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Abstract—This work is a research on integrating quantum 

computing with process neural networks. To enhance the 

approximation and generalization ability of process neural 

networks (PNN), by studying the quantum implementation of 

information processing of process neuron, a new designing idea 

of process neuron, based on the quantum rotation gates and the 

multi-qubits controlled-Hadamard gates, is proposed in this 

paper. In the proposed approach, the discrete inputs are 

represented by the qubits, which, as the control qubits of the 

controlled-Hadamard gates after being rotated by the quantum 

rotation gates, control the target qubits for reverse. The model 

outputs are described by the probability amplitude of state 1|  in 

the target qubits. Then the quantum-inspired process neural 

networks (QPNN) are designed by applying the quantum-

inspired process neurons to the hidden layer and the classical 

neurons to the output layer. The algorithm of QPNN is derived 

by employing the principles of quantum computing and the {\it 

Levenberg-Marquardt} algorithm. Simulation results of a 

benchmark problem show that, under a certain condition, the 
QPNN is obviously superior to the classical PNN. 

Keywords-quantum computation, quantum rotation gates, 

multi-qubits controller-hadamard gates, quantum-inspired process 

neuron, quantum-inspired process neural networks 

I.  INTRODUCTION (HEADING 1) 

Many neurophysiologic experiments indicate that the 
information processing character of the biological nerve 
system mainly includes the following eight aspects: the spatial 
aggregation, the multi-factor aggregation, the temporal 
cumulative effect, the activation threshold characteristic, self-
adaptability, exciting and restraining characteristics, delay 
characteristics, conduction and output characteristics [1]. 
From the definition of the M-P neuron model, we can know 
that traditional ANN preferably simulates voluminous 
biological neurons' characteristics such as the spatial weight 
aggregation, self-adaptability, conduction and output, but it do 
not fully incorporate temporal cumulative effect because the 
outputs of ANN depend only on the inputs at the moment 
regardless of the prior moment. In the process of practical 
information processing, the memory and output of the 
biological nerve not only depend on the spatial aggregation of 
each input information, but also are related to time delay and 
cumulative effect, or are even related to the multi-factor 

aggregation. Therefore, the process neural networks proposed 
by Chinese scholars in the early of this century are a new 
model of being able to simulate these important information 
processing characteristics of the biological neurons [2]. 
General neural networks can only be used to describe the 
instantaneous mapping relationship between input values and 
output values. The process neural networks (PNN) can 
describe the accumulation or aggregation effect of the output 
towards the input at the time axis. It is the extention of 
traditional neural networks in the time domain. Process neural 
networks have a wealth of research content. Because this 
model is proposed relatively late, there are many issues on 
algorithm design to be further studied and improved. For the 
networks training, Refs.[3-5] proposed an orthogonal basis 
expansion-based algorithm, which simplifies the time-domain 
aggregation operation by using the orthogonality of basis 
functions. In the networks performance, Ref.[6] studied some 
theoretical properties such as continuity, approximation ability 
and computing power. Refs.[7-9] investigated some 
application of PNN. The current PNN exists mainly as follows 
shortcomings. First, PNN can not directly deal with discrete 
inputs. In PNN, the inputs are time-varying continuous 
functions, but in many practical problems, the system inputs 
are discrete data. Secondly, when the input functions are 
expanded by the orthogonal base functions, the number of 
orthogonal basis functions is not easy to determine. In theory, 
the number of orthogonal basis functions is infinite, and a 
finite number of basis functions will inevitably lead to loss of 
information. The above shortcomings lead directly to the 
decline in PNN's approximation ability and generalization 
ability. 

Currently, the integration of quantum computing and 
neural networks has attracted the attention of international 
scholars, and has made some interesting theoretical models 
[10-14]. In order to avoid fitting and orthogonal basis 
expansion in existing PNN, and effectively enhance the 
approximation and generalization ability, this paper presents a 
quantum-inspired process neural networks (QPNN) model. In 
our approach, the PNN's aggregation operations in time-
domain are simulated through applying the evolution of the 
target qubit in a multi-qubits controlled-Hadamard gates, and 
the QPNN algorithm is derived from the physical meaning of 
quantum rotation gates and multi-qubits controlled-Hadamard 
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gates. Experimental results show that, compared with existing 
PNN, QPNN's approximation and generalization ability are 
obviously improved under a certain condition. 

II. PROCESS NEURAL NETWORKS 

Suppose that the input layer of a PNN has n nodes, the 
middle layer (process neuron hidden layer) has p nodes, and 
the output layer has m classical M-P neurons. Its topological 
structure is shown in Fig.1, where X(t)=[x1(t), x2(t), … , xn(t)]

T 
denote the networks input, wij(t) denote the connection weight 

functions, p ,,, 21  denote the threshold values in hidden 

layer, vk denote the connection weight values in the output 
layer, and Y=[y1, y2, … , ym]T denote the networks output. The 
input-output transform relationship of the PNN can be 
represented as follows 
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where k=1, 2, … , m, [0, T] is an interval of the input process. 

Figure 1.  Process neural networks model. 

Suppose that the input space of process neural networks is 

[0, T]
n
, b1(t), b2(t), …, bl(t), … are a group of standard 

orthogonal basis functions defined in [0, T}]
n
, and xi(t) can be 

expressed as the following series form of a group of 
orthogonal basis functions 
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where L denotes an integer to meet the accuracy requirements, 
and ail denotes the coefficient of the lth basis function. 

Using the a group of same basis functions as the 
previously mentioned, the connection weight function wij(t) 
can be expressed as follows 
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where l
ijw  is the coefficient of the lth basis function bl(t), and it 

is actually a PNN parameter that need to be trained. 

Substituting the basis function expansions of xi(t) and wij(t) 
into Eq.(1), the input-output transform relationship of the PNN 
can be represented as 
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where b1(t), b2(t), … , bL(t)$ are a group of standard 

orthogonal basis functions defined in [0, T]
n
 and satisfy to 
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hence, the input-output relationship of the PNN given by Eq.(4) 
can be simplified as 
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It is clear that the existing PNN can only deal with the samples 
described by continuous functions instead of the discrete 
sequences. 

III. QUBITS AND QUANTUM GATES 

A. Qubits 

In quantum computing, a qubit is described by quantum 

state wave function )(| t , where notation like |  is called the 

Dirac notation, and we will seeing it often in the following 
paragraphs, as it is the standard notation for states in quantum 
mechanics. In a time ],0[ Tt , the qubit has two possible state 

such as 0|  and 1| . The difference between bits and qubits is 

that a qubit can be in a state other than 0|  and 1| , it is also 

possible to form the linear combinations of the states, namely 
superposition 

 1|)(0|)()(| ttt  ,                              

where )(t  and )(t  are complex numbers, called probability 

amplitudes. Hence, the qubit can also be described by 

probability amplitudes as Ttt )](),([  . 

B. Quantum Rotation Gate 

In the quantum computation, the logic function can be 
realized by applying a series of unitary transforms to the qubit 
states, which the effect of the unitary transform is equal to that 
of the logic gate. Therefore, the quantum services with the 
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logic transformations in a certain interval are called the 
quantum gates, which are the basis of performing the quantum 
computation. The definition of a single qubit rotation gate is 
given by 
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It is obvious that ))(( tR   shifts the phase of )(| t . 

C. Hadamard Gate 

The Hadamard gate is defined as 




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gate turns the computational basis }1|,0{|  into the new basis 

}|,{|  , whose states are a superposition of the states of the 

computational basis  |2/)1|0(|0|H and 

 |2/)1|0(|1|H .  Since H2 = I, H is equal to it own 

inverse, H-1=H. Note that H is Hermitian [15]. Indeed, it is 
evident from the matrix representation that (HT)*=H. 

D. Multi-qubits Controlled-Hadamard Gate 

In a true quantum system, a single qubit state is often 
affected by a joint control of multi-qubits. A multi-qubits 

controlled-Hadamard gate C
n
(H) is a kind of control model. 

The multi-qubits system is also described by the wave 

function nxxx 21| . In a (n+1)-bits quantum system, when 

the target bit is simultaneously controlled by n input bits, the 
dynamic behavior of the system can be described by a multi-
qubits controlled-Hadamard gate in Fig.2. 

Figure 2.  Multi-qubit controlled-Hadamard gate. 

In Fig.2, there are n+1 qubits, and H denotes a Hadamard 
gate. Then we define the controlled operation Cn(H) as 
follows 
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where x1x2...xn in the exponent of H means the product of the 
bits x1, x2, ... , xn. That is, the operator H is applied to last a 
qubit if the first n qubits are all equal to one, and otherwise, 
nothing is done. 

Suppose that the  1|)(0|)()(| tbtatx iii  are the control 

qubits, and the  1|)(0|)()(| tdtct  is the target qubit. From 

Eq.(10), the output of C
n
(H) is written by the equation 
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We say that a state of a composite system having the 
property that it can't be written as a product of states of its 
component systems is an entangled state. For reasons which 
nobody fully understands, entangled states play a crucial role 
in quantum computation and quantum information. It is 

observed from Eq.(11)  that the output of C
n
(H) is in the 

entangled state of n+1 qubits, and the probability of the target 

qubit state )('| t , in which 1|  is observed, equals to 

2222
21 )())()(2)()(())()()((5.0)( tdtdtctdtctbtbtbtP n   .(12) 

At this time, after the joint control of the n input bits, the 

target bit )('| t  can be defined as 

 1|)(0|)(1)('| tPtPt .                 (13) 

IV. QUANTUM-INSPIRED PROCESS NEURAL NETWORKS 

MODEL 

A. Quantum-inspired Process Neuron Model 

In this section, we first propose a quantum-inspired 
process neuron model, as illustrated in Fig.3. This model 
consists of quantum rotation gates and multi-qubits controlled-

Hadamard gates. The input is the wave functions )(| txi  

defined in time domain interval [0, T], the output is the spatial 
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and temporal aggregation results y| in [0, T], and the control 

parameters are the rotation angles )(ti , i=1, 2, … , n. 

Figure 3.  Quantum-inspired process neuron model. 

Let the Tttt q  210  represent the sampling time 

points, then the )(| txi in [0, T] can be written in discrete form 

as follows 
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The aggregate results of quantum-inspired process neuron 
in [0,T] is finally derived by 

 1|)(sin0|)(cos)('|| qqq ttty  .            (17) 

In this paper, we define the output of the quantum-inspired 
process neuron as the probability amplitude of the 
corresponding state, in which 1|  is observed. Thus, the actual 

output of the quantum-inspired process neuron is rewritten as 
follows 
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B. Quantum-inspired Process Neural Networks Model 

In this paper, the QPNN model is shown in Fig.4, where 
the hidden layer consists of quantum-inspired process neurons, 
and the output layer consists of classical neurons. The 

 )(|,,)(|,)(| 21 txtxtx n  denote the inputs, the )(tij  denote 

the rotation angles of quantum rotation gates, the 

phhh ,,, 21   denote the hidden outputs, the wjk denote the 

connection weights in output layer, and the y1, y2, … , ym 
denote the networks outputs. The Sigmoid functions are used 
as the activation function in output layer. Suppose 

 1|)(sin0|)(cos)(| tttx iii  , the [0,T] denotes the time-
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denote the discrete sampling time points, set  0|)(| 1tj , 
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Figure 4.  Quantum-inspired process neural networks model. 
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The jth output in hidden layer (namely, the aggregate 
results in [0,T]) is given by 
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The kth output in output layer can be written as 
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where ni ,,2,1  , pj ,,2,1  , mk ,,2,1  . 

V. QUANTUM-INSPIRED PROCESS NEURAL NETWORKS 

ALGORITHM 

A. Pretreatment of Input and Output Samples 

Let the sampling time points Tttt q  210 . For 

the thl continuous function sample in n-dimensional Euclidean 
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These samples can be converted into the following 
quantum states 
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Similarly, suppose the thl output sample 
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then, these output samples can be normalized by the following 
equation  
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where mk ,,2,1  . 

B. Parameters Adjustment Method 

The QPNN adjustable parameters include the rotation 
angles of quantum rotation gates in hidden layer, and the 

weights in output layer. Suppose l
m

ll yyy ,,, 21   denote the 

normalized desired outputs of the thl sample, and 
l
m

ll yyy ,,, 21   denote the corresponding actual outputs. The 

evaluation function is defined as follows 
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According to the gradient descent algorithm, the gradient of 
the rotation angles of the quantum rotation gates can be 
calculated as follows 
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Based on the above Eq.(30), we obtain 
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where qr ,,2,1  . 

The gradient of the connection weights in output layer can 
be calculated as follows 

)()1( q
l
j

l
k

l
k

jk

l
k thyy

w

e





.                          (32) 

Because the number of parameters is greater and the 
gradient calculation is more complicated, the standard gradient 
descent algorithm is not easy to converge. Hence we employ 
the Levenberg-Marquardt algorithm in [15] to adjust the 
QPNN parameters. 
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Let p denote the parameter vector, e denote the error 
vector, and J denote the Jacobian matrix. p, e and J are 
respectively defined as follows 
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According to Levenberg-Marquardt algorithm, the 
iterative equation of adjusting QPNN parameters is written as 
follows 

)()())()(( T1T
1 ttttttt PePJIPJPJPP


   ,           (36) 

where t denotes the iterative steps, I denotes the unit matrix, 

t  is a small positive number to ensure the matrix  

IPJPJ ttt )()(T  invertible. 

If the value of the evaluation function E reaches the 
predefined precision within the preset maximum number of 
iterative steps, then the execution of the algorithm is stopped, 
else the algorithm is not stopped until it reaches the predefined 
maximum number of iterative steps. 

VI. SIMULATIONS 

To examine the effectiveness of the proposed QPNN, two 
example of Time series prediction are used to compare it with 
the classical PNN (CPNN) in this section. In these 
experiments, our QPNN has the same structure and parameters 
as the CPNN, and the same Levenberg-Marquardt algorithm is 
applied in two models. To facilitate comparison, some relevant 
concepts are defined as follows. 

Approximation error Suppose l
ky  and l

ky  denote the 

desired output and actual output after training, respectively. 
The approximation error is defined as 
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where L denotes the total number of the training samples. 

Average approximation error Suppose NEEE ,,, 21   

denotes the approximation error over N training, respectively. 
The average approximation error is defined as 
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Convergence ratio Suppose E  denotes the approximation 
error after training, and   denotes the target error. If E , 
the network training is considered to have converged. Suppose 
N  denotes the total number of training trials, and C  denotes 
the number of convergent training trials. The convergence ratio 

is defined as NC / . 

Iterative steps In a training trial, the times of adjusting 
all network parameters are defined as iterative steps. 

Average iterative steps Suppose NSSS ,,, 21  denote the 

iterative steps over N  training trials, respectively. The average 
iterative steps are defined as 
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Average running time Suppose NTTT ,,, 21  denote the 

running time over N  training trials, respectively. The average 
running time is defined as 
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A. Time series prediction for Mackey–Glass 

Mackey-Glass time series can be generated by the 
following iterative equation 
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where t  and   are integers, ,17,1.0,2.0  ba  and )1,0()0( x . 

From the above equation, we may obtain the time 

sequence 1000
1)}({ ttx . We take the first 800 as the training set, 

and the remaining 200 as the testing set.  

Our prediction scheme is to employ n  data adjacent to 
each other to predict the next one data. Namely, in our model, 

the sequence length equals to n . Therefore, each sample 

consists of n  input values and an output value. Hence, there is 
only one output node in QPNN and CPNN.  

For the number of input nodes of QPNN and CPNN, we 
employ the following six kinds of settings shown in Table 1. 
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For each of these settings in Table 1, a single input sample can 
be described as a matrix. 

TABLE I.  THE INPUT NODES AND THE SEQUENCE LENGTH SETTING OF 

QPNNS AND CPNNS 

Input Nodes Sequence Length 

1 32 

2 16 

4 8 

8 4 

16 2 

32 1 

 

In order to fully compare the approximation ability of two 
models, the number of hidden nodes is respectively set 

to 30,25,20,15,10 . The predefined precision is set to 0.05, and 

the maximum of iterative steps is set to 100. The QPNN 
rotation angles in hidden layer are initialized to random 

numbers in )2/,2/(  , and the connection weights in output 

layer are initialized to random numbers in (-1,1). For CPNN, 
the Lagrange polynomial functions are applied to fitting 
discrete input data. The Walsh orthogonal basis functions are 
applied to expand the input functions, and the number of basis 
functions is set to sequence length. All CPNN weights are 
initialized to random values in interval (-1,1).  

Our experiment scheme is that, for each kind of 
combination of input nodes and hidden nodes, six QPNNs and 
CPNNs are respectively run 10 times. Then we use four 
indicators, such as the average approximation error, the 
average iterative steps, the average running time, and the 
convergence ratio}, to compare QPNN with CPNN. Training 
result contrasts are shown in Tables 2-5, where QPNNn_q 
denotes QPNN with n input nodes and q sequence length. 

Experimental results show that only when the number of 
input nodes n=1,2,32, the performance of QPNN is inferior to 
that of CPNN, but when n=4,8,16, the QPNN's performance is 
superior to CPNN. From the experimental results, we can also 
see that when the number of input nodes is close to the 
sequence length, the QPNN is obviously superior to the CPNN. 

TABLE II.  TRAINING RESULTS OF AVERAGE APPROXIMATION ERROR 

Model 
Hidden Nodes 

10 15 20 25 30 

QPNN1_32 0.0430 0.3170 0.1317 0.0416 0.4101 

CPNN1_32 0.2459 0.2432 0.1026 0.1747 0.1724 

QPNN2_16 0.0455 0.0419 0.2266 0.2236 0.1351 

CPNN2_16 0.2563 0.2568 0.1088 0.1879 0.1848 

QPNN4_8 0.0426 0.0436 0.0434 0.0425 0.0425 

CPNN4_8 0.2756 0.2759 0.1163 0.1982 0.1955 

QPNN8_4 0.0433 0.0443 0.0427 0.0409 0.0441 

CPNN8_4 0.2885 0.2896 0.1226 0.2082 0.2081 

QPNN16_2 0.0859 0.0426 0.0440 0.0444 0.0431 

CPNN16_2 0.3046 0.3053 0.1294 0.2186 0.2180 

QPNN32_1 0.4746 0.4742 0.4744 0.4742 0.4745 

CPNN32_1 0.3198 0.3200 0.1359 0.2299 0.2287 

TABLE III.  TRAINING RESULTS OF AVERAGE ITERATIVE STEPS 

Model 
Hidden Nodes 

10 15 20 25 30 

QPNN1_32 10.000 35.900 16.900 7.0000 43.600 

CPNN1_32 34.770 31.344 22.423 23.281 23.095 

QPNN2_16 7.5000 6.8000 24.500 24.500 14.700 

CPNN2_16 37.109 33.777 23.789 24.822 24.373 

QPNN4_8 6.1000 5.3000 4.7000 4.6000 4.6000 

CPNN4_8 39.203 35.325 25.590 26.389 25.643 

QPNN8_4 6.9000 6.3000 6.0000 5.5000 4.9000 

CPNN8_4 41.606 37.405 26.742 27.766 27.108 

QPNN16_2 34.100 15.000 11.600 10.200 8.4000 

CPNN16_2 43.638 39.301 28.141 29.155 28.626 

QPNN32_1 100.00 100.00 100.00 100.00 100.00 

CPNN32_1 45.800 41.200 29.600 30.600 30.100 

TABLE IV.  TRAINING RESULTS OF AVERAGE RUNNING TIME (10
3
S) 

Model 
Hidden Nodes 

10 15 20 25 30 

QPNN1_32 0.0803 0.4095 0.3013 0.1423 1.0611 

CPNN1_32 0.0178 0.0288 0.0600 0.0537 0.0763 

QPNN2_16 0.0299 0.0475 0.2310 0.2891 0.1991 

CPNN2_16 0.0186 0.0305 0.0637 0.0578 0.0814 

QPNN4_8 0.0177 0.0192 0.0297 0.0401 0.0514 

CPNN4_8 0.0198 0.0329 0.0676 0.0611 0.0858 

QPNN8_4 0.0124 0.0196 0.0306 0.0394 0.0454 

CPNN8_4 0.0209 0.0346 0.0720 0.0642 0.0901 

QPNN16_2 0.0207 0.0360 0.0392 0.0454 0.0461 

CPNN16_2 0.0219 0.0364 0.0755 0.0675 0.0947 

QPNN32_1 0.1222 0.1509 0.2371 0.3722 0.4283 

CPNN32_1 0.0230 0.0381 0.0793 0.0709 0.0994 

TABLE V.  TRAINING RESULTS OF COVERGENCE RATIO (%) 

Model 
Hidden Nodes 

10 15 20 25 30 

QPNN1_32 100 70 90 100 60 

CPNN1_32 80 90 90 80 80 

QPNN2_16 100 100 80 80 90 

CPNN2_16 80 80 90 80 80 

QPNN4_8 100 100 100 100 100 

CPNN4_8 80 80 90 80 80 

QPNN8_4 100 100 100 100 100 

CPNN8_4 80 80 90 80 80 

QPNN16_2 90 100 100 100 100 

CPNN16_2 70 80 90 80 80 

QPNN32_1 0 0 0 0 0 

CPNN32_1 70 70 90 80 80 

 

Next, we investigate the generalization ability of QPNN. 
Based on the above experimental results, we only investigate 
QPNN4_8, QPNN8_4 and QPNN16_2. Our experiment 
scheme is that three QPNNs and CPNN train 10 times on the 
training set, and the generalization ability is immediately 
investigated on the testing set after each training. The average 
results of the 10 tests are regarded as the evaluation indexes. 
We first present the following definition of evaluation indexes. 

Average prediction error Suppose ],,,[ 21
l
m

ll yyy   and 

)](ˆ,),(ˆ),(ˆ[ 22 tytyty l
m

ll   denote the desired output of the thl  
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sample and the corresponding prediction output after the 
tht testing respectively. The average prediction error over N  

testing is defined as 
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where m denotes the dimension of the output space, L denotes 
the number of the testing samples. 

Average error mean Suppose ],,,[ 11
l
m

lll yyyy   and 

)](ˆ,),(ˆ),(ˆ[)(ˆ 11 tytytyty l
m

lll   denote the the desired 

output of the thl  sample and the corresponding prediction 

output after the tht  testing respectively. The average error 

mean over N  testing is defined as 
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Average prediction variance Suppose ],,,[ 11
l
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lll yyyy   
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lll   denote the desired output of the 

thl  sample and the corresponding prediction output after the 
tht  testing respectively. The average error variance over N  

testing is defined as 
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The evaluation index contrasts of QPNNs and CPNNs are 
shown in Table 6. Taking 8 input nodes and 25 hidden nodes 
for example, and the average prediction result contrasts over 10 
testing are illustrated in Fig.5. The experimental results show 
that the generalization ability of three QPNNs is obviously 
superior to that of CPNNs. 

Figure 5.  The average prediction result contrasts of QPNN and CPNN. 

TABLE VI.  PREDICTION RESULT CONTRASTS OF QPNNS AND CPNNS 

Model 
Hidden Nodes 

Index 10 15 20 25 30 

QPNN4_8 

APE 0.0509 0.0526 0.0537 0.0524 0.0523 

AEM 0.0087 0.0093 0.0087 0.0082 0.0089 

APV 0.0001 0.0001 0.0001 0.0001 0.0001 

CPNN4_8 

APE 0.2845 0.2885 0.1586 0.2101 0.2066 

AEM 0.1260 0.1351 0.0186 0.0814 0.0820 

APV 0.0159 0.0160 0.0003 0.0108 0.0106 

QPNN8_4 

APE 0.0518 0.0528 0.0519 0.0502 0.0530 

AEM 0.0087 0.0095 0.0084 0.0085 0.0085 

APV 0.0001 0.0001 0.0001 0.0001 0.0001 

CPNN8_4 

APE 0.3003 0.3036 0.1665 0.2197 0.2209 

AEM 0.1348 0.1432 0.0196 0.0868 0.0862 

APV 0.0168 0.0169 0.0003 0.0112 0.0114 

QPNN16_2 

APE 0.0962 0.0513 0.0543 0.0522 0.0512 

AEM 0.0289 0.0112 0.0117 0.0108 0.0115 

APV 0.0017 0.0001 0.0001 0.0001 0.0001 

CPNN16_2 

APE 0.3166 0.3196 0.1759 0.2315 0.2310 

AEM 0.1411 0.1497 0.0207 0.0910 0.0908 

APV 0.0177 0.0178 0.0004 0.0119 0.0119 

 

B. Annual average of sunspot prediction 

All month mean and year mean of sunspots from 1749 to 
2007 are shown in Table 7. 

TABLE VII.  PART OF THE SUNSPOT DATA (1749-2007) 

Year 
Month Mean Year 

Mean 1 2 3 4 5 … 12 

1749 58 62.6 70 55.7 85 … 85.2 80.9 

1750 73.3 75.9 89.2 88.3 90 … 75.4 83.4 

… … … … … … … … … 

1948 109 86.1 94.8 190 174 … 138 136.3 

1949 119 182 158 147 106 … 118 134.7 

1950 102 94.8 110 113 106 … 54.1 83.9 

… … … … … … … … … 

2007 16.8 10.7 4.5 3.4 11.7 … 10.1 7.5 

 

Our prediction schemes are to use the month mean in the 
first n years to predict the (n+1)th year mean. Taking n=6 for 
example, the samples design method is shown in Table 8. 
From prediction schemes, each of input samples can be 

described by an 12n matrix, and the corresponding output 
sample is a real number. 

TABLE VIII.  THE SAMPLES DESIGN METHOD (1749-2007) 

Serial 

Number 

Input Year (Month Mean) Prediction 

(Year Mean) 1 2 3 4 5 … 

1 1749 1750 1751 1752 1753 1754 1755 

2 1750 1751 1752 1753 1754 1755 1756 

3 1751 1752 1753 1754 1755 1756 1757 

4 1752 1753 1754 1755 1756 1757 1758 

… … … … … … … … 

253 2001 2002 2003 2004 2005 2006 2007 

 

From prediction schemes, we know that both QPNN and 
CPNN have n input nodes, one output node, and the discrete 
sequence length equals to twelve. In this prediction, in order to 
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enhance the objectivity of comparison results, we set the 
number of input nodes equal to 2, 4, 6, 8, 10, 12 respectively, 
and the number of hidden nodes equal to 5, 6, … , 20, 
respectively. The normalized maximum absolute error is set to 

510 , and the maximum number of iterative steps is set to 100. 
The QPNN rotation angles in hidden layer are initialized to 

random numbers in )2/,2/(  , and the connection weights 

in output layer are initialized to random numbers in (-1,1). In 
CPNN, the Lagrange polynomial functions are applied to 
fitting discrete input data. The Walsh orthogonal basis 
functions are applied to expand the input functions, and the 
number of basis functions is set to 16. All CPNN weights are 
initialized to random values in interval (-1,1). 

For each kind of combination of input nodes and hidden 
nodes, two models are independently run 10 times, respectively, 
and then we use three indicators, such as the average 
approximation error, the average iterative steps, and the 
convergence times, to compare QPNN with CPNN. In all 
samples, we use the first 200 years (1749-1948) data to train 
networks, and the remaining 59 years (1949-2007) data to test 
the generalization of QPNN and CPNN. Training result 
contrasts of average approximation error are shown in Table 9, 
where, in the “QPNNn” and “CPNNn”, “n” denotes the 
number of input nodes. 

TABLE IX.  TRAINING RESULT CONTRASTS OF AVERAGE 

APPROXIMATION ERROR 

Model 
Hidden Nodes 

6 8 10 12 14 16 18 20 

QPNN2 108.2 108.9 106.4 103.5 116.9 58.70 66.52 53.42 

CPNN2 38.58 12.30 22.19 1.334 2.735 0.233 19.53 17.26 

QPNN4 0.053 0.002 34.42 17.21 17.21 0.001 17.21 0.002 

CPNN4 4.955 0.443 68.89 17.22 17.22 17.66 51.68 17.21 

QPNN6 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 

CPNN6 18.86 0.787 17.50 34.68 17.21 34.64 17.35 34.42 

QPNN8 0.001 0.001 0.001 0.001 0.002 0.001 0.0001 0.002 

CPNN8 4.934 3.773 20.32 17.84 17.43 34.59 51.64 36.01 

QPNN10 38.03 0.002 0.002 0.002 0.001 0.002 0.002 0.001 

CPNN10 65.63 43.69 24.17 4.192 0.942 42.56 42.59 21.84 

QPNN12 56.83 56.80 9.481 0.003 0.002 0.002 0.002 0.001 

CPNN12 6.510 22.22 42.77 24.72 63.72 51.68 71.34 3.261 

 

Experimental results show that only when the number of 
input nodes n=2, the performance of QPNN is inferior to that 
of CPNN, but when n=4,6,8,10,12, the QPNN's performance is 
superior to CPNN. From the experimental results, we can also 
see that when the number of input nodes is close to the 
sequence length, the QPNN is obviously superior to the CPNN. 

We use the remaining 59 years (1949-2007) data to test the 
generalization ability of QPNN and CPNN. From the above 
experimental results, when the number of input nodes n=6 and 
n=8, the QPNN shows the best performance, hence, we only 
investigate QPNN8 and CPNN8. Our experiment scheme is 
that, for each value of hidden nodes, two PNNs are respectively 
done 10 training on the training set, and are immediately 
investigated the generalization ability on the testing set after 
each training. The average prediction error over 10 predictions 
is shown in Fig.6. When the number of hidden nodes equal to 

fifteen, the prediction result contrasts are shown in Fig.7. 
Comparison results show that the generalization ability of two 
QPNNs is obviously superior to that of CPNN. 

Figure 6.  The average prediction error contrasts of QPNN and CPNN. 

Figure 7.  The prediction result contrasts of QPNN and CPNN. 

C. The experiment results analysis 

These experimental results can be explained as follows. For 
processing of input information, QPNN and CPNN take two 
different approaches. QPNN directly receives a discrete input 
sequence. In QPNN, using quantum information processing 
mechanism, the input is circularly mapped to the output of 
quantum controlled-Hadamard gates in hidden layer. As the 
controlled-Hadamard gate's output is in the entangled state of 
multi-qubits, therefore, this mapping is highly nonlinear, which 
make QPNN have the stronger approximation ability. In 
addition, QPNN's each input sample can be described as a 
matrix with n rows and q columns. It is clear from QPNN's 
algorithm that, for the different combination of n and q, the 
output of quantum-inspired neuron in hidden layer is also 
different. In fact, the number of discrete points q denotes the 
depth of pattern memory, and the number of input nodes n 
denotes the breadth of pattern memory. When the depth and 
the breadth are appropriately matched, the QPNN shows 
excellent performance. For the CPNN, because it is not 
directly deal with discrete input, and need to transform a 
discrete sample into a continuous function, therefore, there 
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must be fitting errors. In subsequent orthogonal basis 
expansion, there must be truncation errors. Hence, in the 
CPNN information processing, there exists inevitably the 
loss of sample characteristics, which affects its 
approximation ability and generalization ability. 

VII. CONCLUSIONS 

This paper proposes quantum-inspired process neural 
networks model based on the principle of quantum computing. 
The architecture of the proposed model includes three layers, 
where the hidden layer consists of quantum-inspired neurons 
and the output layer consists of classical neurons. An obvious 
difference from classical PNN is that each dimension of a 
single input sample consists of a discrete sequence rather that 
a continuous function. The activation function of hidden layer 
is redesigned according to the principle of quantum 
computing. The Levenberg-Marquardt algorithm is employed 
for learning. With application of the information processing 
mechanism of quantum controlled-Hadamard gates, proposed 
model can effectively obtain the sample characteristics by way 
of breadth and depth. The experimental results reveal that a 
greater difference between input nodes and sequence length 
leads to a lower performance of proposed model than that of 
classical PNN, on the contrary, it obviously enhance 
approximation and generalization ability of proposed model 
when input nodes is close to sequence length. The following 
issues of the proposed model, such as continuity, 
computational complexity, and improvement of learning 
algorithm, are subject of further research. 
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