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Abstract—On the basis of analyzing the principles of the quantum 

rotation gates and quantum controlled-NOT gates, an improved 

design for CNOT gated quantum neural networks model is 

proposed and a smart algorithm for it is derived based on the 

Levenberg-Marquardt algorithm in our paper. In improved 

model, the input information is expressed by the qubits, which, as 

the control qubits after rotated by the rotation gate, control the 

qubits in the hidden layer to reverse. The qubits in the hidden 

layer, as the control qubits after rotated by the rotation gate, 

control the qubits in the output layer to reverse. The networks 

output is described by the probability amplitude of state |1> in 

the output layer. It has been shown in two application examples 

of modeling of acrylamide homogeneous polymerization process 

and wine recognition that the proposed model is superior to the 

common BP networks with regard to their convergence ratio, 

number of iterations, approximation and generalization ability. 
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I.  INTRODUCTION 

For over past decades many researches and publications 
have been dedicated to improve the performance of neural 
networks. Useful models to enhance the approximation and 
generalization abilities include: local linear radial basis 
function neural networks, which replaced the connection 
weights of conventional radial basis function neural networks 
by a local linear model [1]; selective neural networks ensemble 
with negative correlation, which employed the hierarchical pair 
competition-based parallel genetic algorithm to train the neural 
networks forming the ensemble [2]; polynomial based radial 
basis function neural networks [3]; hybrid wavelet neural 
networks, which employed rough set theory to help in 
decreasing the computational effort needed for building the 
networks structure [4]; simultaneous optimization of artificial 
neural networks, which employed GA to optimize multiple 
architectural factors and feature transformations of ANN to 
relieve the limitations of the conventional BP algorithm [5]. 

Since Kak firstly proposed the concept of quantum neural 
computation [6] in 1995, the quantum neural networks have 
attracted great attention during the past decade, and a large 
number of novel techniques have been studied for the quantum 
computation and neural networks. For example, Reference [7] 
proposed the model of quantum neural networks with multi-

level hidden neurons based on the superposition of quantum 
states in the quantum theory. In 1998, a new neural network 
model with quantum circuit was developed for the quantum 
computation, and was proven to exhibit a powerful learning 
capability [8]. Matsui et al. develop a quantum neural networks 
model using the single bit rotation gate and two-bit controlled-
NOT gate. They also investigate its performance in solving the 
four-bit parity check and the function approximation problems 
[9]. Reference [10] proposes the neural networks with the 
quantum gated nodes, and indicates that such quantum 
networks may contain more advantageous features from the 
biological systems than the regular electronic devices. In our 
previous work [11], we have proposed a quantum BP neural 
networks model with learning algorithm based on the single-
qubit rotation gates and two-qubit controlled-NOT gates. 

In this paper, we study a new neural networks model with 
the quantum gated nodes. Our scheme is a three-layer model 
with a hidden layer, which employs the Levenberg-Marquardt 
(L-M) algorithm for learning. The input-output relationship of 
this model is derived based on the physical meaning of the 
quantum gates. The convergence ratio, number of iterations, 
and approximation error of the quantum neural networks are 
examined with different learning coefficients. Two application 
examples demonstrate that this quantum neural network is 
superior to the common BP neural networks (BPNN). 

II. QUANTUM BITS AND QUANTUM GATES 

A. Quantum Bits 

What is a qubit? Just as a classical bit has a state-either 0 or 
1- a qubit also has a state. Two possible states for a qubit are 
the state 0|  and 1| , which as you might guess correspond to 

the states 0 and 1 for a classical bit. 

Notation like |  is called the Dirac notation, and we will 

see it often in the following paragraphs, as it is the standard 
notation for states in quantum mechanics. The difference 
between bits and qubits is that a qubit can be in a state other 
than 0|  or 1| . It is also possible to form linear combinations 

of states, often called superposition 

 1|
2

sin0|
2

cos| i 
 e ,                          (1) 
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where  0 ,  20  . 

Therefore, unlike the classical bit, which can only be set 
equal to 0 or 1, the qubit resides in a vector space parametrized 
by the continuous variables   and  . Thus, a continum of 

states is allowed. The Bloch sphere representation is useful in 
thinking about qubits since it provides a geometric picture of 
the qubit and of the transformations that one can operate on the 
state of a qubit. Owing to the normalization condition, the 
qubit's state can be represented by a point on a sphere of unit 
radius, called the Bloch Sphere. This sphere can be embedded 
in a three-dimensional space of Cartesian coordinates 
(  sincosx ,  sinsiny , cosz ). By definition, a Bloch 

vector is a vector whose components (x, y, z) single out a point 
on the Bloch sphere. We can say that the angles   and   

define a Bloch vector, as shown in Fig.1, where the points 

corresponding to the following states are shown: T]0,1[| A , 

T]1,0[| B , T]
2

1
,

2

1
[||


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Figure 1.  A qubit description on Bloch sphere. 

For convenience, in this paper, we represent the qubit's 
state by a point on a circle of unit radius as shown in Fig.2. The 
relations between Fig.1 and Fig.2 can be written as 
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At this time, any state of the qubit may be written as 

 1|sin0|cos|  .                       (3)  

 

Figure 2.  A qubit description on unit circle. 

An n-qubits system has 2n computational basis states. For 
example, a 2 qubits system has basis  11|,10|,01|,00| . 

Similar to the case of a single qubit, the n-qubits system may 
form the superpositions of 2n basis states 





nx

x xa

}1,0{

|| ,                                 (4) 

where xa is called probability amplitude of the basis states x| , 

and n}1,0{  means the set of strings of length two with each 

letter being either zero or one.  

The condition that these probabilities can sum to one is 
expressed by the normalization condition 

1||

}1,0{

2 
 nx

xa .                                   (5) 

B. Quantum Rotation Gate 

In the quantum computation, the logic function can be 
realized by applying a series of unitary transform to the qubit 
states, which the effect of the unitary transform is equal to that 
of the logic gate. Therefore, the quantum services with the 
logic transformations in a certain interval are called the 
quantum gates, which are the basis of performing the quantum 
computation. A single qubit rotation gate can be defined as 








 

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


cossin

sincos
)(R .                        (6) 

Let the quantum state T
00 ]sin[cos|   , and |  can be 

transformed by )(R  as follows: 
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











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)(sin

)cos(
|)(

0

0




R .                            (7) 

It is obvious that )(R  shifts the phase of | . The circuit 

representation of )(R  is shown in Fig.3. 

 

Figure 3.  Single qubit rotation gate. 

C. Unitary Operators and Tensor Products 

A matrix V is said to be unitary if (V*)TV=I, where the “*” 
indicates complex conjugation, and “T” indicates the transpose 
operation, I indicates the unit matrix. Similarly an operator U is 
unitary if (U*)TU=I. It is easily checked that an operator is 
unitary if and only if its matrix representations is unitary. 

The tensor product is a way of putting vector spaces 
together to form larger vector spaces. This construction is 
crucial to understanding the quantum mechanics of multi-
particle system. Suppose V and W are vector spaces of 
dimension m and n, respectively. For convenience we also 
suppose the V and W are Hilbert spaces. Then WV   (read “V 

tensor W”) is an mn dimensional vector space. The elements of 
WV   are linear combinations of tensor products  wv ||  of 

elements v|  of V and w|  of W. In particular, if i|  and j|  

are orthonormal bases for the spaces V and W then  ji ||  is 

a basis for WV  . We often use the abbreviated notations 

 wv || , wv,|  or even vw|  for the tensor product  wv || . 

For example, if V is a 2-D vector space with basis vectors 0|  

and 1|  then  0|0|  and  1|1|  is an element of VV  . 

D. Multi-qubits Controlled-NOT Ggate 

The prototypical multi-qubit quantum logic gate is the 
controlled-NOT or CNOT gate. This gate has two input qubits, 
namely the control qubit and target qubit, respectively. The 
circuit representation of this gate is given in Fig.4. 

 

Figure 4.  Two-qubit controlled-NOT gate. 

The action of this gate can be described as the following. 
If the control qubit is set to 0, the target qubit is left alone. If 
the control qubit is set to 1, the target qubit is flipped [12]. 

In the two-qubit controlled-NOT gate, how to condition 
on a single qubit set is obvious. This condition can be 
generalized to the multi-qubits controlled-NOT gate. Suppose 
we have n +1 qubits, and X  is a single qubit NOT gate. We 

define the multi-qubits controlled-NOT operation )(XCn  by 

  |||)|(| 21
2121

nxxx
nn

n XxxxxxxC
 ,              (8) 

where nxxx 21  in the exponent of X  is the product of the bits 

nxxx ,,, 21  . That is, the operator X  is applied to the last one 

qubit (the target qubit), if the first n  qubits (the control qubits) 

are all equal to one. Otherwise, no action is taken. The circuit 

representation of )(XCn  is shown in Fig.5. 

 
Figure 5.  Multi-qubits controlled-NOT gate. 

Assume that the control qubits are given by 
 1|0|| iii bax , where ni ,,2,1  . When the target qubit 

 0|| , the output of the multi-qubits controlled-NOT gate 

can be described as 
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It is clear from Eq.(9) that the output of )(XCn  is in the 

entangled state of 1n  qubits, and the probability of the target 

qubit state, in which 1|  is observed, equals to 2
21 )( nbbb  . 

III. QUANTUM-INSPIRED NEURAL NETWORKS 

In this paper, a new Quantum-inspired Neural Networks 
model (QINN) is proposed, as illustrated in Fig.6, where 

 nxxx |,,|,| 21   are the network input,  phhh |,,|,| 21   are 

the output of the hidden layer, and  myyy |,,|,| 21   are the 

output of the output layer. 

A. Quantum State Description of Samples 

For the lth T
21 ],,,[ l

n
lll xxxX  in n-dimension sample Euclid-

space, where Ll ,,2,1  , L is the total number of samples, the 

corresponding quantum state description is defined as 

T
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Figure 6.  Quantum-inspired neural networks model. 

B. Output of Nodes in Every Layer 

Let  1|sin0|cos| iiix  . According to Eqs. (7)-(9), the 

output of each layer of our networks can be written as 

 1|)sin(0|)cos(| jjjh  ,                (11) 

 1|)sin(0|)cos(| kkky  ,                   (12) 

where ni ,,2,1  , pj ,,2,1  , mk ,,2,1  ; 
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In this paper, we define the output of the nodes in each 
layer as the probability amplitude of the corresponding state, in 
which 1|  is observed. Thus, the actual output of our networks 

is rewritten as follows 
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)sin(  ,                          (13) 
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C. Parameters Update in Every Layer 

In this QINN model, the parameters to be updated are the 
rotation angles of the quantum rotation gates in every layer. 

Suppose the desired normalized outputs are myyy ~,,~,~
21  . The 

evaluation function is defined as 

|~|maxmax||maxmax
1111

l
k

l
k

mkLl

l
k

mkLl
yyeE 


.           (15) 

According to the gradient descent algorithm, the gradient of the 
rotation angles in every layer can be calculated as follows 

2)(1/)()( l
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where  
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l
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


 ,                    (17) 

Because gradient calculation is more complicated, the 
standard gradient descent algorithm is not easy to convergence. 
Hence we employ the L-M algorithm to adjust the QINN 
parameters. 

Let p denote the parameter vector, e denote the error vector, 
and J denote the Jacobian matrix. p, e and J are respectively 
defined as follows 
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According to L-M algorithm, the QINN iterative equation 
is written as follows 

)()())()(( T1T
1 ttttttt PePJIPJPJPP 
               (21) 

where t denotes the iterative steps, I  denotes the unit matrix, 

and t is a small positive number to ensure the matrix 

IPJPJ ttt )()(T  invertible. 

If the value of the evaluation function E reaches the 
predefined precision within the preset maximum number of 
iterative steps, then the execution of the algorithm is stopped, 
else the algorithm is not stopped until it reaches the predefined 
maximum number of iterative steps. 

D. Multiple Attractors Theorems 

It can be seen from Eq.(14) that there exist many global 
optimum solutions (attractors) for the iteration sequences 

)}({ tij  and )}({ tjk . In other words, the global optimal 

solution is not the only one. In fact, we have the following 
theorems. 

Theorem 1. If ij
~

 and jk~  are the global optimum 

solutions of the iteration sequences )}({ tij  and )}({ tjk , then 

ij  and jk  defined by Eqs.(22)-(23) are also the global 

optimum solutions of )}({ tij  and )}({ tjk , where 1n  and 2n  

are arbitrary integers. 
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Proof. Suppose ky  is the actual output corresponding to 

the desired output ky~ . According to Eq.(14), we have 
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Hence, ij  and jk  defined by Eq.(22) are the global optimum 

solutions of )}({ tij  and )}({ tjk . 
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Hence, the ij  and jk  defined by Eq.(23) are the global 

optimum solutions of )}({ tij  and )}({ tjk .                              □ 

Theorem 2. For R , there exist all the global optimum 

solutions of the iteration sequences )}({ tij  and )}({ tjk  in 

range ]2,[   , where R  denotes the real number set. 

Proof. Suppose ij
~

 and jk~  are the global optimum 

solutions of the iteration sequences )}({ tij  and )}({ tjk , and 

]2,[
~

 ij , ]2,[~  jk . There exist two integers 1n  

and 2n , which meet











jkjk

ijij

n

n





~2

~
2

2

1
 and











]2,[

]2,[





jk

ij
. 

According to Theorem 1, ij  and jk  are also the global 

optimum solutions of )}({ tij  and )}({ tjk . Hence, for R , 

there exist all the global optimum solutions of the iteration 
sequences )}({ tij  and )}({ tjk  in range ]2,[   .                     □ 

E. Algorithm Description 

The structure of proposed algorithms is shown in the 
following. 

Procedure QINN 
Begin 

0t  
(1) Initialization of parameters, including: 

a) the predefined precision  , 

b) the predefined maximum of iterative steps G , 
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c) the parameter of L-M algorithm t , 

d) the parameters of QINN )2/,2/(, ,,  kjji . 

(2) While (not termination-condition) 
Begin 

a) computing the actual outputs of all samples by 
Eqs.(13, 14), 

b) computing the value of the evaluation function 
E  by Eq.(15). 

c) adjusting the parameters kjji ,, , by Eq.(21). 

d) 1 tt . 

End 
End 

IV. PRACTICAL APPLICATION 

In this section , three examples are used to compare it with 
the BPNN. Our QINN has the same structure and parameters as 
the BPNN in the simulations, and the L-M algorithm is also 
applied in the BPNN. 

A. Modeling of Acrylamide Homogeneous Polymerization 

Some experimental results for the acrylamide homogeneous 
polymerization are listed in Table 1.  

TABLE I.  THE EXPERIMENTAL RESULTS OF POLYMERIZATION 

CHEMICAL REACTION 

t/min T1/oC T2/oC T3/oC T4/oC T5/oC T6/oC T7/oC T8/oC T9/oC 

0 17 18 18 18 14 15 15 14 13 

10 19 16 21 18 15 16 16 15 15 

20 23 16 23 19.5 17 16 18 16 16 

30 27 17 26 21.5 20 16.5 21 17.5 18 

40 30 18 31 24.5 22 18 25 19.5 19 

50 34 19 36 29.5 25 20 30 22 21 

60 39 20 43.5 34 28 22 36 24 23 

70 45 21 52.5 38 33 24 40 26.5 25 

80 52 22.5 59 46 38 29 54 30.5 27 

90 64 24 68 56 46 32 64 35.5 30 

100 73 26 73 63 52 36 73 43 34 

110 81 28 77 74 60 40 76 54.5 41 

120 82 32 79 78 66 44.5 77 67 44 

130 84 36 83 93 72 50.5 78 79.5 49 

140 88 45 87 95 76 57.5 79 83 54 

150 92 54 96 97 81 66.5 84 87 65 

160 101 64 98 100 83 67 86 93 77 

170 113 68 102 110 94 69 89 98 80 

Nm 1811 1838 1894 1853 1496 1701 1754 1915 1644 

 
In the Table 1, t denotes the cumulative time by minute 

starting from 0, Ti (i=1,2,…,9) are the testing results of the ith 

group experimental temperature (oC), Nm are the molecules of 

resultant ( × 106cm3), known as the concentration of the 

acrylamide homogeneous polymerization resultant. In Fig.7, 
we give nine curves that describe the acrylamide homogeneous 
polymerization experimental temperature varying with time 
(min). Each curve corresponds to the molecules of a group of 
experimental resultants. For ease of comparison, some relevant 
concepts are defined as follows. 

Approximation error. Suppose l
ky  and l

ky  denote the 

desired output and actual output after training, respectively. 
The approximation error is defined as 

||maxmax
11

l
k

l
k

mkLl
yyE 


,                        (26) 

where L denotes the total number of the training samples. 

Average approximation error. Suppose NEEE ,,, 21   

denotes the approximation error over N simulations, 
respectively. The average approximation error is defined as 

 


N

i
iavg E

N
E

1

1
.                            (27) 

Convergence. Suppose E denotes the approximation error 
after training, and   denotes the predefined target error. If 

E , the networks training is considered to have converged. 

 

Figure 7.  Curves of temperature-time. 

For a neural network, each curve corresponds to an input 
sample, and the number of the resultant molecules is regarded 
as the corresponding desired output.  

In this experiment we apply respectively QINN and BPNN 
to approximate the data in the Table 1. The L-M algorithm is 
also employed to adjust weights of the BPNN. There are 9 
samples in Table 1, each sample consists of eighteen input 
values and one output value. Hence, there is eighteen input 
nodes and one output node in QINN and BPNN. In order to 
fully compare the approximation ability of two NNs, the 

number of hidden nodes are respectively set to 5, 6, … , 20. 

The normalized maximum target error is set to 10-3, and the 
maximum number of iterative steps is set to 1000. The QINN 
rotation angles are initialized to random numbers in 

)2/,2/(  . In BPNN, all weights are initialized to random 

values in (-1,1). The parameter t of L-M algorithm is 0.01.  

To reduce the randomness of contrast results, for each kind 
of setting of hidden nodes, two NNs are independently trained 
10 times, respectively, and their average training results are 
recorded. Then we use three indicators, such as the average 
approximation error, the average iterative steps, and the 
convergence times, to compare QINN and BPNN. Training 
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result contrasts are shown in Table 2. The same results also are 
illustrated in Figs.8-9.  

TABLE II.  TRAINING RESULTS COMPARISON OF QINN AND BPNN 

Hidden 
nodes 

average approximation 
error 

average iterative 
steps 

convergence 
times 

QINN BPNN QINN BPNN QINN BPNN 

5 0.44 0.50 23 66 10 10 

6 0.45 0.47 19 38 10 10 

7 0.45 0.49 19 37 10 10 

8 0.43 0.49 20 37 10 10 

9 0.42 0.49 16 37 10 10 

10 0.41 0.48 16 34 10 10 

11 0.40 0.50 14 38 10 10 

12 0.40 0.49 15 35 10 10 

13 0.43 0.50 18 36 10 10 

14 0.39 0.49 14 37 10 10 

15 0.41 0.49 13 36 10 10 

16 0.44 0.50 14 36 10 10 

17 0.41 0.49 30 39 10 10 

18 0.43 0.49 14 36 10 10 

19 0.39 0.48 14 37 10 10 

20 0.42 0.49 12 36 10 10 
 

 

Figure 8.  The average approximation error contrast. 

 

Figure 9.  The average iterative steps contrast. 

Form the experimental results, as far as the average 
approximation error is concerned, that of QINN is obviously 
less than that of BPNN under each setting of hidden nodes. 
Although both QINN and BPNN have converged in all 
experiments, the average iterative steps of QINN are obviously 

less than that of BPNN. The experimental results show that the 
QINN is obviously superior to the BPNN. 

B. Wine Recognition 

In this section, we apply QINN to identify the type of wine. 
All the instances data are the results of a chemical analysis of 
wines grown in the same region in Italy but derived from three       
different cultivars. The analysis determined the quantities of 13 
constituents found in each of the three types of wines. The data 
comes from the following url: http://archive.ics.uci.edu/ml/ 
machine-learning-databases/wine-quality/winequality-red.csv.  

All instances are divided into three categories, marked as 1, 
2, 3 respectively. Each of instances contains 13 continuous 
attributes as follows: 1) Alcohol; 2) Malic acid; 3) Ash; 4) 
Alcalinity of ash; 5) Magnesium; 6) Total phenols; 7) 
Flavanoids; 8) Nonflavanoid phenols; 9) Proanthocyanins; 10) 
Color intensity; 11) Hue; 12) OD280/OD315 of diluted wines; 
13) Proline. The number of instances per class is equal to 48. 

According to the characteristics of instances, we know that 
both QINN and BPNN have thirteen input nodes, one output 
node. In order to enhance the objectivity of comparison results, 

we set the number of hidden nodes equal to 10, 11, …, 20, 

respectively. The normalized maximum absolute error is set to 
1/6, and the maximum number of iterative steps is set to 100. 
The other parameters of two NNs are set in the same way as 
the previous simulation. For ease of comparison, some 
evaluation indicators are defined as follows. 

The number of correct recognition. Suppose 1y , 2y ,…, 
My  denote the desired outputs of M samples, and 1y , 2y ,…, 

My  denote the corresponding actual outputs, where M denotes 

the number of samples in training set. The number of correct 
recognition for training set is defined as 

NyyMN
N

n

M

m

mm
tr /)|][||(

1 1  
                   (28) 

where N denotes the total number of training trials, “[x]” 
denote the integer closest to the real number x , where by 

convention we round halves down. Similarly, the number of 
correct recognition for the testing set is defined as 

NyyMN
N

n

M

m

mm
te /)|][||(

1 1  
                  (29) 

where M denotes the number of samples in testing set. 

The ratio of correct recognition. The ratio of correct 
recognition for the training set is defined as 

MNR trtr /100                                  (30) 

Similarly, the ratio of correct recognition for the testing set 
is defined as 
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MNR tete /100                                  (31) 

In all samples, we use the first 96 data to train networks, 
use the remaining 48 data to test the generalization of two NNs, 
and use five indicators (namely, the ratio of correct recognition 
for training set and testing set, the average iterative steps, the 
average running time Tavg, and the convergence times) to 
compare QINN with BPNN. To reduce the randomness of 
contrast results, for each kind of setting of hidden nodes, two 
NNs are independently trained 100 times, respectively, and 
their average training results are recorded. The training result 
contrasts are shown in Tables 3,4, and the same results also are 
illustrated in Figs.10-12. 

TABLE III.  RECOGNITION RATIO COMPARISON FOR WINE RECOGNITION 

Hidden 
nodes 

ratio of correct recognition for 
training 

ratio of correct recognition fro 
testing 

QINN BPNN QINN BPNN 

10 100 100 97.52 97.17 

11 100 100 97.48 96.79 

12 100 100 97.85 96.94 

13 100 100 97.75 96.96 

14 100 100 98.29 96.75 

15 100 100 97.81 97.06 

16 100 100 97.85 96.54 

17 100 100 98.21 96.33 

18 100 100 98.23 96.94 

19 100 100 98.19 96.56 

20 100 100 98.60 96.23 

TABLE IV.  PERFORMANCE COMPARISON OF QINN AND BPNN 

Hidden 
nodes 

average running time 
(s) 

average iterative 
steps 

convergence 
times 

QINN BPNN QINN BPNN QINN BPNN 

10 1.176 1.190 29.83 52.28 100 100 

11 1.224 1.344 28.01 52.34 100 99 

12 1.274 1.499 26.53 51.72 100 100 

13 1.395 1.674 26.33 52.18 100 100 

14 1.513 1.830 25.65 51.17 100 100 

15 1.640 2.067 25.32 51.73 100 100 

16 1.703 2.237 24.48 50.84 100 100 

17 1.825 2.471 24.74 50.26 100 100 

18 1.993 2.752 23.79 50.90 100 100 

19 2.193 2.945 24.21 49.41 100 100 

20 2.328 3.424 23.23 50.98 100 100 

 

Figure 10.  Recognition ratio contrasts of QINN and BPNN. 

 

Figure 11.  Average running time contrasts of QINN and BPNN. 

 

Figure 12.  Average iterative steps contrasts of QINN and BPNN. 

From Table 3 and Fig 10, although both QINN and BPNN 
obtain the recognition ratio of 100% for training set, QINN 
obtains the greater recognition ratio than BPNN for testing set. 
On the other hand, From Table 4 and Fig 11-12, although the 
average running time of QINN is slightly less than that of 
BPNN, the average iterative steps of QINN is obviously less 
than that of BPNN. Experimental results show that the QINN 
has a better approximation and generalization capability than 
the BPNN. 

C. Time series prediction for Mackey-Glass 

Mackey-Glass time series can be generated by the 
following iterative equation 

)(
)(1

)(
)()1(

10
tbx

tx

tx
atxtx 









,             (32) 

where t  and   are integers, 2.0a , 1.0b , 17 , and 

)1,0()0( x . 

From the above equation, we may obtain the time 

sequence 1000
1)}({ ttx , We take the first 800, namely 800

1)}({ ttx , 

as the training set, and the remaining 200, namely 1000
801)}({ ttx , 

as the testing set. Our prediction scheme is to employ 15 data 
adjacent to each other to predict the next one data. Namely, in 
our model, the number of input nodes equals to15, and there is 
only one output node. 
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In order to fully compare the approximation ability of two 
models, the number of hidden nodes is respectively set to 

30,25,20,15,10 . The predefined precision is set to 0.05, and 

the maximum of iterative steps is set to 100. The QINN 
rotation angles are initialized to random numbers 

in )2/,2/(  . For BPNN, all weights are initialized to 

random numbers in (-1,1), and the Sigmoid functions are used 
to activation functions in hidden layer and output layer. Some 
relevant concepts are defined as follows. 

Approximation error. Suppose ly and ly denote desired 

output and the corresponding actual output after training, 
respectively. The approximation error is defined as 

||max
1

ll

Ll
yyE 


. where L denotes the number of the 

training samples. 

Average approximation error. Suppose NEEE ,,, 21   

denote the approximation error over N  experiments, 

respectively. The average approximation error avgE  is defined 

as the arithmetic mean of these NEEE ,,, 21  . 

Convergence ratio. Suppose E  denotes the approximation 
error after training, and   denotes the target error. If E , 

the network training is considered to have converged. Suppose 
N denotes the total number of training trials, and C  denotes 

the number of convergent training trials. The convergence ratio 

is defined as NC / . 

Iterative steps. In a training trials, the times of adjusting all 
network parameters is defined as iterative steps. 

Average iterative steps. Suppose NSSS ,,, 21  denote the 

iterative steps over N  training trials, respectively. The average 

iterative steps avgS  is defined as the arithmetic mean of these 

NSSS ,,, 21  . 

Average running time. Suppose NTTT ,,, 21   denote the 

running time over N  training trials, respectively. The average 

running time avgT  is defined as the arithmetic mean of these 

NTTT ,,, 21  . 

Our experiment scheme is that, for each of hidden nodes, 
QINN and BPNN are respectively run 10 times. Then we use 
four indicators, such as the average approximation error, the 
average iterative steps, the average running time, and the 
convergence ratio, to compare QINN with BPNN. Training 
result contrasts are shown in Tables 5. 

Form Tables 5, we can see that the performance of QINN is 
obviously superior to that of BPNN, and the QINN has better 
stability than BPNN when the number of hidden nodes 
changes. 

Next, we investigate the generalization ability of QINN. 
Our experiment scheme is that, the QINN and BPNN are 
respectively done 10 training on the training set, and are 
immediately investigated the generalization ability on the 

testing set after each training. The average results of 10 testing 
are regarded as the evaluation indexes. To facilitate comparison, 
we first present the following definition of evaluation indexes. 

TABLE V.  TRAINING RESULTS COMPARISON OF QINN AND BPNN 

Index model 
Hidden nodes 

10 15 20 25 30 

avgE  
QINN 0.0426 0.0420 0.0419 0.0418 0.0428 
BPNN 0.3198 0.1377 0.2292 0.4122 0.2284 

avgS  
QINN 6.20 6.10 6.30 4.90 5.90 
BPNN 45.8 23.9 33.4 47.6 29.8 

avgT (s) 
QINN 16.65 19.21 28.15 29.04 35.48 
BPNN 23.02 21.73 42.95 63.37 74.48 

 (%) 
QINN 100 100 100 100 100 
BPNN 70 90 80 60 80 

 

Average prediction error. Suppose ly and )(ˆ tyl  denote 

the desired output and the corresponding prediction output after 

the tht testing respectively. The average prediction error over 

N  testing is defined as 



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Average error mean. Suppose ly and )(ˆ tyl  denote the 

desired output and the corresponding prediction output after the 
tht testing respectively. The average error mean over N  testing 

is defined as  
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. 

The evaluation indexes contrast of QINN and BPNN are 
shown in Table 6. The experimental results show that the 
generalization ability of QINN is obviously superior to that of 
BPNN. 

TABLE VI.  PREDICTION RESULTS COMPARISON OF QINN AND BPNN 

Index model 
Hidden nodes 

10 15 20 25 30 

avgE  
QINN 0.051 0.050 0.051 0.051 0.053 
BPNN 0.332 0.152 0.244 0.425 0.243 

meanE  
QINN 0.009 0.009 0.009 0.009 0.009 
BPNN 0.148 0.053 0.107 0.182 0.106 

 
Finally, we theoretically explain the above experimental 

results. Assume that n denotes the number of input nodes, p 
denotes the number of hidden nodes, and m denotes the number 
of output nodes. It is clear that the number of adjustable 
parameters in QINN and BPNN is the same, ie, equals np+pm. 
However, the methods of adjusting parameters are completely 
different. For processing of input information, QINN and 
BPNN take the different approaches. In QINN, using quantum 
information processing mechanism, the inputs are circularly 
mapped to the output of quantum controlled-NOT gates in 
hidden layer and output layer. As the controlled-NOT gate's 
output is in the entangled state of multi-qubits, therefore, this 
mapping is highly nonlinear, which make QINN have the 
stronger approximation and generalization ability, which is 
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consistent with the experimental results. On the other hand, the 
number of the attractors of the QINN is more than that of the 
BPNN, and the multiple attractors are the main feature of the 
QINN. Actually, compared with the BPNN, the existence of 
the inbuilt periodic attractors in the QINN results in an efficient 
convergence, which is consistent with the conclusions of 
Theorem 2. 

It is worth pointing out that QINN is potentially much more 
computationally efficient than all the models referenced above 
in the Introduction section. The efficiency of many quantum 
algorithms comes directly from quantum parallelism that is a 
fundamental feature of many quantum algorithms. 
Heuristically, and at the risk of over-simplifying, quantum 
parallelism allows quantum computers to evaluate a function 
f(x) for many different values of x simultaneously. Although 
quantum simulation requires many resources in general, 
quantum parallelism leads to very high computational 
efficiency by using the superposition of quantum states. In 
QINN, the input samples have been converted into 
corresponding quantum superposition states after 
preprocessing. Hence, as far as a lot of quantum rotation gates 
and controlled-NOT gates are concerned in QINN, information 
processing can be performed simultaneously, which greatly 
improves the computational efficiency. Because the above two 
experiments are performed in classical computer, the quantum 
parallelism has not been explored. However, the efficient 
computational ability of QINN is bound to stand out in future 
quantum computer. 

V. CONCLUSIONS 

This paper proposes quantum-inspired neural network 
model based on the principle of quantum computing. The 
architecture of the proposed model includes three layers, where 
both the hidden layer and output layer consists of quantum 
neurons. An obvious difference from classical BPNN is that 
each dimension of a single input sample consists a qubit rather 
that a value. The activation function of hidden layer and output 
layer are redesigned according to the principle of quantum 
computing. The L-M algorithm is employed for learning. With 

application of the information processing mechanism of 
quantum controlled-NOT gates, proposed model can 
effectively obtain the sample characteristics. The experimental 
results reveal that the approximation and generalization 
abilities of proposed model are obviously stronger than that of 
the BPNN. The following issues of the proposed model, such 
as continuity, computational complexity, and improvement of 
learning algorithm, are subject of further research. 
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