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I.  INTRODUCTION  

This A system with nonholonomic constraints is that the 
system can be driven to a desired configuration using fewer 
inputs (forces/torques of actuators) than the degrees of the 
freedom of the system [19] such as rolling contact, hopping 
robots [1], underactuated manipulators[2], space robots [3], 
mobile cars[4], trailers[5], acrobat robots[6] and so on, which 
is a notable characteristic of the system with nonholonomic 
constraints, a great number of research results has been 
produced in studies on the dynamical models of nonholonomic 
control systems with linear constraints due to the demand for 
control of the referred systems. Control of object motion and 
internal force by multi-fingered robot hand with rolling contact 
have been widely studied in control theory used to deal with 
uncertain dynamical systems ([7], [8], [9], [10], [11]). In [20], a 
three-fingered robot hand manipulating an object with rolling 
contact is considered, where each finger has three degrees of 
freedom, and the authors  proposed a method to control the 
object motion and the internal force. In [21], the authors 
considered a two-fingered robot hand manipulating an object 
with the pure rolling contact, where each finger has six degrees 
of freedom. Ilya Kolmanovsky et al. [22] studied a class of 
nonholonomic control systems in extended power form is. 
Under the assumptions Lagrange's equations, it is demonstrated 
that can be can be transformed into the extended power form 
including classical nonholonomic constraints. Jian Wang et al. 
[23]  proposed a stable motion tracking control law for 
mechanical systems subject to both nonholonomic and 

holonomic constraints, developed a  control law at the dynamic 
level and can deal with model uncertainties, and the proposed 
control law ensured the desired trajectory tracking of the 
configuration state of the closed-loop system. Zhendong Sun et 
al. [24] addressed the problem of feedback stabilization of 
nonholonomic chained systems within the framework of 
nonregular feedback linearization,  formulated the nonsmooth 
version of nonregular feedback linearization, provided a 
criterion for nonregular feedback linearization is, and proved 
that the chained form is linearizable via nonregular feedback 
contro. 

In general, much of the research focused on the Pfaffian 

constraint 
( ) 0TJ q q 

, 
( ) ,n mJ q R 

 and eliminating 
Lagrange multiplier with natural orthogonal complement 

technique. But this method needs 
( )J q

 is precisely available, 

and needs to calculate the matrix 
( )( ) n n mS q R  

, whose 

column vectors span 
( )TJ q

 calculate a set of linearly 

independent vector field 
( ) n mv q R 

 such that 

( ) ( )q S q v q
. In this paper, applying the elementary 

transformation and the D’ Alembert-Lagrange principle only, 
we derive the equations of motion of a mechanics system 
subjected to affine kinematic constraints in the presence of both 
kinematic and dynamic parametric uncertainty. The method 
which proposed in this paper  can avoid the  calculation of  

( ) n mv q R 
. 
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II. PREPARE YOUR PAPER BEFORE STYLING SYSTEM 

MODEL 

In this paper, we consider a mechanical system whose state is 

defined by generalized coordinates 1 2( , , , )T

nq q q q
 and 

velocities
q 

 1 2( , , , )T

nq q q
. 

The nonholonomic constraint that is affine in the velocities 

and time independent is  

                                         
( ) ( )TJ q q A q

,                     
(1) 

where
( ) n mJ q R 

 ,  
( ) mA q R

, and
( )J q

  as follows: 

               1 2( ) ( ( ), ( ), , ( ))T

mJ q j q j q j q
,           (2) 

1 2( ) ( ( ), ( ), , ( )) ,T

nj q j q j q j q   
 

1,2, ,m 
. 

Owing 
( ) n mJ q R 

 is of full rank, thus there exist 

matrices 1 2, , , rP P P
, such that 

 1 2 1 2( ) ( ) ( )T

rJ q PP P J q J q
,        (3) 

where 
( 1,2, , )n n

kP R k r 
 is the matrix produced by 

exchanging row i  and row 
j

 of the identity matrix, 

1( ) m mJ q R 
is nonsingular. Letting 

                            1 2

n nN PP P R  
 ,                       (4) 

1

1 2

1

( ) ( )
( )

J q J q
S q N

I

 
  

   ,                    (5)  

where 
( ) ( )

1

n m n mI R   
. It is easy to deduce that 

( )S q
 is of 

full rank, the following relation holds: 

( ) ( ) 0TJ q S q 
.                            (6) 

and there exists a full rank matrix 
( )

1( ) n m nS q R  
, which 

satisfies 

                                1( ) ( ) 0S q S q 
                                   (7) 

For the sake of convenience, we define 

            

1 1

1 2 1

( 1) ( 1)

1 1

2

0

0 1

n n m

J J J A

E I R

 

   

 
 

   
                    (8) 

where 

10 0 0

T

n m

n m

R 



 
  
   , 

1

20 0 0 n

n

R 
 

  
   , 

                        

( 1) ( 1)2

2

0

0 1

T

n nN
N R   

 
  
  .                    (9) 

Then the 
( 1)n

 -dimensional vector 
1

1 1(( ) ,0 , 1)T T TN J A 
 is 

a solution of the following equation 

                              
( ) ( ) 0TJ q A q X                       (10) 

i.e.,  

( ) ( ) ( )TJ q N q A q 
,              

(11) 

where  

                       
1

1 1( ) (( ) ,0 )T T T nq J A R  
.                   

(12) 

It is easy to deduce that E  is of full rank, which satisfying 

                           
( ) ( ) 0TJ q A q E                         (13) 

     Defining 
y

 as 

                    

1 ( , , ) ,T T T
q

y N z t
t

  
   

                   (14) 

1 2( , , , ) ,T m

m R    
 

1 2( , , , ) ,T n m

n mz z z z R 

 
 

then the rheonomous affine kinematic constraints (1) can be 

expressed as 

                           

1 1

1 2 1J J z J A    
                          (15) 

and one can obtain 

                                    
1

1z B N q
,                                (16) 

                                     
( )q S q z  

,                          (17) 

                                     
1 1

z
y E

   
    

    ,                       (18) 

where 
  ( )

1 10 n m nB I R   
. From the definition of N , 

we can easy deduce that  
,i jz

 are generalized coordinat-es, 

that is, each 
,i jz

 are in the set 
 1 2, , , nq q q

, 

1,2, ,i m
,  

1,2, ,j n m 
. The z  corresponds to 

the internal state variable, so that 
( , )q z

  is sufficient to 

describe the constrained motion. The system (3) represents the 

kinematics of a nonholonomic mechanical system. 
Let 
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( , , ) ( ) , 1,2, ,T

s s sf t q q j q q a s m  
,         (19) 

then 

( ), 1,2, ,s

f
j q s m

q


 


.              (20) 

When the constraint (1) is imposed on the mechanical 
system, the virtue displacements of the mechanical system are 
restricted by [16] 

( ) 0, 1,2, ,T

sj q q s m  
.              (21) 

By multiplying the Lagrange multiplier s  on both sides of 

(21), then summing (21) from  1s    to  m , gives 

( ( ) ) 0,TJ q q  
                             (22) 

where 1 2( , , , )T

m   
is  m -dimensional vector of the 

Lagrange multipliers. 
The Lagrangian function of the system is 

                          
( , , ) ( , , ) ( , )L t q q T t q q U t q 

,       
(23) 

where
( , , )T t q q

is the kinetic energy and  
( , )U t q

 the 

potential energy. Define the kinetic energy 
( , , )T t q q

 as 

1
( , , ) ( )

2

TT t q q q M q q
,                          

(24) 

where 
( ) n nM q R 

 is symmetric and positive definite. 

Considering (23) and using DAlembert-Lagrange 

principle [16], one can get 

( ) ( ) 0,

T

d L L
B q u t q

dt q q


  
    

               
(25) 

where 1 2( ) ( ( ), ( ), , ( ))T

lu t u t u t u t   
 is the control, 

( ) n lB q R 
with l n m  , which denotes an input 

transformation matrix, is a full rank matrix, , vector, 
q

 is the 

first-order variation in 
q

. 

     Combining (22) and (25), one obtains 

( ) ( ) ( ) 0,

T

d L L
B q u t J q q

dt q q
 

  
     

    
(26) 

Under (26), the dynamics of the mechanical system can be 
described by the following differential equations ( [17]): 

( ) ( ) ( ) .
d L L

B q u t J q
dt q q


 

  
 

          (27) 

We will now work out the details for the case of 
Lagrangian (23), 

( ( ) )

( )
( ) ,

d L d
M q q

dt q dt

dM q
M q q q

dt






 
                (28) 

1
[ ( ) ],

2

TL
q M q q

q q

 


 
                       (29) 

Substituting (28) and (28) into (27), yields 

( ) ( , ) ( ) ( ) ( ) ( )M q q F q q G q J q B q u t    
,  (30) 

where 

         
( ) 1

( , )= [ ( ) ]
2

TdM q
F q q q q M q q

t q





         

denotes the centrifugal and Coriolis forces and 

( , )
( , )=

U t q
G t q

q




 

represents the gravitational force. 

Differentiating the constraints (17) and (18) with respect 

to  t , it can be readily obtained that 

q Sz Sz   
,                           

(31) 

4( )y B Sz Sz   
,                  

(32) 

where 

( 1)

4

20

n n
I

B R   
  
  , 

n nI R  . Now, (30) can be 
rewritted  as  

2

2

( , ) ( )( ) 0

00 1

( ) ( ) ( )
(33)

( ) ( )

T

T T

F q q G qM q
y

J q B q u t

A q A q




   
   
  

  
    

   

Left multiplying 4

T TB E
 on both sides of (33) and eliminating 

y
  by (32), it yields 
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T T T T T TS MSz S MSz S M S F S G S Bu     
,  

(34) 

where 
TS MS is a positive definite symmetric inertia 

matrix, 
TS F is the centripetal and coriolis matrix, 

TS G is the 
gravitational friction.  

        Let 

1 1 ( 1) ( 1)

2

( ) ( )
( )

0 1

n m n
S q S q

H q R


    
  

  , it 

is easy to see that 
( )H q

 is of full rank, and  

( ) ( )H q E q I
 

1 1 1( ) ( ) ( )z B H q y S q q S q   
.            

(35) 

From (31), (34) and (35), the transformed dynamic model 
can be solved for q¨ to yield 

1

1 2( ) ( , ) ( ) ( )T Tq W q q W q q S S MS S Bu t   
,     

(36) 

where 

1

1 1 1( ) ( )T TW q S S MS S MSS SS  
 

1

2 1( , ) ( ) (T T TW q q S S MS S MSS S M    
 

   1)T TS F S G SS    
 

Define 

q
x

q

 
  
  , Then system (18) can be expressed by 

the following dynamics 

1

1 2

0
( ) ( )

( ) ( , )

T
q

x S S MS t
W q q W q q I

   
        .             (37) 

where 
( ) ( )Tt S Bu t 

. 

Remark 1: This method is also applicable to the 
nonholonomic control systems with rheonomous affine 
kinematic constraints: 

( ) ( , )TJ q q A t q
 ,                         (38) 

where
( ) n mJ q R 

 ,  
( , ) mA t q R

, and
( ), ( , )J q A t q

  as 

follows: 

               1 2( ) ( ( ), ( ), , ( ))T

mJ q j q j q j q
, 

         1 2( , ) ( ( , ), ( , ), , ( , )) 0T

mA t q a t q a t q a t q 
. 

Remark 2: Noting 
( ( ), 1)T Tq 

  is a solution of the 

following equation 

( ) ( ) 0TJ q A q X    , 

it follows 
( )q

 does not contain 
q

. 

III. CONCLUSIONS 

In this paper, a design scheme of a variable structure relay 
controller guaranteeing the system global stability and finite 
time convergence for uncertain nonholonomic systems with 
affine kinematic constraints has been discussed. The main 
contribution of this paper is that, a general dynamical state-
space model of the mechanical system with affine kinematic 
constraints is derived.a global variable structure relay control 
scheme with finite time convergence is advised, which can 
suppress the nonlinear term tending to lower the convergence 
rate when the initial state is far away from the origin, and 

( )M q  may be with unknown parameters 
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