
all network parameters are defined as iterative steps.

Average iterative steps Suppose NSSS ,,, 21  denote the

iterative steps over N training trials, respectively. The average
iterative steps are defined as

 


N

i
iavg S

N
S

1

1
. (39)

Average running time Suppose NTTT ,,, 21  denote the

running time over N training trials, respectively. The average
running time is defined as

 


N

i
iavg T

N
T

1

1
. (40)

A. Time series prediction for Mackey–Glass

Mackey-Glass time series can be generated by the
following iterative equation

)(
)(1

)(
)()1(

10
tbx

tx

tx
atxtx 









, (41)

where t and  are integers, ,17,1.0,2.0  ba and)1,0()0(x .

From the above equation, we may obtain the time

sequence 1000
1)}({ ttx . We take the first 800 as the training set,

and the remaining 200 as the testing set.

Our prediction scheme is to employ n data adjacent to
each other to predict the next one data. Namely, in our model,

the sequence length equals to n . Therefore, each sample

consists of n input values and an output value. Hence, there is
only one output node in QPNN and CPNN.

For the number of input nodes of QPNN and CPNN, we
employ the following six kinds of settings shown in Table 1.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 252

For each of these settings in Table 1, a single input sample can
be described as a matrix.

TABLE I. THE INPUT NODES AND THE SEQUENCE LENGTH SETTING OF

QPNNS AND CPNNS

Input Nodes Sequence Length

1 32

2 16

4 8

8 4

16 2

32 1

In order to fully compare the approximation ability of two
models, the number of hidden nodes is respectively set

to 30,25,20,15,10 . The predefined precision is set to 0.05, and

the maximum of iterative steps is set to 100. The QPNN
rotation angles in hidden layer are initialized to random

numbers in)2/,2/( , and the connection weights in output

layer are initialized to random numbers in (-1,1). For CPNN,
the Lagrange polynomial functions are applied to fitting
discrete input data. The Walsh orthogonal basis functions are
applied to expand the input functions, and the number of basis
functions is set to sequence length. All CPNN weights are
initialized to random values in interval (-1,1).

Our experiment scheme is that, for each kind of
combination of input nodes and hidden nodes, six QPNNs and
CPNNs are respectively run 10 times. Then we use four
indicators, such as the average approximation error, the
average iterative steps, the average running time, and the
convergence ratio}, to compare QPNN with CPNN. Training
result contrasts are shown in Tables 2-5, where QPNNn_q
denotes QPNN with n input nodes and q sequence length.

Experimental results show that only when the number of
input nodes n=1,2,32, the performance of QPNN is inferior to
that of CPNN, but when n=4,8,16, the QPNN's performance is
superior to CPNN. From the experimental results, we can also
see that when the number of input nodes is close to the
sequence length, the QPNN is obviously superior to the CPNN.

TABLE II. TRAINING RESULTS OF AVERAGE APPROXIMATION ERROR

Model
Hidden Nodes

10 15 20 25 30

QPNN1_32 0.0430 0.3170 0.1317 0.0416 0.4101

CPNN1_32 0.2459 0.2432 0.1026 0.1747 0.1724

QPNN2_16 0.0455 0.0419 0.2266 0.2236 0.1351

CPNN2_16 0.2563 0.2568 0.1088 0.1879 0.1848

QPNN4_8 0.0426 0.0436 0.0434 0.0425 0.0425

CPNN4_8 0.2756 0.2759 0.1163 0.1982 0.1955

QPNN8_4 0.0433 0.0443 0.0427 0.0409 0.0441

CPNN8_4 0.2885 0.2896 0.1226 0.2082 0.2081

QPNN16_2 0.0859 0.0426 0.0440 0.0444 0.0431

CPNN16_2 0.3046 0.3053 0.1294 0.2186 0.2180

QPNN32_1 0.4746 0.4742 0.4744 0.4742 0.4745

CPNN32_1 0.3198 0.3200 0.1359 0.2299 0.2287

TABLE III. TRAINING RESULTS OF AVERAGE ITERATIVE STEPS

Model
Hidden Nodes

10 15 20 25 30

QPNN1_32 10.000 35.900 16.900 7.0000 43.600

CPNN1_32 34.770 31.344 22.423 23.281 23.095

QPNN2_16 7.5000 6.8000 24.500 24.500 14.700

CPNN2_16 37.109 33.777 23.789 24.822 24.373

QPNN4_8 6.1000 5.3000 4.7000 4.6000 4.6000

CPNN4_8 39.203 35.325 25.590 26.389 25.643

QPNN8_4 6.9000 6.3000 6.0000 5.5000 4.9000

CPNN8_4 41.606 37.405 26.742 27.766 27.108

QPNN16_2 34.100 15.000 11.600 10.200 8.4000

CPNN16_2 43.638 39.301 28.141 29.155 28.626

QPNN32_1 100.00 100.00 100.00 100.00 100.00

CPNN32_1 45.800 41.200 29.600 30.600 30.100

TABLE IV. TRAINING RESULTS OF AVERAGE RUNNING TIME (10
3
S)

Model
Hidden Nodes

10 15 20 25 30

QPNN1_32 0.0803 0.4095 0.3013 0.1423 1.0611

CPNN1_32 0.0178 0.0288 0.0600 0.0537 0.0763

QPNN2_16 0.0299 0.0475 0.2310 0.2891 0.1991

CPNN2_16 0.0186 0.0305 0.0637 0.0578 0.0814

QPNN4_8 0.0177 0.0192 0.0297 0.0401 0.0514

CPNN4_8 0.0198 0.0329 0.0676 0.0611 0.0858

QPNN8_4 0.0124 0.0196 0.0306 0.0394 0.0454

CPNN8_4 0.0209 0.0346 0.0720 0.0642 0.0901

QPNN16_2 0.0207 0.0360 0.0392 0.0454 0.0461

CPNN16_2 0.0219 0.0364 0.0755 0.0675 0.0947

QPNN32_1 0.1222 0.1509 0.2371 0.3722 0.4283

CPNN32_1 0.0230 0.0381 0.0793 0.0709 0.0994

TABLE V. TRAINING RESULTS OF COVERGENCE RATIO (%)

Model
Hidden Nodes

10 15 20 25 30

QPNN1_32 100 70 90 100 60

CPNN1_32 80 90 90 80 80

QPNN2_16 100 100 80 80 90

CPNN2_16 80 80 90 80 80

QPNN4_8 100 100 100 100 100

CPNN4_8 80 80 90 80 80

QPNN8_4 100 100 100 100 100

CPNN8_4 80 80 90 80 80

QPNN16_2 90 100 100 100 100

CPNN16_2 70 80 90 80 80

QPNN32_1 0 0 0 0 0

CPNN32_1 70 70 90 80 80

Next, we investigate the generalization ability of QPNN.
Based on the above experimental results, we only investigate
QPNN4_8, QPNN8_4 and QPNN16_2. Our experiment
scheme is that three QPNNs and CPNN train 10 times on the
training set, and the generalization ability is immediately
investigated on the testing set after each training. The average
results of the 10 tests are regarded as the evaluation indexes.
We first present the following definition of evaluation indexes.

Average prediction error Suppose],,,[21
l
m

ll yyy  and

)](ˆ,),(ˆ),(ˆ[22 tytyty l
m

ll  denote the desired output of the thl

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 253

801 850 900 950 1000

0.5

1

1.5

2

2.5

Sample Serial Number

P
re

d
ic

ti
o
n
 R

es
u
lt

 C
o
n
tr

as
ts

Actual Value

QPNN8_4

CPNN8_4

sample and the corresponding prediction output after the
tht testing respectively. The average prediction error over N

testing is defined as







N

t

l
k

l
k

mkLl
tyy

N
APE

1
11

|)(ˆ|maxmax
1

, (42)

where m denotes the dimension of the output space, L denotes
the number of the testing samples.

Average error mean Suppose],,,[11
l
m

lll yyyy  and

)](ˆ,),(ˆ),(ˆ[)(ˆ 11 tytytyty l
m

lll  denote the the desired

output of the thl sample and the corresponding prediction

output after the tht testing respectively. The average error

mean over N testing is defined as

 
 



N

t

L

l

ll tyy
LN

AEM

1 1

|)(ˆ|
11

. (43)

Average prediction variance Suppose],,,[11
l
m

lll yyyy 

and)](ˆ,),(ˆ),(ˆ[ˆ 11 tytytyy l
m

lll  denote the desired output of the

thl sample and the corresponding prediction output after the
tht testing respectively. The average error variance over N

testing is defined as

  
  



















N

t

L

l

L

l

llll tyy
L

tyy
LN

APV

1 1

2

1

|)(ˆ|
1

|)(ˆ|
1

11
. (44)

The evaluation index contrasts of QPNNs and CPNNs are
shown in Table 6. Taking 8 input nodes and 25 hidden nodes
for example, and the average prediction result contrasts over 10
testing are illustrated in Fig.5. The experimental results show
that the generalization ability of three QPNNs is obviously
superior to that of CPNNs.

Figure 5. The average prediction result contrasts of QPNN and CPNN.

TABLE VI. PREDICTION RESULT CONTRASTS OF QPNNS AND CPNNS

Model
Hidden Nodes

Index 10 15 20 25 30

QPNN4_8

APE 0.0509 0.0526 0.0537 0.0524 0.0523

AEM 0.0087 0.0093 0.0087 0.0082 0.0089

APV 0.0001 0.0001 0.0001 0.0001 0.0001

CPNN4_8

APE 0.2845 0.2885 0.1586 0.2101 0.2066

AEM 0.1260 0.1351 0.0186 0.0814 0.0820

APV 0.0159 0.0160 0.0003 0.0108 0.0106

QPNN8_4

APE 0.0518 0.0528 0.0519 0.0502 0.0530

AEM 0.0087 0.0095 0.0084 0.0085 0.0085

APV 0.0001 0.0001 0.0001 0.0001 0.0001

CPNN8_4

APE 0.3003 0.3036 0.1665 0.2197 0.2209

AEM 0.1348 0.1432 0.0196 0.0868 0.0862

APV 0.0168 0.0169 0.0003 0.0112 0.0114

QPNN16_2

APE 0.0962 0.0513 0.0543 0.0522 0.0512

AEM 0.0289 0.0112 0.0117 0.0108 0.0115

APV 0.0017 0.0001 0.0001 0.0001 0.0001

CPNN16_2

APE 0.3166 0.3196 0.1759 0.2315 0.2310

AEM 0.1411 0.1497 0.0207 0.0910 0.0908

APV 0.0177 0.0178 0.0004 0.0119 0.0119

B. Annual average of sunspot prediction

All month mean and year mean of sunspots from 1749 to
2007 are shown in Table 7.

TABLE VII. PART OF THE SUNSPOT DATA (1749-2007)

Year
Month Mean Year

Mean 1 2 3 4 5 … 12

1749 58 62.6 70 55.7 85 … 85.2 80.9

1750 73.3 75.9 89.2 88.3 90 … 75.4 83.4

… … … … … … … … …

1948 109 86.1 94.8 190 174 … 138 136.3

1949 119 182 158 147 106 … 118 134.7

1950 102 94.8 110 113 106 … 54.1 83.9

… … … … … … … … …

2007 16.8 10.7 4.5 3.4 11.7 … 10.1 7.5

Our prediction schemes are to use the month mean in the
first n years to predict the (n+1)th year mean. Taking n=6 for
example, the samples design method is shown in Table 8.
From prediction schemes, each of input samples can be

described by an 12n matrix, and the corresponding output
sample is a real number.

TABLE VIII. THE SAMPLES DESIGN METHOD (1749-2007)

Serial

Number

Input Year (Month Mean) Prediction

(Year Mean) 1 2 3 4 5 …

1 1749 1750 1751 1752 1753 1754 1755

2 1750 1751 1752 1753 1754 1755 1756

3 1751 1752 1753 1754 1755 1756 1757

4 1752 1753 1754 1755 1756 1757 1758

… … … … … … … …

253 2001 2002 2003 2004 2005 2006 2007

From prediction schemes, we know that both QPNN and
CPNN have n input nodes, one output node, and the discrete
sequence length equals to twelve. In this prediction, in order to

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 254

6 8 10 12 14 16 18 20
10

20

30

40

hidden nodes

av
er

ag
e

p
re

d
ic

ti
o
n
 e

rr
o
r

QPNN8

CPNN8

1949 1958 1968 1978 1988 1989 2007
0

50

100

150

200

250

300

year

an
n

u
al

 a
v

er
ag

e
o

f
su

n
sp

o
t

actual value

QPNN8

CPNN8

enhance the objectivity of comparison results, we set the
number of input nodes equal to 2, 4, 6, 8, 10, 12 respectively,
and the number of hidden nodes equal to 5, 6, … , 20,
respectively. The normalized maximum absolute error is set to

510 , and the maximum number of iterative steps is set to 100.
The QPNN rotation angles in hidden layer are initialized to

random numbers in)2/,2/( , and the connection weights

in output layer are initialized to random numbers in (-1,1). In
CPNN, the Lagrange polynomial functions are applied to
fitting discrete input data. The Walsh orthogonal basis
functions are applied to expand the input functions, and the
number of basis functions is set to 16. All CPNN weights are
initialized to random values in interval (-1,1).

For each kind of combination of input nodes and hidden
nodes, two models are independently run 10 times, respectively,
and then we use three indicators, such as the average
approximation error, the average iterative steps, and the
convergence times, to compare QPNN with CPNN. In all
samples, we use the first 200 years (1749-1948) data to train
networks, and the remaining 59 years (1949-2007) data to test
the generalization of QPNN and CPNN. Training result
contrasts of average approximation error are shown in Table 9,
where, in the “QPNNn” and “CPNNn”, “n” denotes the
number of input nodes.

TABLE IX. TRAINING RESULT CONTRASTS OF AVERAGE

APPROXIMATION ERROR

Model
Hidden Nodes

6 8 10 12 14 16 18 20

QPNN2 108.2 108.9 106.4 103.5 116.9 58.70 66.52 53.42

CPNN2 38.58 12.30 22.19 1.334 2.735 0.233 19.53 17.26

QPNN4 0.053 0.002 34.42 17.21 17.21 0.001 17.21 0.002

CPNN4 4.955 0.443 68.89 17.22 17.22 17.66 51.68 17.21

QPNN6 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001

CPNN6 18.86 0.787 17.50 34.68 17.21 34.64 17.35 34.42

QPNN8 0.001 0.001 0.001 0.001 0.002 0.001 0.0001 0.002

CPNN8 4.934 3.773 20.32 17.84 17.43 34.59 51.64 36.01

QPNN10 38.03 0.002 0.002 0.002 0.001 0.002 0.002 0.001

CPNN10 65.63 43.69 24.17 4.192 0.942 42.56 42.59 21.84

QPNN12 56.83 56.80 9.481 0.003 0.002 0.002 0.002 0.001

CPNN12 6.510 22.22 42.77 24.72 63.72 51.68 71.34 3.261

Experimental results show that only when the number of
input nodes n=2, the performance of QPNN is inferior to that
of CPNN, but when n=4,6,8,10,12, the QPNN's performance is
superior to CPNN. From the experimental results, we can also
see that when the number of input nodes is close to the
sequence length, the QPNN is obviously superior to the CPNN.

We use the remaining 59 years (1949-2007) data to test the
generalization ability of QPNN and CPNN. From the above
experimental results, when the number of input nodes n=6 and
n=8, the QPNN shows the best performance, hence, we only
investigate QPNN8 and CPNN8. Our experiment scheme is
that, for each value of hidden nodes, two PNNs are respectively
done 10 training on the training set, and are immediately
investigated the generalization ability on the testing set after
each training. The average prediction error over 10 predictions
is shown in Fig.6. When the number of hidden nodes equal to

fifteen, the prediction result contrasts are shown in Fig.7.
Comparison results show that the generalization ability of two
QPNNs is obviously superior to that of CPNN.

Figure 6. The average prediction error contrasts of QPNN and CPNN.

Figure 7. The prediction result contrasts of QPNN and CPNN.

C. The experiment results analysis

These experimental results can be explained as follows. For
processing of input information, QPNN and CPNN take two
different approaches. QPNN directly receives a discrete input
sequence. In QPNN, using quantum information processing
mechanism, the input is circularly mapped to the output of
quantum controlled-Hadamard gates in hidden layer. As the
controlled-Hadamard gate's output is in the entangled state of
multi-qubits, therefore, this mapping is highly nonlinear, which
make QPNN have the stronger approximation ability. In
addition, QPNN's each input sample can be described as a
matrix with n rows and q columns. It is clear from QPNN's
algorithm that, for the different combination of n and q, the
output of quantum-inspired neuron in hidden layer is also
different. In fact, the number of discrete points q denotes the
depth of pattern memory, and the number of input nodes n
denotes the breadth of pattern memory. When the depth and
the breadth are appropriately matched, the QPNN shows
excellent performance. For the CPNN, because it is not
directly deal with discrete input, and need to transform a
discrete sample into a continuous function, therefore, there

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 02, March 2014

www.ijcit.com 255

must be fitting errors. In subsequent orthogonal basis
expansion, there must be truncation errors. Hence, in the
CPNN information processing, there exists inevitably the
loss of sample characteristics, which affects its
approximation ability and generalization ability.

VII. CONCLUSIONS

This paper proposes quantum-inspired process neural
networks model based on the principle of quantum computing.
The architecture of the proposed model includes three layers,
where the hidden layer consists of quantum-inspired neurons
and the output layer consists of classical neurons. An obvious
difference from classical PNN is that each dimension of a
single input sample consists of a discrete sequence rather that
a continuous function. The activation function of hidden layer
is redesigned according to the principle of quantum
computing. The Levenberg-Marquardt algorithm is employed
for learning. With application of the information processing
mechanism of quantum controlled-Hadamard gates, proposed
model can effectively obtain the sample characteristics by way
of breadth and depth. The experimental results reveal that a
greater difference between input nodes and sequence length
leads to a lower performance of proposed model than that of
classical PNN, on the contrary, it obviously enhance
approximation and generalization ability of proposed model
when input nodes is close to sequence length. The following
issues of the proposed model, such as continuity,
computational complexity, and improvement of learning
algorithm, are subject of further research.

REFERENCES

[1] A.C. Tosi, “Locally Recurrent Globally Feed-forward Networks, A

Critical Review of Architectures”, IEEE Transactions on Neural

Networks, vol. 7, pp.229-239, 1997.

[2] X.G. He, J.Z. Liang, “Process Neural Networks”, In Proceedings of the

Congress on Intelligent Information Processing, pp.15-23, 2000.

[3] X.G. He, J.Z. Liang, “Some Theoretical Issues on Process Neural

Networks”, Chinese Engineering Science, vol. 2, pp.40-44, 2000.

[4] X.G. He, J.Z. Liang, “Learning for Process Neural Networks and Its

Applications”, Chinese Engineering Science, vol. 3, pp.31-45, 2001.

[5] S.S Zhong, Y. Li, G. Ding, “Continuous Wavelet Process Neural

Networks and Its Application”, Neural Network World, vol. 17, pp.483-

495, 2007.

[6] S.H. Xu, X.G. He, “Some Theoretical Issues on Continuous Process

Neural Networks” , Acta Electronica Sinic, vol. 34, pp.1838-1841, 2006.

[7] G. Ding, S.S. Zhong, “Aircraft Engine Lubricating Oil Monitoring by

Process Neural Networks”, Neural Network World, vol. 16, pp.15-24,

2006.

[8] G. Ding, S.S. Zhong, “Time Series Prediction by Parallel Feedforward

Process Neural Networks with Time-varied Input and Output Functions”,

Neural Network World, vol. 12, pp.137-147, 2005.

[9] T. Ye, X.F. Zhu, “The bridge relating process neural networks and

traditional neural networks”, Neurocomputing, vol. 74, pp.906-915,

2011.

[10] M. Michiharu, S. Masaya, M. Hiromi, “Qubit Neuron According to

Quantum Circuit for XOR Problem”, Applied Mathematics and

Computation, vol. 185, pp.1015-1025, 2007.

[11] P.C. Li, K.P. Song, E.L. Yang, “Model and Algorithm of Neural

Networks with Quantum Gated Nodes”, Neural Network World, vol. 20,

pp.189-206, 2010.

[12] P.C. Li, G.Y.Shi, “Sequence input-based quantum neural networks

model and algorithm”, Pattern Recognition and Artificial Intelligence,

vol. 26, pp. 247-253, 2013.

[13] C.Y.i Liu, C. Chen, C. Chang, et al, “Single-hidden-layer feed-forward

quantum neural network based on Grover learning”, Neural Networks,

vol. 45, pp.144-150, 2013.

[14] J. Adenilton, D. WilsonR, B. Teresa, “Classical and superposed learning

for quantum weightless neural networks”, Neurocomputing, vol. 75, pp.

52-60, 2012.

[15] T.H. Martin, B.D. Howard, H.B. Mark, “Neural Network Design”, PWS

Publishing Company, New York,1996.

