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Abstract—The efficiency of queuing system is depends upon the
behavior of customer(s) and server(s). Most of time the problem
in queuing system arises due to some unethical behaviors. An
analysis and approximation of queuing models with specific
behaviors during various situations has been covered by many
researchers. However, many obscure behaviours factors can be
appealing to queuing models, which are still at large to consider
during the study of such system. There are occasions where
ignorance due to cultural background can block the queue flow.
Under those circumstances the ‘exception’ occurs. This paper
shall introduce some of behavioural events that are not in
compliance with study of queuing system rules, are termed as
‘exceptions’. In order to model how the ‘exception’ can
overcrowd and extends waiting times, the probability theory and
stochastic process are a part of interesting concepts. A general
purpose probability models formulated to simulates such
parameters by considering certain ‘exceptions’, that finds out,
the ‘exceptions’ has major affects on queuing system.
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1. INTRODUCTION

If the queuing system considers human involvements then
most probably the only term relevant is the waiting. Besides
this, the system in services, even though not desirable allows
the customer to wait due to their performance rate but when
exception comes in current task the waiting time becomes
longer. It possibly will be an undesirable exception caused
either the service provider gets undesirably slow or service
seekers are undesirably arriving faster than normal. The
sudden changes in behaviours of either customer(s) or server
will result in an unbalanced system. From [2] if such
behaviours are not controlled in time the chances are that the
queues get bigger and bigger. The balanced queuing system
can only possible if contributions by seekers and host(s) are
follow ethics and are organized. The services of the customer
may be either constant or stochastic, and the organization of
queuing system varies globally. However, in some arca of
world the queue routines are not following properly. From
place to place the cultural practice of queuing includes awful
customers, dishonor and for few the existence of queue is
almost alien to them. Such practices cause pressure on the
serving system.

Numerous queuing literatures discuss two types of
behaviours concerned with customer and servers which are
impatience and vacation period, respectively. In customer
behaviours case reneging, preemptive, balking and jockeying
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are covered largely by other researchers. Even these events
will have different classification of various appearances but
the consequence affect of such undesired events overcrowd
and converging to broaden the waiting time inside the queuing
system. But this can ground by both customer(s) and server.
Fundamentally, both the services interruption and conflicts
among customers can affect customers waiting time. This
affect can derive the customer impatience to bust the queue.
Besides that the assumptions in queuing models are based on
customer or system deterministic behavior to get a stationary
state for future prediction. For instance, using M/M/1:N model
force balking option in actual world could turn back the
customer to never return, where the actual world is not
stationary and the existence of ‘exceptions’ possibly will
direct the serving system to a non-queue state. However, the
strict policy can control customer behavior. The disruptions in
routine are caused by the existence of ‘exception’ in the
serving system. The ‘exceptions’ has a capability to absorb the
queuing system to make it passive. Reference [4] describes the
behavior of customers with two characteristic features, viz. the
arrival process and the waiting process, and thus the
continuation of unnoticeable behaviour may challenge the
service seekers patience. References [9] and [2] says that the
study of behavioral problems in queuing system is intended to
understand how they behave under various conditions and
when the system is o 21, then they are in a saturated region

and the stationary results cannot apply.

The unexpected growth of arrival rate, bulk arrival,
behaviours like customer renegade and balking inside the
system are noticed in many queuing literatures. The above
behaviours are considered as mortifying system performances
which influences customers waiting time. An article on
uncertainty in arrival rate by [8], evaluated the arrival rate for
inbound calls center operations. Their model simulates the
impact of arrival rates on the staff plan changing for call
centers. However, during the uncertainty of arrival if the
customer wishes to stay longer their service cannot be fulfilled
because of call hang ups distribution and eventually calls
would end-up if no acknowledgement at all by the server.
Thus, the waiting time distribution is not been discussed
during the hang ups period. Reference [10] has analyzed the
system of computer farm or a call center with M/M/c which
suffers disastrous outcome that cause the loss of all running,
waiting sessions and the arrival of impatient customers.
However, the reason of disastrous outcome has not been
discussed and the impatient customers abandon the system and
never to return. Reference [1] has modelled the behaviour of
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customers for system where the customer performs self-
service through kiosk to reduce the load on the server.
However, the model analyzed the waiting time during the
advancement of services and not on queuing system
parameters but still depends upon customer decisions on
service choice making self-service alternatives highly cost
effective. Similarly, [3] analyzed the waiting time with similar
conditions in addition to multiple vacations but with
impatience such as balking.

Another article [5] had surveyed the review on impatient
customers that cause changes in ordinary queuing system. It
also stated that the other researchers ignored the impatience
factor while studying queuing system. This article mentioned
in their reference source that some reviews provide detailed
areas in queuing model, for example, the majors research areas
on the approximation techniques for solution of queue; on
cyclic queues and closed queue networks; on the matrix
analytic methods in queuing theory; on retrial queues; on open
queuing network models of manufacturing systems; and on the
matrix analytic method and working vacation queues. The
article further claimed that they do not find the review work
on queuing system with impatient customers although it has
been widely studied in queuing literature in recent decades.

Therefore, all the above mentioned research topics have
been fully explored except for two behaviours, renegade and
balking to analyse the system for waiting distributions. Thus,
the main role of this paper is to introduce the others ignored
behaviours in the queuing literatures termed as ‘exceptions’
with waiting time distribution during ‘exception’. Based on
the observation, some of the other queuing behaviours are
colonizing, splitting up strategy, underpinning, and brazenness
which will affect the performance of the serving system. This
paper will traverse some sort of ‘exceptions’ that cause
serving system deflection. This paper assumes that customer
impatience will not quit the queuing system. In the following,
the singular phrase with quotes ‘exception’ will signify some
obscure behavioural term associated to either customer(s) or
server, unless otherwise for classifications the term
‘exceptions’ will used.

This paper has organized into four main sections. Sections
IT introduce and classify the types of ‘exceptions’ in queuing
system in other subsections with examples. Followed by
Section III that formulates mathematical models and simulates
the waiting time distribution during specific ‘exception’ and
the conclusion is in the subsequent Section IV.

II.  CATEGORIZATION AND ADVANCED CLASSIFICATION OF
‘EXCEPTIONS’

This section has categorized ‘exceptions’ in two ways, a
quantity of ‘exceptions’ occurs before the formation of queue
and some occurs during the normal queue flow within the
system. The advance classifications of ‘exceptions’ are
changes in server approach, changes in system policy and
changes in customer behavior. However, either of the
‘exceptions’ classification can cause a decrease in service
performance levels followed by large growth of customers.
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A.  Queuing System with Server Disreputable Approach

Some serving systems due to their lower maintenance,
fluctuate or rare equipments and software update may not be
synchronized by global changes. By this, the additional
chances of dissatisfactions by the customers may balk the
system for another or may lose their patience while waiting for
their services. Therefore, some of the common ‘exceptions’
discussed below are caused by the server.

1) Bypass serving system: When the server is biased to a
particular group of customers it will cause impatience in other
customers and may push the system to a non-queue state. For
e.g., some server serves specific customer(s) known to the
server. In single server system the server has accepted the
direct access for services without any respect to queuing
customers, indeed an ‘exception’. Hence, such behaviour will
extend the length of waiting time. Then, if ¥, the waiting time
random variable for a particular service that exceeds the mean
waiting time ¢ given as P{Y¥, >} =e* . Surely in such
cases, the mean waiting time for each customer will now equal
to the average waiting time in addition to the mean service
time of bypassed customer(s). Therefore, the probability of
total waiting time will be P{¥, >1;+¢;}, where #; is the
mean waiting time of the i/ customer and ¢ j is J™ bypassed
customer(s) mean service time. If the waiting customer is at
n™ position, then due to k interferences, the i" customer
position by the next time would be shifted back to (n + k)[th
position. Therefore, the probability of waiting time of i
customer will be defined by (t,- + kt; ) In this ‘exception’ the
analyses of waiting times is needed.

2) Delay commencing of services: This category of
‘exception” will occur both before and after the queue
formation. In this case, when customers are already present in
the system with or without formal queue and yet system has
not started providing services yet. This general form of
‘exception’ involves the excessive urge to collect extra
customers or open house events, for e.g., the private
transporting providers, clinics, ticket concert sellers, late
arrival of artist or politicians, ration distributors and others. If
the queue exists, then the customers total waiting time will be
depends upon the waiting before (#;) for the initiation of the
services and the waiting time (#,) after server start until they
get their services. Moreover, when services are already
delayed, the customers may be inclined to place themselves
without formal queue. If there is no formal queue caused by
system delaying the opening, it may initiate as non-queue
state. The waiting time distribution evaluation is needed
whereas for latter case the study of queue formation and
queuing parameters are analysed.

3) Tailored waiting: This ‘exception’ occurs when some
customer(s) are given preference over already in service for
“at queue head”, requiring direct service. Even if the queue
discipline is first-in first-out (FIFO) but in this case there
could be incomplete last-in first-out (LIFO), i.e. favoritism to
last-in or queue less customer(s). The typical scenarios are,
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when a request for service from recognized customer, backend
pressure for immediate service, unequal service ethics,
emergency services and bias to certain group or individuals. If
the customers at queue head are being tailored waiting for
number of times due to preferential services, then this
‘exception” may challenge the patience of immediate affected
customer as well others to dissolve the queue. The waiting
time distribution as the customer becomes impatient till back
in service assessments are essential.

B.  Queuing System with Unsystematic and Fluctuate Policy

Some serving systems are practicing unsystematic plans
with policy fluctuation. The frequent types of procedures
associated with private interests, relevant to safety,
government services and human resources. A sudden change
in private interests and government policies will highly affects
the customers receiving services by queuing. The policy
fluctuation ‘exception’ exhibits the attitude of unsystematic
plans and this affects wherever waiting in queue is engaged.
Thus, the following are some ‘exceptions’ under the
unorganized plans that cause lengthier waiting time, if they
occur.

1) Devices unconcern system: This ‘exception’ category
occurs within the queuing system. The overcrowding in the
queuing system by this ‘exception’ normally happens when
the server is unable to handled peak hour loads due to
ineffective output by either hardware or software. It occurs by
poor devices maintenance within the defined policy. Some of
the examples are old version software usage and hardware
wear & tear. However, if the customer arrival is still being
received continuously by the system, then it can reach a
collapsing situation. In this ‘exception’, if resuming of queue
flow is not possible then the system requires reformatting, and
then fresh queuing system parameters analyses expected.

2) Less informative system: This sort of ‘exception’ can
occurs before or after queue formation. In some cases, the
serving systems are mostly unorganized in policy distribution
that stretches the customers waiting time. The typical plots are
selling products and special purpose registration counters that
should indicate brief required information for naive
customer(s). For example, the information resembling which
counter to proceed for what purpose, keep enough currency
change, general services average waiting time and others.
Therefore, the less information provided through system
certainly will cause overcrowding of customers inside the
system.

3) Policy fluctuate system: This ‘exception’ generally
occurs inside the queuing system when the queue is active.
The frequent plan changes are mostly seen for customers
waiting for public/private transport such as buses, train
services and airplanes. The frequent changes in schedules
prolong in waiting time. Therefore, the frequent changes will
surely overcrowd the system. It is expected to measure the
comparison of waiting time before and after this ‘exception’
until the departure.
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4) Broadcasted appointments: In this common form of
‘exception” which can observed mostly in public clinic wards
as well as sometimes during interview sessions for various
tasks. In the clinic scenarios visiting, special noted patients
after treatment will be called for the next visit but normally at
the same time. Due to appointments broadcasted at the same
time will cause the early arrival of clients at the same time.
Moreover, before the services begin, large number of clients
are accumulated at service window and possibly will cause
rushing to get the queue numbers for their turns. Even the
service mean rate may not be affected but there will be no
queue and the clients impatiently waiting for their turns. As a
result, if there is already a queue then the analyses of 7, and 7,
are required else if not a queue at all then non-queue
transformation expected and rest valuations. Although the
server is part of system policy, the changes in policy shapes
the changes in server dealings. However, under such cases, it
show differences when the server independently behaves not
in favor of queuing ethics. Moreover, this generally occurs if
server is controlled by human with misleading behaviour.
Hence, whether the disruption caused by the server or by the
whole system, fluctuation in any case affects the whole
queuing system.

C. Queuing System with Changes in Arrival

In this ‘exceptions’ the behaviour of customer results in
the enhancement of waiting times in queue as well in the
system. In this case, servers are generally independent of
issues faced by the customers. If the ‘exceptions’ mentioned in
the previous section are not valid for discussion then the
sudden changes in behaviour of customers still exists. The
greater part of times when any buying or selling processes are
in large then the behaviour of customers are not in ethics.
Some of the common behaviours are balking and jockeying
highly been discussed in queuing literatures. Apart from these,
the following common behaviours can be observed in any
queuing systems.

1) Inconsiderate underpinning: This ‘exception’ happens
when the customers are already in the queuing system, but has
not wished to join the queue. These non-queued (queue less)
customers are expecting the server adjoining to provide
services. Some of the common examples mostly can be
discovered at infrequent transport ticketing counters,
theater/amusement ticket counters, shopping complex counters
and immigration centers. Even non-queue customer(s) are not
allowed, but if the k outside customer(s) underpinned by i”
queued customer then (n—i) customers waiting times will then
depends upon the (k+1i) interposed customers. Therefore, the
requirement for analyses of waiting time will be the same as
the situation wherever the server bypasses individual or
specific group.

2) Brazenness feeding: The typical illustration of this
‘exception’ is opposite to the server biasness. In this case, the
front-end pressure derived by outsider(s) is expected to
receive prompt service regardless of any queuing ethics. This
‘exception’ normally occurs within the system when any
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personal authorization abuser or a group forcibly interrupts in
the queue. It could represent any individual or group that has
inconsiderably violated queue morals to get quick services at
the overhead of others. This will be surely affects the later
customers. However, in this situation the waiting time will be
similar to bypassing or underpinning.

3) Unorganized customer: Similar to the system providing
misinformation, sometimes an uncoordinated customer can
turn into ‘exception’ to slow down the service process. This
‘exception’ generally arises while a customer is not organized
to fulfill any demand arising from server. In this case,
unorganized customer(s) take up the other queued customers
mean service times. Generally, rather than while in queue,
most of the customers construct their decisions only at
counters, even if the system has provided enough information
to minimize the waiting time. For e.g., fast food decision only
at counter, asking useless information at ticket/selling
counters, never keeps currency change, unprepared with
documents at special purpose registration counters. The major
form of ‘exception’ occurs at study registration counters and
airports where due to inattentiveness of many
clients/customers to produce or carrying related documents
during common enquiries. In another view, if this ‘exception’
persists then the chances that customers may move out of the
formal queue and take up random positions in the system, and
then non-queue state begins. Consequently, the waiting time
study are required during both queued or system reformation.

4) Untimely arrival: This ‘exception’ is categorized as one
that occurs before queue formation. This situation happens
during sudden sale promotions publicized by the serving
system for a limited time. Even this sort of policies can result
in system with crowd but the system may not be expecting that
the customers lose their ethics and begin to crowd. In this
state, there will be sudden buildup of early customer arrival
when the outlet has not commenced yet and followed by either
queue formation or no queue at all. In this ‘exception’ the
analyses of f,, f, and service rate are necessarily required.
Therefore, by seeing the affect of occurring of any such
‘exception’ the knowledge of unpredictable behaviour of
seeker/host is considered as unknown to each other.

In the following section only few common ‘exception’
events used for waiting time distribution assessment. Usually,
the waiting happens earlier prior to system initiation, inside
system during customer(s) inconsideration and inside the
system during server inconsideration. For waiting time
assessment purpose, this paper considers the first event is the
waiting before and after the system commencement shall be
compared with different sub-cases. While in the second event,
the customers waiting time shall be evaluated when
interposing act alters their positions in queue. In other events,
the waiting time affected when server alters service rate shall
be evaluated. Following subsection 4 and B will assume
theoretical distribution i.e. exponential distribution for the
waiting time and as well as for the service time.

III. WAITING TIME DISTRIBUTION EVALUATION

A. Untimely Arrivals Waiting Time Distribution

Www.ijcit.com

Volume 03— Issue 01, January 2014

In this ‘exception’ when the customers are early on arrival
if there are some sales or free services offered for limited
period. The beginning of services shall be considered as
queuing system initiation or vice-versa. The two scenarios,
before and after the service begins until the customer
departure will be discussed here. In the first scenario when an
arrived customer(s) are unfamiliar with the beginning of
service time and in the second scenario when arrived
customers knows the opening instant of system. In both
scenarios, further two sub-cases can imagine; when customers
arrived early before the system begins as either all are already
in the queue or in the non-queue state. Furthermore, before
service commences, the system services are independent of
how the customers arrived. If only, all customers are already
in queue or a Poisson arrival. Since the service time inside the
system are not concerned with the arrivals as the distribution
of arrivals only matters when evaluation for cumulative
waiting distribution in queue as well as the waiting time in
whole system. For the first sub-case, only queued customers
will be discussed. In each scenario, the customers can arrive
either in group or individually.

1) First scenario as unknown opening time: This case
taken before the system begins and the customer does not
know when it will start. The estimation rate of that A, tells
the distribution of waiting time before system commence. The
best examples can be concert tickets selling, waiting for artist
or some politicians. The following section will evaluate the
case when customers are already in queue before the system
begins.

a) Earlier queuing waiting time distribution: For this
type of ‘exception’ the arrival is considered to have a Poisson
or other distribution model when the queuing system begins. If
the customer arrived in group then it will be considered as an
arrival of individual because all are sharing the same
distribution. Then, for the each individual arrived at
continuous time 7; <...<T; <..., where T arrived earlier
than 75 and so on. Then, 7 is the waiting time before the
outlet opens for customer to arrive at 77, where ¢ is the
estimated opening time of the outlet, then the evaluation shall
be P(Tyqy >1), where Tyq) >...> Ty >...t €L, . As soon

as " customer arrived at 7; then their waiting time

probability will be more than ¢ before outlet open is
P(’];J(l.)> ?), then for the (i+1)th customer arrived at T;,; the

probability is. P(?;)(M)

The individual waiting time for any ¢ is independent of
each other and each customer will have different estimation

for different values of ¢. If the customer arrived at 7;.y) then

> 7).

their 71y is independent of customer arrived at 7; and the
distribution for customers waiting times from 7j;y and 741,
shall be same. As 7; arrived earlier than all, followed by the
with  Markov
P(Tb(,-) >t+x|Tpi > t) . Therefore, it implies the probability

probability  of Ty property  of

that customer arrived 7; will wait at least #+x units given
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that it has already waited ¢ units, then it is the same as the
initial probability that the customer has waited for at least ¢

units. Then, the condition P(Tb(,-) >t+x| Ty > t) :P(Th(i)

> x)Vt,x 20 is same as
P(Tyy > 1+, Tyyy > 1)/ P(Tuy > 1) = P(Tyy >x) - ()

By Equation (1) with ’];@ ~exp (4,) and 4, the estimation
parameter of before time waiting, then the conditional
probability for customer arrived at 7; is e **. The customer

arrived at 7; has conditional distribution but for customer

arrived at T}, ,, as well, the same distribution as ¢~** . Hence,

Equations (1) is same as e **, therefore the distribution of
current and previous customer is

P( ’Tb(i+1) >x):P(Tb(,») >t+x, 'Tb([) >t) (2)

If Equation (2) is successively arrived customer distribution,
then this distribution will even be same for those customer(s)
who arrived much later than that of earlier arrived
customer(s). Equation (2) shows that V7, distribution is
memoryless and independent because the waiting duration of
any customer arrived at any time is resourced by the queuing
system commencement but not the arrival of previous
customer(s). Equation (2) clearly depicts that all individual
have the same distribution but the actual proportion of time
spent before system begins possibly will differ.

b) Later queuing waiting time distribution: The waiting
time distribution after the system begins will be the same for
each customer only if each have parallel services. Since the
server is single, thus, the waiting time spent before the system
begins is not regarded by the system own time distribution
assessments. Other than that, customers are only concerned
with their total waiting from early arrival until departure. For
all, 7, is the waiting time set after the queuing system
begins or the proportion of time spent in the system. When the
service begins then each customer will withdraw latest mean
service time from service rate distribution and each customer
waits for the service. Regardless of waiting time distribution
before queuing system begins, the service is independent and
identically distributed with mean 4,7!.

Then, the 7, the random variable for first customer at
the counter and the probability estimation that it will take z for
the service completion is. P(T,q >z)=e™, 7>0. As a
result, according to latest service rate (1,), time spent in
waiting by first customer is same as the time spent for the

service because service begins from it. For overall case, the
first customer waiting earlier before system opens until the

_ /(T +2)
F(Tow)
in conjunction with 7, the 7, is summarized times of

departure is P(Ta(l) >Tpry + 21 Tay > Tb(l)) , where

waiting during earlier queuing. Then, by ~exp(41;,4,) and
solving the distribution is the same with different parameter as
in Equations (1) and when e %, which gives eh 250,
Therefore, from Equation (2) if both times set with parameter
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4,4, are seen as the first customer at counter then waiting
distribution before queuing system begins and until departure
are distributed exponentially, then 7y ~exp(4) =T,
~exp(4,) . The above expression only entails that both
waiting distribution sets are exponentially distributed but not
with the same proportions. The proportion of time spent after
the system begins might be less than that spent earlier. As the
~exp(4;,4y) does not relate with system view for waiting
time distribution, then overall waiting distribution view in the
sense of customer will be then based on joint distribution of
A, and A,, where 4; and A, occurring in sequence and
A > If P(T,q)>z2)= ¢, then if j", customer later
than ’Ta(l) is already waiting for ¢ units and for Jj " it will

take T=(t+yj_1),yj_1 is the sum of (/—1) customers, as
waiting time in system due to previous j—1 customer(s),
then P(T,jy > T | Ty > t.N = j—1) = P{Zy,, > T}

- z-;‘:l((/lzr)" /i!)f“ 3)
where above expression describes waiting time of "
customer is j-phase Erlangian distribution and can be
symbolized as ~ Erlang(j,4,).

Thus, on solving further with required terms then Equation
(3) is easily summarized to (see [7]),e %" . By e %" | it is
now obvious that if Zy,; is a random variable of j+1
customers exponential variables with mean 45!, and N +1 is
a random variable with geometric distribution, independent of
Ta(l)"“’Ta(.Hl), so the Zy; has exponential distribution with
mean (gA,T)"', where g is failure probability or still
waiting. Thus, Ta(j) ~Erlang(j,22) =T,y ~exp(4) . If there

are j— 1 customers in the system before the j ™ then in order
for such customer to get their service, all j must have been
served at least by time 7. Hence, Equations (2) and (3) too
show that before system begins all customers are dependent on
system commencing whereas while in queuing system except
for the first customer each individual depends upon the
previous customer(s) departure. But in both cases, all are
distributed exponentially with different mean. Due to only one
single reason, that all customers arrived before the service
begins. Since the distributions of waiting times are in
sequence so the comparison of individual waiting distribution
before and wuntil their departure is the same, that is

Ty ~exp(A) = Ty(s) ~ Erlang(j,4).

Therefore, in an arbitrary case A; parameter estimating the
waiting time is distributed exponentially before the system
begins and whereas A, will cause the estimation of waiting

time with the Erlangian distribution after the system is ready.
Then, from the view point of customers the overall waiting
time from arrival before the system begins until their departure
is based on joint distribution of 4; and A, then distribution of

waiting of i customer before outlet begins and j” customer
after outlet opens, respectively, is P(Tb(,-) >x,Tq>T )
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— o h¥ g%l For A54,T, x, ¢ >0,s0 P(Ifb(z) > xaTa(j) > T)

gives joint distribution of waiting at two events and therefore

P(%(l) >x,'Ta(j) >T)zP(ZN+1 >T)z P(ITb(z) >t+x,'Tb(l-) >t).

¢) Simulation results during unknown opening time:
The following simulation results is for various values of 4.
However, the probability distribution at any time will be
different. For e.g., if 4; =0.5, 4 =0.67 and (4;(1¢4,)=0.84,
q=0.5 then with their probability density function
/lie_lf’, i=1,2 and time space for each 4 is 7€ (0,)
respectively. When the parameter has higher value then the

mean gets very small. In other words, the higher the rate of

parameter the lowers the mean waiting time or the proportion
for small units of time. Fig.1 illustrates the simulation results
comparison during waiting time distribution before system
begins and waiting time after the system begins. The waiting
time before system begins is exponential distribution with
parameter 4, as only single event occurrence is considered.
Whereas, as compared to the waiting inside the system, the
waiting is distributed with j-phase Erlangian which is higher.
Since the waiting during system service becomes large
because the j customers departure are multiple events to occur
in sequence. Fig. 1 clearly shows area under the curve during
Jj-phase Erlangian distribution is greater.

0 5 10 15 0 2 4 6 8

1_67}41 efqﬂgz'

0.8 ™
Ty sy ~ Erlang(j.22) =
= 06 | o
4 0.4 | &=
N e
02
Tis) ~ exp(A)
: 0 ‘
Time (7) Time (7)
Figure 1. Waiting during unknown Figure 2. Cumulative distribution
opening time, 7y, and 7, Ty and T,

TABLE I A; VALUE DESCRIPTIONS V7
Parameter Support Mean Median Variance  Entropy
A 7€ (0,00) 2 1.39 4 1.69
q 7€ (0,00) 2.99 2.07 8.91 1.40
ANgl, 7€ (0,00) 1.19 0.82 1.42 0.84
TABLEII  DISTRIBUTION FUNCTION DETAILED STATISTICAL DESCRIPTION

Cumulative distribution function

Description  Mean _ Std. error  Median Std. deviation variance
A4 0.637 0.025 0.717 0.250 0.062
q 0.517 0.0228 0.569 0.228 0.052
ANgl, 0.768 0.024 0.878 0.249 0.062

Table I and Table II show the results of received data by
the simulation runs for 500 counts. Table I show the mean
waiting time occurring during A, is small as compared to the
mean waiting time occurring during A, and other parameters.
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Statistically the customer before system commence is only
dependent upon particular occurrence i.e. the beginning of
server, whereas customers after opening are dependent upon
many occurrences, specifically the departure of first-in
customer(s). However, for infinitesimal values of time, the
sum of probability density function goes to 1. The mean time
occurring during joint process of before and after parameters
appears smaller. This is due to the joint process been taken as
overall distribution rather than individual. As the individual
element changes more than that of a single set containing
many elements, similarly the mean waiting time is less if the
joint distribution is considered. The simulation result shown in
Fig. 2 is derived by joint distribution of waiting and the
exponential distribution. Fig. 2 and Table II clearly show that
waiting distribution as a function of customer(s) with A4;,
while waiting accumulation appears to be slower than as
compared during joint distribution with A,. As Table I shows
the output using mathematical models described as
e M7 and e 47 e79%7  where 7 is common time for all scenario.

Similarly Table II shows statistical description of samples
cumulative distribution from the simulation results by such
equations. For exponential distribution the expected value and
the standard error are analogous therefore if mean changes the
other parameters will be too alter. Specifically, if customers
are expected to wait a long amount of time (for example,
before system begins) the amount of variability from customer
to customer is expected to enlarge. If the same customers
expected to wait less in time before the system begins or in the
queuing system, the values show less differences from
customer to customer. Hence, waiting before opening is
essentially an obscure behaviour that can cause wastage
during large duration of waiting times and may challenge the
system arrangements after it commences.

2) Second scenario as known opening time: Under this
scenario, the situation is before outlet opens and would be
arrival knows outlet opening time. Therefore, to get
probability of time spent by each customer before system
begins is to evaluate first the average waiting time taken by
customer(s). If k e N customer(s) arrived at times 7\<...<7,
then kg, arrived at T; then k7, arrived at 7, and so on and
where k is random variable at each 7;, and & can be either
single or more than that. Therefore, waiting time for
kg, Jbefore the system is activated is kr,, =kg +...+kr,,
where k7, is customer(s) arrival time just before system starts
service and i € N . By this then k7, =kr, +...+kr, and so
on until krbm =Thn)> where Ty 20 The previous
customers waiting times are not just because of the arrival of
the k7, . as kr, #0. It is due to system opening at fixed
time and customers by their own wish arrived earlier to get
fast opportunities. To evaluate time spent by early arrived
customers is then based on average time spent by each
customer.

Thus, on average each customer(s) spent is the median of
the length of arrival times, i.e. l\'r’l(krb(’.) sk ), where M (%)

symbolized the ‘median of’. The median is used to determine
the location of reasonable time when the distribution is

skewed. If X is the average time taken before system starts
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. . o _ Al S
service is then X—M(kaw, ka(M), e kaW), where X is

for those who arrived at some time. But there can be any
number of k& arrived together, where (k=12,3,...)

Therefore, then for each group of £k arrived will

spend)N( = M(kTm) Jkr, . ,...,kTh(”) )kfl . The proportion of time

a single customer spend while waiting for the opening of the
. _ [ -1

outlet is P, = M(krh(i) Ky ook )(krb(,,)) . Hence, the

proportion of time a single group of customer(s) wasted their
time is the median of all the times over the customer(s) who
arrived just before system commence their service.

a) Simulation result during known opening time: Fig. 3
shows the collective illustration of the joint distribution of
event before and event after the system begins and the
cumulative of both distributions. It is interesting that the
density function of overall time spent always starts at nearly
50%. Fig. 3 shows a different behaviour amongst the
distribution and density function. The joint distribution
cumulative function goes to one for a large number of
countable times whereas area under the curve is not a valid
density function until unless if X # g . Therefore, to validate
the probability density of joint distribution of two events, the
average waiting time before system begins must be the same
as the waiting time inside the system.

0 5 10 15 0 0.2 0.4 0.6 0.8
120 7 1.2

1-X; NTy(j) ~ Erlang(j,4,)

0.8 0.8

0.6) 0.6

0.4 0.4

Mean waiting time

0.2 0.2

0 | b 0

Time (7) Arrival times (1)

Figure 3: Waiting during known opening [Figure 4. Early arrival times vs mean

time: )”(k, )}k AT, and Cumulative [waiting time (continuous-time)

waiting

TABLE III DETAILED STATISTICAL DESCRIPTION OF )} n qA,

Parameter Mean Median Variance

s

Support
7 €(0,0) 1.5

1.03 4.45

Table III shows the joint distribution of waiting before and
later until departure. The simulation results are shown in Fig.

3. In Fig. 3 the N(x)/k is the probability of M(x) over the
total number of times and it behaves in similar ways to the
laws of large numbers. That is, the long term probabilities
remain near to 0.50 of all time averages. For distributed values
on [a,b], the average remains either nearly below or at nearly
above to 0.50, respectively. Therefore, based on the above
description say, for Tj;) as T;, then x—lgr%iop 7, ~ 0.5 That is,
if time occurring at specific event is large and known and the
situation when the unspecific events are occurring the overall

expected time for specific event to occurs remains nearly half
of the real time. In other words, if the first customer(s) reached
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H hours earlier and knows when the service will start, the
overall waiting time until services begins is only fifty percent.
This reason is not just because of opening hours of server but
also the waiting time has been deduced from the times of other
customer(s) arrival.

Besides that, Fig. 4 also confirms that during continuous-
time, in long-run the serving system viewed the mean waiting
time for all customers nears to 0.5. Thus, if the first customer
proudly waited H hours than that of later arrivals,
probabilistically it has only waited 0.5 of the time as well the
same distribution. Independent of the would be queuing
system waiting times and known to the ‘exception’ the
customers have remained inactive in one place while
expecting something but by the principles of statistics they
have wasted 'z of their time. That is, for the queuing system
the collective waiting time for the all customers is
unprejudiced. This situation can leads to either non-queue
state or balking. Thus, this is also an ‘exception’ that can
weaken the serving system reputation.

B.  Waiting Time Distribution During Brazenness

The various ‘exceptions’ that challenges the patience of
the customers has been mentioned in subsections 4.1), 4.3),
C.1) and C.2). This ‘exception’ largely happens where the
conservatism practices are higher. Rather than the server
preempts the customer for service, the current customer is
shifted by an inconsideration act. The server has assumed not
to involve in any sort of customers engagement. Hence, the
service system is state independent and identically distributed.
The displaced act may reposition the affected customers either
by single or more position back while in queue. In single
server queuing system with Poisson arrivals with
parameter A and inter-arrival times and service times are

exponentially distributed with mean rate 1/4 and 1/u ,

respectively. The customers are served on a first-come first-
serve basis and all customers require waiting in that is
essential for the service. The displaced customer reposition
back by any counts is the same as the customer who just
arrived and finds many customers already waiting in the queue.

Due to the ‘exception’, the changes in the behaviour of
customer arrival occur inside the system when there is already
a queue. Therefore, the customer who got displaced while
already in the queue is affected. Furthermore, for the affected
customer caused by an ‘exception’, 4 of customer(s) is not in
concern and the waiting time will depend upon the number of
times it has been displaced back. As a result, the distribution
for the waiting time of the displaced customer shall be
evaluated directly without the concern of arrival rate. The
‘exception’ that causes displacement is assumed to occur
while a customer is at the head of the queue and about to enter
service. If W is the random variable that identify the waiting

time in the system then F, (T') is the cumulative waiting time

in the queuing system, where Zy is sum of random variables
including displaced customer. Therefore, if the i customer is
at head of the queue and has been displaced by w—12>0
additional customers, then, X, is the elapsed time from =0
till the customer(s) (that source ‘exception’) at head of the

queue enter the service, then X;, (i=2,3,...,w) is the time
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length that i " customer used up in waiting to get out of the
system. That is, for i” customer the service time length is
X,,, then obviously the X fh total time to depart from the

. th .
system is X;+ X, +...+X,, where X; is same as wh

customer or affected customer.

It states that the affected customer has to wait through w
exponential service times including their own. For the
consideration of waiting time in system during an ‘exception’,
then the chances that the system is empty or no customer in
queue is not currently applicable here. Therefore, the direct
calculation is applied by considering only service rate
regardless of the arrival rate. If Zj is the random variable for

the sum of X;+ ..+X,
distributed and exponential variable, where we Z_ discrete

random variable. If the geometric distribution is considered for
N —i random variables then conditional probability that

N-i =m, given that N>i, (i=0,1,2,...) as shown as
P(N=i+m| N>i)=P(N=i+m,N >i)/P(N >i) =¢q"p.If
we assume, for N —1 failures the geometric distribution is
P(N=m+1) =4"p, (m=0,l..), then, the waiting
distribution probability for the affected customer is the

multiplication of probability of the number of customers ahead
and the probability of waiting for that customer is

> P(Zy >T|N=w)P(N =w). Thus, from Equation (3)
and with law of total probability, that P(Z >T) is
P(Zy >T)= X oS o((ur) fnt)e™T g™ p @)
If the number of customer(s) cause °‘exception’ is
considered to be finite then the waiting should be finite.
Therefore, by substitution the arrangement of summation of

above expression, the waiting in the system occurring at most
w times in the interval (0,7]. Therefore, then F (T')

POV, <T) =152, 30 () f)e ™ g p

where Fy (T) is the cumulative distribution for Zy . If

are independent, identically

®)

X1,X>5,... are mutually independent random variables each
with an exponential distribution with parameter x, then their
sum Z has an incomplete gamma distribution with parameter

w and u then by expanding the only term ZLV:O((,uT ) /n')

e it gives Ty (T) = " (T(w+1,uT)/T(w +1)} ,T>0.

But if together with geometric distribution in Equation (5)
second term then it is characterize as each n variable
distribution convolution with n—i distribution of m
variables distribution, where (i = 0,1,2,...), respectively for the

each sequence of n. Therefore, by arbitrary substitution the
reduce form of Equation (5) for a finite distribution and on
further expansion with ¢ =(1— p), then the summation series

gives

=13 (((ur)" )@= p)" == p)"")) (©)
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By solving further Equation (6) and then their compilation,
and then FZV (T) is

:1—ef”r((e”‘prl"(w+l,,uTq)—qu(w+1,/1T) )/F(w)) @)

Therefore, Equation (7) presents the distribution function of
X" which got w—1 displaced that P(Wy<T) . For
P(Zy >T) the distribution is simply the complement of
Equation (7).

1) Simulation results: The distribution for waiting time by
Equation (7) is given in Fig. 5, where P(Zy >T) is infinitely
small, the probability of waiting th displaced customer is
large. However, as time becomes large, the waiting probability
also decreases because by the time the unethical customer(s)
shall be served too. The server has no problem in serving as
long as there is first-come first-serve unbroken queue
discipline. Though, not only the X i’h customer is affected but
the entire later customers from X, fh are affected too. Hence, if

the X, fh customer gets to wait more than before being
displaced then there are chances that the queue may be broken

and may leads to the non-queue state. The waiting of displaced
customer, X, ,-’h can also described as w-phase Erlangian

distribution. In which the X ,-th get to wait w—1 number of
‘exception’ excluding their own time in the queue.

| o
w
S
b

20 25 30 0 5 10 15

Exponentially distributed waiting
=)
[
Probability of state

P(Zy>T) 0)

State w

T
Figure 5: CDF Waiting by MarkovianlFigure 6: Erlangian waiting distributi

service ffunction for different phases (states)

Displacement induced by an ‘exception’ can also extend
through the view of discrete-time Markov chain. The
interesting part is that the Markov chain transition matrix form
is similar to w-phase. If the different phases can represent as
the state space elements then being in some state can represent
waiting while o is ahead. Such view given in the form of
transition matrix is not for any solution, it is just to relax the
understanding procedure of waiting. Therefore, in the
transition matrix of such form (inserted in Fig. 6), if the
column side is taken as state / then the row is state J, where
(I=12,..,w) and (J=w,w-1..1), respectively. The
transition of chain from state 1 to state w will select all the
waiting time of w customers including the affected one during
state 1 i.e. the probability of waiting customer at w” is very
large. Therefore, the jump discontinuity in Fig. 5 at 7=0 for
brazenness occur due fact that there is positive probability that
X ,-’h customer is displaced by interposed customers.

The waiting distribution decrease as 7 — co. If the chain is
at state 2 the waiting time for w—1 customers noted for
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different estimated times. In this state the waiting probability
is less than as compared with when w customers waiting time
in process. Thus, as the state goes to w the waiting time
probability goes to zero. Apart from all in general, if the chain
in the above matrix is converging to departure but the opposite
of chain is the divergence of departure. Thus, the divergence
of departure is basically the blocking of departures.

Fig. 6 is derived by using the Equation (7) and provides
sample similar to the above discussion. The probabilities are
drawn for different values of T for the w” customer while in
state 1. As the chain makes transition to another state,
meaning that the customer(s) caused by ‘exception’ are
departing. When the space elements become less, then the
probability of waiting more for various times also decreases
and so on. However, the evaluation is done to notice waiting
time if the affected customer has no problem in waiting for a
long period. But practically the affected customers have to

wait too long if compared unconditionally without ‘exception’.

Then, this ‘exception’ surely challenges the tolerance of
customers that caused the queue breaking.

C. Waiting Time Distribution During Service Variations

The possible changes in server conduct normally can occur
while there is already a queue in the system. The arrival of
customer has been served on first-come first-serve basis. The
‘exception’ that disrupts services may cause the server to
perform at distinct service rates. The service due to
‘exception” may experience a change in their services rate.
When the ‘exception’ occurs there are chances that the mean
service time of server increases. If this is so, then the queuing
system will encounter congestion. If we considered a case in
which a server is serving the customers with service rate x,
and provides no limitation on arrivals. If the unpredicted
‘exception’ occurs, then , >A1 and when a ‘exception’
occurs then the mean service time shall be different from #a .
If suppose the ‘exception’ occurs at near to i" customer then
the change in service rate 4 later than some i” customer,
where f4, > 4 . For a balanced system /4 >A . For this
section 4y >A and 4 > M, which is same as fp <A .
Analogous to [2], if #m is the combined rate of Ha and Hp>
then ‘exception’ occurs the mean rate #m becomes depends
upon the state of the queue. Therefore, by considering the
service time as Markovian g, is given as

Hm =g (1< 0 <m); gy (i > m)} .

If the arrival rate is based on Poisson process with constant
parameter A and the probability of the number of customers
in the system for M/M/1 queuing system as p,, ={po(4y_i...

.-.ﬂo/um~~-u1);pol_[?il/1,-_1ﬂ,-‘l=po(/l/ﬂ)'"} LI AuT =p,

then p,, =(1-p)p" =po 2. _oP" = pop™ and for distinct
traffic intensity p,, =(poP2..-Pm)Po - If there are only two
types of traffic intensity sets for p, there are i —1 quantities
and for p; there are m —i+1, and then followed by

P =Py Pb " p, (8)
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where p, = /1;1;‘ <1 and py = Aup'. Also it can be assumed
that pp > 1. Similarly, for p, if there are m quantities then

m = Pu Do - For pg, if assume that the sum of {p,,} must
-1
equalsto 1,s0 po = (Z;zopm)

Consider the quantities from (0—o0) is divided into
(0—»i—1) and (i > ). In addition, the p™
pa and pi! pji ! =1+ pg + g+t
pf[l)+(p}, + pf +...+ pw), Therefore, by combining all the

=(Zhlopr + XA o) by

© -1 . .
putting such expression in Pg = (Zmzop ) and it provides

m 1+1) 1 )

split up into
. As the series is p™

terms then it gives in p"

i1
po=(Shlopt + ol
which is simply reduce to

po == pp)(pa =/ pd —pPspd "+ pp -1 (10)

for (p, <1, p, <1). Since the section is assuming two types of

traffic intensity in which one of the traffic intensity considered
as greater than or equals to 1. Therefore, if p, =1 then

Equation (9) becomes

p0 = (1= Pa)pa/ Pa + Py —2p1"! (11)

Equations (10) and (11) are the two results of p, to get the

expected size of the queuing system. If N is the number of
customers in system in steady state and L represent its
expected value the L =E[N]= Z:;:Ompm and as Pm =(1-p)

p" then=po ¥ _ymp™ =mpo(i oot + ook of ).

On solving further, then expected size, L is

_ po{lpi” - —iph+pa _ puPa (ips— P —i)J (12)
2 2
(Pa—1) (o = 1)

as L =E[customers inqueue]—p i.e. L=L,— p=Ly—(1-po).
Thence, by Little formula the waiting time in the system is
W =LA", where W, is the waiting time in the system with

: -1
constant rate of arrival. So W, = ( L-1+p, / ,1) =L, A7,
where W, is the waiting time in queue.

1) Simulation results: Fig. 7 shows the simulated results of
waiting time in the system as well in queue. If #a« = Hp> then
the waiting times during both rates are same. That is, for each
customer waiting inside the system shall be same. For
‘exception’ occurring near to some i™ customer, it follows
that 1 < g, Hp is assumed to be greater than 1, then from
Equation (11) the value of po is evaluated for each sequence
of customers number in system. When the value of pg is put
in Equation (12) then the expected number of customer in the
system is evaluated.
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Figure 7: Waiting inside the queuing system during ‘exception’

The behaviour of Fig. 7 is approximating similar to Fig. 3
where probability of median has been evaluated. Due to
‘exception’ that caused the changes in the service rate and it
further caused fluctuation in the expected number of
customers in system. When the mean service time changes or
increases the number of customer begin to increase.

+
=N

Expected service time

Expected number of cutomer in the system

Figure 9: Expected service time for
each customer

Figure 8: W, of L

s

With constant arrival and decreasing in the service the
waiting time for the expected number of customers in the
system are increasing as shown in Fig. 8. When the service
rate decreases the queue begins to become large and the
system surely going to be overcrowded. As shown in Fig. 7
due to fluctuation in service rate W, ~W, and for each
customer (if) once their service comes they will be served
immediate but it requires large waiting time. Also, if 4 is
same for later customers then for the long term the waiting
time in queue as well in waiting time in system will achieve a
stationary value. Even if the value becomes stationary, this
does not reduce the number of customers remaining in the
system. With the g, service rate and the same waiting time
for each then there shall be same number of customer
remaining each time in the system and this means the system
will never be empty. Since, the x,, is state dependent and by

W, and W, , then the mean service time for each customer in

system will be (1- po)/lfl . Therefore, the mean service time
for each customer shown in Fig. 9 which shows that for initial
customer the service time is varying. In Fig. 9 as u, " is
changing function of increasing L, after a number of
customers the service rate rapidly changes. Even during z;, is

not varying but this will not empty the serving system In Thus,
if changes of system service rates results in higher waiting
time and large number of customers will remain in the system.
Subsequently, the system has higher chances of approaching
to non-queue state via overcrowding.
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IV. CONCLUSION

This paper had discussed various ‘exceptions’. The waiting
probability models simulation showed that during various
‘exception’ the queuing system gets and drawn large amount
of times to departure. During early arrival and brazenness
affects on partial customers ‘exception’ cause the waiting
probability to cumulate faster. The service variations
‘exception’ similar to early arrival, the joint waiting would be
then waiting before service variation then waiting until
departure. Besides as compare to brazenness, there is
interposed of changes in service rate. In fact, the large waiting
brought in by induced of server delay, induced of customers
and induced of different service rate. The sequential affects of
‘exception” commonly brings down the system into non-queue
state. The term non-queue state is a serving system without
formal queue at all or arbitrary positions of the customers. The
‘exception” has whole chances to overcome the queuing
process. The non-queue state is basically the affected queuing
system when p > 1. The continuous ignorance of ‘exception’
generates non-queue state. The paper signifies that study of
‘exception’ can support to understand the reasons of delays in
services, which can cause system efficiency problems.
Moreover, if the influence of ‘exception’ has not been figured
out then there will be no service during non-queue state, and
this will have an auxiliary economical issues. Thus, the factor
of ‘exception’” must be involved in the study of queuing
system to model reality. The non-queue will be discussed in
the next article under process.
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