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Abstract—When the Grover's algorithm is applied to search an 

unordered database, the difference in marked items is not taken 

into consideration. When the fraction of marked items is greater 

than 1/4, the successful probability rapidly decreases with the 

increase of marked items, and when the fraction of marked items 

is greater than 1/2, the algorithm is disabled. Aiming at these two 

problems, first, an improved Grover's algorithm with the 

weighted targets is proposed in which each target is endowed a 

weight coefficient according to its significance. Using these weight 

coefficients, we rewrite the targets as a quantum superposition, 

which can make the probability for getting each target is 

approximately equal to its weight coefficient. Secondly, the 

adaptive phase matching is proposed based on the weighted 

targets, in which the directions of two phase rotations are 

contrary, and the amplitudes of two phase rotations are 

determined by the inner-product of the target quantum 

superposition and the initial state of system. When this inner-

product is greater than 0.3090, the successful probability is equal 

to 1 with at most two Grover iterations. The validity of the 

improved quantum searching algorithm and the new phase 

matching are verified by two search examples.  

Keywords- quantum computing; quantum searching; Grover's 

algorithm; weighted target;  phase matching 

I.  INTRODUCTION 

The quantum computing is a rapidly rising frontier that 
performs information processing by the quantum mechanics. 
The research of quantum computing in recent 20 years shows 
that the quantum computing is much better than the classical 
counterpoints. In the aspect of solving actual problem by using 
the quantum parallelism, many quantum algorithms have been 
proposed in which Grover's quantum searching algorithm [1] 
and Shor's quantum algorithm of very large integer 
factorization [2] are the most famous. The Grover's algorithm 
has such two features as follows: firstly, for searching a marked 
state in an unordered database, it achieves quadratic speed up 
substantially over many (though not all) classical search 
algorithms that use search heuristics. Secondly, rather than 
search the elements directly, Grover's algorithm concentrates 
on index to those elements, which is just a number in the range 
0 to N-1. Hence, the Grover's algorithm is general. As the two 

features mentioned above, the Grover's algorithm has been 
widely paid attention. The research of Grover's algorithm has 
been concentrated on improving, generalizing, and applying 
since it was proposed in 1996. In the aspect of improving, 
Grover argued that, in [3], the Hadamard transform, used in the 
original setting, might be replaced by an arbitrary unitary 
transformation. Long presented the new phase matching [4], in 
which two inversions (namely, rotations with  ) are replaced 

by two arbitrary phase rotations that is equal to each other. In 
the aspect of generalizing, a generalization was obtained by 
allowing the replacement of the uniform superposition of all 
basis states, used as the initial state of the algorithm in the 
original setting, by an arbitrary pure [5] or mixed [6] quantum 
state. In the aspect of applying, a quantum associative memory 
model [7] was presented by combining the Grover's algorithm 
with neural network, which takes on an exponential increase in 
the capacity of the memory when compared to traditional 
associative memories such as the Hopfield network. In [8], a 
quantum associative memory with distributed queries was 
proposed by generalizing the model mentioned above. 

Grover’s algorithm provides a quantum method for solving 
unstructured search problems in roughly the square root of the 
number of steps required using a classical computer. This 
amounts to a polynomial speed up over what is possible 
classically. Although this is not as impressive a speedup as that 
seen in other quantum algorithms, such as the Deutsch-Jozsa 
algorithm, for which an exponential speedup is obtained, 
Grover’s algorithm is applicable to a much wider range of 
computational problems. Moreover, a quadratic speedup is not 
bad either. While it won’t tame problems having an 
exponential complexity scaling it could, nevertheless, allow 
significantly larger problem instances to be solved than might 
otherwise be possible. For example, in an airline scheduling 
problem any given airline only has finitely many aircraft, and 
finitely many routes. It is quite possible that a quadratic 
speedup in solving a scheduling problem is sufficient to confer 
a practical advantage. 

The problem of the current Grover's quantum searching 
algorithm is below. First, the search targets are treated equally 
without discrimination, the difference in importance of the 
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targets is not considered, and the probability of getting each 
target is equal, which is out of place in some cases. Secondly, 
when the fraction of marked items is greater than 1/4, the 
successful probability rapidly decreases with the increase of 
marked items, and when the fraction of marked items is greater 
than 1/2, the algorithm is disabled. To solve these problems, 
this paper proposes an improved Grover's searching algorithm 
that based on the weighted targets. Firstly, each search target is 
endowed a weight coefficient. Secondly, all search targets are 
represented as a quantum superposition state using weight 
coefficient endowed, which shows the difference in importance 
of each search target. Based on the quantum superposition of 
the search targets, an improved Grover's algorithm is presented 
in which the probability of finding each target is approximately 
equal to its weight coefficient. At the same time, we propose a 
new phase matching based on the weighted targets. When the 
inner-product of the target superposition and the initial state of 
system is greater than 0.3090, the marked state is obtained with 
certainty with at most two Grover iterations. 

II. THE GROVER'S ALGORITHM BASED ON THE WEIGHTED 

TARGETS 

Although the original Grover's algorithm achieves 

quadratic speed up substantially over many classical search 

algorithms, a certain queries can not be exactly described 

because all search targets are treated equally without 

discrimination. Hence, it is necessary to generalize the original 

Grover's algorithm to the one based on the weighted targets. 

A. Construction of the Quantum Superposition State of the 

Weighted Targets 

Suppose the  Mqqq |,,|,| 21   denote the marked states. 

The weight coefficients 
Mqqq www ,,,

21
 denote the important 

degree of each marked state and satisfy 1
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and 0
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coefficient as its probability amplitude, the quantum 
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Based on Eq.(1), the Oracle operator can be written as 

||2 qqIO  .                                       (2) 

The Hadamard transformation operator is same as the 
operator defined in common Grover's algorithm, as follows 
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B. The Iterative Equation of Algorithm 

The iterative equation of algorithm can be obtained using 
method in [8]. Suppose the algorithm begins with an uniform 
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After the unitary operator U (second sub-step of an 

iterative), the superposition becomes 
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where the   denotes the average of the probability amplitude 

of all basic states in the | . 

Hence, after one Grover iteration, the iterative equation of 
the probability amplitude of each basic state is taken on 

i
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From Eqs.(1, 5), using some algebra gives 
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To obtain the expression of )(| tq   , suppose 

)sin(| )(   tAq t .                                 (8) 

By inserting this expression into Eq.(7) and using some 
trigonometry, three parameters in Eq.(8) may be written as 
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From Eq.(6), using some trigonometry it is possible to derive 
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C. The Successful Probability of Algorithm 

By Eq.(8), Eq.(7) may be represented as follows 

)sin(| )(   tq t .                               (11) 

If the initial state |  of the system is equal to the 

superposition state q|  after some Grover iterations, the 

successful probability should be equal to 1. Considering 
1|  q , hence, it is necessary to study the relation between 

the successful probability P  and the inner product  |q . For 

this relation, we propose such theorem as follows. 

Theorem 1: After t  Grover iterations, the successful 

probability satisfy such relation as follows 
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Hence, it is sufficient that the successful probability is 
expressed by the square of the inner product of the |  and 

the q|  after some Grover iterations. Noting that, the 

parameter $t$ denotes the iteration steps, hence, after t  

Grover iterations, the successful probability can be obtained 
by Eq.(11). 
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wher  ][   denotes the rounding operator. 
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The curve of 2)(
)|( 0tq    is shown in Fig.1. 

It can be seen from Fig.1 that, after at most 0t  iterations, 

observation of the state in the computational basis then yields 
a solution to the search problem with probability at least one-
half. In fact, the state |  of the system is evolved toward the 

target superposition state q|  in this algorithm. Therefore, 

after 0t  iterations, the probability of each target is 

approximately equal to its weight coefficient, which the 
importance of each target is shown by its probability. 
However, the following problems remain, namely, the 
successful probability decreased rapidly as the   increases. 

 

Figure 1.  The probability curve of the Grover's algorithm based on the 

weighted targets. 

D. The Relation Between the Weighted Grove's Algorithm 

and the Original one 

For the relation between the improved Grover's algorithm 
and the original one, we have such conclusion as follows. 
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where P  is the probability of finding the targets in the 
original Grover's algorithm. Therefore, after the same iteration 
steps, the probabilities of two algorithms are equal, namely, 

these two algorithms are equivalent.                                      □ 

III. THE ADAPTIVE PHASE MATCHING FOR WEIGHTED 

GROVER'S ALGORITHM 

A. The Adaptive Phase Matching 

The two phase shift operators in the weighted Grover's 
algorithm may be generally expressed as follows 
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expressed as the following theorem. 
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The successful probability curve is shown in Fig.2, where 
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Figure 2.  Comparison of successful probability curves between the adaptive 

phase matching and the original one. 
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B. Algorithm Description 

According to the value of  , the algorithm 

implementation steps can be divided into the following three 
cases. 

(I) When 
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Step1 Applying Eq.(15) to the initial state of the system, 

  |ˆ| 1 O . 

Step2 Applying Eq.(16) to the 1
ˆ| , namely,  11

ˆ||  U . 

Step3 Reapplying Eq.(15) to the 1| , namely,  12 |ˆ|  O . 

Step4 Reapplying Eq.(16) to the 2
ˆ| , namely,  22

ˆ||  U . 

Step5 Measuring 2| . 

(III) When 14/1   , the adaptive phase matching is 

applied, and )
2

12
arccos(







 . The search process can be 

described as follows: 

Step1 Applying Eq.(15) to the initial state of the system, 

  |ˆ| 1 O . 

Step2 Applying Eq.(16) to the 1
ˆ| , namely,  11

ˆ||  U . 

Step3 Measuring 1| . 

IV. SEARCHING EXAMPLE 

A. Weighted Targets Searching 

Suppose the system has three qubits and the initial state be 
a uniform superposition state. The marked states are 010| , 

100| , and 110| . The weight coefficients are 0.005, 0.045, and 

0.95, respectively. The initial state of the system is expressed 
as follows 















111|110|101|100|

011|010|001|000|

8

1
| . 

By Eq.(1), the superposition of three marked states is 

 110|95.0100|045.0010|005.0| q . 

By Eqs.(9, 13), the number of iteration steps is 

1
921458.0

460729.02/2/
0 







 








 







t . 

By Eq.(10), the iterative equation of probability amplitude of 
each marked state is represented as follows 
















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)369589.1921458.0sin(978742.0)sin(

)399017.1921458.0sin(358835.0)sin(

)837372.1921458.0sin(366499.0)sin(

222

111

000

ttAa

ttAa

ttAa

tt

tt

tt







. 

Hence, the probability of getting each search target is 

























884903.0))sin((

068977.0))sin((

019737.0))sin((

2
202

2
2100|

2
101

2
1100|

2
000

2
0101|

0

0

0







tAaP

tAaP

tAaP

t

t

t

. 

The relation between these three successful probabilities and 
the corresponding weight coefficients is shown in Table1. 

TABLE I.  THE RELATION BETWEEN THE SUCCESSFUL PROBABILITY AND 

THE WEIGHT COEFFICIENT 

Marked State 010|  100|  110|  

Probability 0.018737 0.068977 0.884903 

Weight coefficient 0.005000 0.045000 0.950000 

 
It can be seen from Table1 that the probabilities of three 

marked states fully represent their respective importance, and 
the more important the target is, the greater probability is 
obtained, which the flexibility of this algorithm is shown. 

According to the above results, when 10 t , the probability 

of finding all marked states is 972617.0110|100|010|   PPPP . 

By Eqs.(8, 9), )460729.0921458.0sin()sin(| )(  ttq t  . 

We can get 964846.0)|( 2)( 0 
t

q  from the above equation. 

Hence, 2)(
)|( 0tqP   , which is coincident with the 

conclusion of the theorem 1. 

For ease of comparison, the searching process by the 
original Grover's algorithm is presented as follows. In this 
example, 8N , 3M , the iteration steps is 

1
)/arcsin(2

)/arccos(















NM

NM
R . The searching process is below 

)11111111(
22

1

|)||2(ˆ|
1



  


M

m
mmI

, 

)13131311(
24

1ˆ|)||2(|   I . 

The successful probability of each marked state is equal to 

28125.0
24

3
2

110|100|010| 












  PPP . The total probability 

is equal to 84375.0110|100|010|   PPPP , which shows the 
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original Grover's algorithm can not distinguish the importance 
of different targets. 

B. Weighted Targets Searching With Adaptive Phase 

Matching 

There are 32 students in a class whose serial numbers are in 
range 0 to 31. (I) The search targets are the students whose 
serial number satisfies 42  kn , where 13,,2,1,0 k . The 

target serial numbers and the marked states are shown in Table 
2. (II) The search targets are the students whose serial number 
satisfies 36  kn , where 5,,2,1,0 k . The target serial 

numbers and the marked states are shown in Table 3. 

TABLE II.  THE TARGET SERIAL NUMBERS AND MARKED STATES 

k  
Serial 

Number 

Marked 

States 
k  

Serial 

Number 

Marked 

States 

0 4 00100|  7 18 10010|  

1 6 00110|  8 20 10100|  

2 8 01000|  9 22 10110|  

3 10 01010|  10 24 11000|  

4 12 01100|  11 26 11010|  

5 14 01110|  12 28 11100|  

6 16 10000|  13 30 11110|  

 

TABLE III.  THE TARGET SERIAL NUMBERS AND MARKED STATES 

k  
Serial 

Number 

Marked 

States 
k  

Serial 

Number 

Marked 

States 

0 3 00011|  3 21 10101|  

1 9 01001|  4 27 11011|  

2 15 01111|     

 

In these two searching, 32N , using 5 qubits can store all 

serial numbers. The initial state of the |  is expressed as 

)31|2|1|0(|
24

1
|   . 

(I) Suppose the quantum superposition state of all marked 
states is constructed as follows 


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32

4
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, 

4

1
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1
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8
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4
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6
|

2

2 













  q , 

)25/7arccos())2/(11arccos(   . 

According to theorem 3, the probability of getting correct 
results is equal to 1 only one Grover iteration. The search 
process can be described as follows. 
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(2)    ˆ|)||)1((| Iee ii  
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




cacacacacacacaca

babababababaaaaa
, 
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
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



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


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0
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1
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i

e
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(3) The successful probability 

 14|,12|,10|,8|,6|,4| : 
4

3
||6 2

1  bP , 

 30|,28|,26|,24|,22|,20|,18|,16| : 
4

1
||8 2

2  cP , 

For all marked states: 121  PPP . 

(II) Suppose the quantum superposition state of all marked 
states is constructed as follows 

)27|21|15(|
32

1
9|

32

4
3|

32

25
| q , 
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










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
  q , 

4/18/)53(   , 

)25/)167564arccos(())4/()53(1arccos(   . 

According to theorem 3, the probability of getting correct 
results is equal to 1 only two Grover iteration. The search 
process can be described as follows. 

(1)    ||)|)1((ˆ| 1 qqeI i  
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(2)  11
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(5) The successful probability 

32/25||:3| 2
1  bP , 

8/1||:9| 2
2  cP , 

32/3||3:27|,21|,15| 2
3  dP . 

For all marked states: 1321  PPPP . 

V. CONCLUSIONS 

An improved Grover's algorithm with weighted targets and 
an adaptive phase matching are proposed. Using this algorithm, 
the marked states can be searched in an unsorted quantum 
database, and the probability of each target is coincident with 
its weight coefficient or importance, which the flexibility of 
algorithm is shown. With application of the new phase 
matching, when the inner-product of the target quantum 
superposition and the initial state of system is greater than 

2/1)8/)53((  , the probability of getting correct results is 

equal to 1 after at most two Grover iterations. The validity of 
the new phase matching is verified by two search examples. 
Further investigation of this algorithm is needed to increase its 
success probability when the inner-product mentioned above is 

less than 2/1)8/)53((  . 
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