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Abstract— In this paper, we consider nonlinear complementarity 

problem on management equilibrium model (NCP). To solve the 

problem, we first establish an error bound estimation for the 

NCP via a new type of residual function. Based on this, the 

famous Levenberg-Marquardt (L-M) algorithm is employed for 

obtaining its solution, and we show that the L-M algorithm is 

quadratically convergent without nondegenerate solution. These 

conclusions can be viewed as extensions of previously known 

results. 
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I.  INTRODUCTION 

We consider nonlinear complementarity problem on 
management equilibrium model (NCP). Let mapping 

: n nf R R ,  NCP is to find a vector * nx R  such that 

* * * *0,    ( ) 0, ( ) ( ) 0,x f x x f x  •                        (1) 

where ( )f x  is polynomial function with power m . We denote 

the solution set of the NCP by *X , which is assumed to be 
nonempty throughout this paper. 

The NCP plays a significant role in supply chain 
equilibrium management, economics management, and 
operation research, etc. ([1-4]). For example, the balance of 
supply and demand is central to all economic systems; 
mathematically, this fundamental equation in economics is 
often described by complementarity relation between two sets 
of decision variables. Furthermore, the classical Walrasian law 
of competitive equilibrium of exchange economies can be 
formulated as a nonlinear complementarity problem in the 
price and excess demand variables ([2]). 

In recent years, many efficient solution methods have been 
proposed for solving NCP ([5]). The basic idea of these 
methods is to reformulate the problem as an unconstrained or 
simply constrained optimization problem (e.g., [5, 6, 7, 8]). It 
is well-known that nonsingularity of Jacobian at a solution 
guarantees that the famous Levenberg-Marquardt (L-M) 
method for NCP has a quadratic rate of convergence [6, 7]. 
Recently, Yamashita and Fukushima showed that the 

assumption of local error bound is much weaker than that of 
the nonsingularity of Jacobian [9]. This motivates us to 
consider the error bound estimation for the NCP. So, in this 
paper, we are concentrated on establishing an error bound for 
the NCP via a new type of residual function under mild 
conditions, and discussing its applications on the convergence 
analysis of L-M method for solving the NCP.  

The rest of this paper is organized as follows. In Section 2, 
we mainly give equivalent reformulation of NCP, and 
establish an error bound estimation for the NCP via an easily 
computable residual function. In Section 3, L-M algorithm is 
employed for obtaining solution of NCP, and use the obtained 
result of error bound to establish a quadratic rate of 
convergence without nondegenerate solution. Compared with 
the algorithm converges in [6, 7], our conditions are weaker. 

We end this section with some notations used in this paper. 
Vectors considered in this paper are all taken in Euclidean 
space equipped with the standard inner product. The Euclidean 

2-norm of vector in the space is denoted by   ‖‖. We also 

use 0x  to denote a nonnegative vector nx R  if there is no 

confusion.  

II. THE EQUIVALENT REFORMULATION  AND  ERROR  

BOUND FOR  NCP 

In this section, we present an equivalent reformulation of 
NCP, and establish an error bound estimation for the NCP, 
which is extension of previously known result.  

First, we give the following Fischer function ([10]) 
2 1

: R R   defined by 

2 2
( , ) ,a b a b a b      for , .a b R  

For this function, besides the following basic property 

( , ) 0 0, 0, 0.a b a b ab       

For arbitrary vectors ,
n

a b R , we also define a vector-valued 

function ( , )a b  with 

1 1 2 2
( , ) ( ( , ), ( , ),..., ( , ))

n n

T
a b a b a b a b    . 
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Based on this mapping, we can transform NCP into a system 
of equations via the following vector-valued function  

:
n n

R R  as follows: 

 ( ) : ( , ( )).x x f x                                      (2) 

Obviously, the following result is straightforward. 

Theorem1.  
*x  is a solution of the NCP if and only if 

*( ) 0x  . 

To establish an error bound estimation for the NCP by 
residual function ( )x .  First, we give the following result in 

which Tseng ([11]) showed. 

Lemma1.  For any
2

( , )a b R , one has 

    | min( , ) | | ( , ) | | min( , ) | .(2 2) (2 2)a b a b a b     (3) 

Lemma2. Given constant 0 0  , for any 0,nx R x   . 

Then, there exists a constant 
1 0   such that  

1

*
1( , ) ( ) .mdist x X x                             (4) 

where *( , )xd t Xis  denotes the distance between the point 

nx R  and the solution set *X . 

Proof Firstly, we show that there exists constant 
0 0   

such that 
1

*
0 ,( , ) ( ) , nmdist x X r x x R                           (5) 

where  min , ( )( ) x f xr x  , 0x  .  

Assume that the theorem is false. Then, there exist positive 

sequence { }
k
  and sequence { }kx  such that 

k
   as 

k   and 
1

*( , ) ( ) ,mk k
kx X r xdist   where 0.

kx  Thus, 

1

*

1( )
0

( , )

k m

k
k

r x

x Xdist 
   as k  .                     (6) 

Since  kx  is bounded and ( )r x  is continuous, by (6), we 

have ( ) 0kr x   as k  . Since  kx  is bounded again, 

there exists a subsequence { }ikx  of { }kx  such that 

lim i

i

k

k
x x


  with  ( ) 0r x  .  Hence, *x X .  By (6), we can 

also obtain 
1 1

*

( ) ( )
lim lim 0.

( , )

i i

i ii i

k km m

k kk k

r x r x

x x x Xdist 
 

‖ ‖
               (7) 

On the other hand, since ( )f x  is polynomial function with 

power m . From  ikx x  , and  ( ) 0ikr x  . Thus, we know 

that, for all sufficiently large ik ,  
1

( ) / ,i ik kmr x x x  ‖ ‖  

for some positive number  , this contradicts (7). Thus, (5) 

holds. 

Secondly, combining (5) with Lemma 1, we have 

 1 12 20*
0 .

2
( , ) ( ) ( )m mdist x X r x x






   

Letting 
 2 20

1 2






 , and  the desired result follows.  

In this following, we define the function : R R   , 

, if ,

( ) 1/ log ,   if (0, ),

0, if 0,

t t

t t t t

t













  



 

where (0,1)t  and 0   are fixed numbers (the choice of   

does not affect the following theoretical analysis and 
numerical experiments, and the function ( )t  is bounded). 

Combining this with Lemma 2, we have the following result. 

Theorem2. Given constant 0 0  , for any 0, ,nx R x    

there exists a constant 2 0   such that 

*

2( , ) ( ) . dist x X x  ( )  

Proof For any given 0  ， for 0 0,   by 

0

lim log 0
t

t t





 ， 

we obtain that there exists 0t   such that  

0 0
/ (lg ) ( )t t t

     ，                   (8) 

where (0, )t t .  Thus, one has  

1 1 2 2

1 1 2 2

1

*

1

2 2

1

1

2 2

1 1

2 2

1

1 1

2 2

2
1 1

2 22 2

1 1 1 2 2

( , )) ( ( , ))

  ( ( , )

( , )) [( ( , )) ]

[( ( , ) ]

( , ) || ( ) ||

[( ( ) ( )

( )) ]

{[( ( ) ] ( )

   ( )) }

[( ( , ( ))) ] [( ( , ( ))) ]

n n

n n

m

m

m m

m

m m

f

f

dist x X x

x f x x x

x f x

x f x x x

x f x

x f x x f x

 



 









  



    



    

 





 
 
 
 





2

1

2 21

2 2

2 2 2 2

1 1

2

0

2

0

1 2 2

1

2 2 2

1

[( ( , ( ))) ]

(( ( , ( ))) ) (( ( , ( ))) )

     (( ( , ( ))) )

|| ( ) || .

    m

n n

n n

x f x

x f x x f x

x f x

x



    

 

  



    

 

   

 

  
  

 

  
  
  

（ ）
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where the first inequality is true by Lemma 2,  the fourth 
inequality is true by  (8)  with  

2
[ ( , ( ))] , 1, 2, , ,

1 / ( ),2

i i
t x f x i n

v m

   


 

the last  equality follows from the fact that  

1 1 2 2

2 2 2
( , ) ( ( , ) , ( ( ,

( )

(( ( ) ), ( ) ), ( )) )) ,
n n

T
f

x

x f x x x x f x  



    

（ ）

=(

 and letting 
12

2

0 ,    then the desired result follows. 

In this following, we can transform NCP into a system of 
equations via the following vector-valued function 

:
n n

R R  , and  a real-valued function :
n

g R R  as 

follows: 

( ) ( ( ))x x                                  （9） 

21 1
( ) : ( ) ( ) ( ) .

2 2

T
g x x x x    ‖ ‖           （10） 

Obviously, we have that the following result hold. 

Theorem3.  
*x  is a solution of the NCP if and only if 

*( ) 0x  . 

III. ALGORITHM  AND  CONVERGENCE 

In this section, a Levenberg-Marquardt method for solving 
the NCP also has quadratic rate of convergence based on the 
error bound results obtained in Theorem 2.  First, we review 
some definitions and basic results which will be used in the 
sequel. 

In the following, for a locally Lipschitzian mapping 

: n mR R  , we let ( )x  denote the Clarke's generalized 

Jacobian of ( )x at nx R  which can be expressed as the 

convex hull of the set ( )B x   ([12]), where 

lim '( ),
( ) .

( ) is differentiable at  for all  

k

k

m n x x
B

k

V x
x V R

x x k

 

   
    

  

 

The function ( )x  is not differentiable everywhere with 

respect to nx R . However, it is locally Lipschitzian, and 

therefore has a nonempty generalized Jacobian in the sense of 
Clarke ([13]). In particular, we present an overestimate of 
Clarke's generalized Jacobian of ( )x . For simplicity, we 

denote the Clarke's generalized Jacobian of ( )x  with respect 

to nx R  by ( )x . Similar to the discussion of Proposition 

3.1 in [14], we have the following result. 

Lemma3. For any nx R , we have  '( )( ) a b f xx D D    

where diag( )aD a  denotes the diagonal matrix in which the 

i -th diagonal element is ia , for vector na R , 

2 2

2 2 2 2
1, 1,  if ( ) 0,

( ) ( )

i i
i i i i

i i i i

x y
a b x f x

x f x x f x
     

 
 

2 2 2

1,             1 

    ( , )  such 0.that || ( , ) || 1,if ( )

i i i i

i i i i i i

a b

R x f x

 

   

   

   
 

Now, we recall some basic definitions about 
semismoothness and strong semismoothness.  

A locally Lipschitz continuous vector valued function 

: n mR R   is said to be semismooth at nx R , if the limit 

( )

, 0

lim { }
V x th

h h t

Vh
 

 

  

 exists for any nh R .  

It is well known that the directional derivative, denoted by 

( ; )x h , of   at x  in the direction h  exists for any nh R  

if  is semismooth at x . The following properties about the 

semismooth function are due to Qi and Sun in [15].  

Lemma4. Suppose that : n mR R   is a locally Lipschitz 

function and semismooth, then 

a) for any ( ), 0,V x h h   ( ; ) (|| ||);Vh x h o h   

b) for any 0h  , ( ) ( ) ( ; ) (|| ||).x h x x h o h      

Semismooth functions lie between Lipschitz functions and 
continuously differentiable functions, and both continuously 
differentiable functions and convex functions are semismooth. 
A stronger notion than semismoothness is strong 
semismoothness.  

The function : n mR R   is said to be strongly semismooth 

at x if  is semismooth at x  and for any ( )V x h  , 0h  , 

it holds that  

2( ; ) (|| || ).Vh x h O h   

A favorable property of the function ( )g x  is that it is 

continuously differentiable on the whole space nR  although 
( )x   is not in general. We summarize the differential 

properties of   and g  defined by (9) and (10) in the 

following lemma ([16, 17]). 

Lemma5. For the vector-valued function  and real-
valued function g  defined by (9) and (10), the following 

statements hold. 
(a)   is strongly semi-smooth. 
(b) g  is continuously differentiable, and its gradient at a 

point nx R  is given by ( ) ( )g x V x  • , where V  is an 

arbitrary element belonging to ( ).x  

From Lemma 5 and discussion above, we can obtain the 
following result. 

Theorem4. （a） For some * *x X , there exist constants 

(0,1)   and 3 0   such that 
2 *

3( ) ( ) , , { | }.x h x Vh h x h x x x x          ‖ ‖ ‖‖ ‖ ‖  

(b)   is locally Lipschitzian 

In this following, a Levenberg-Marquardt method for 
solving the NCP is outlined. It is similar to that in [9, 6], we 
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consider L-M for NCP with Armijo step size rule, and discuss 
its global convergence and quadratic rate of convergence. 

Algorithm 1 

Step 1: Choose any point 0 nx R ,  parameters 0  , and 

, , (0,1)    . Let 0.k   

Step 2: If ( )kg x  ‖ ‖ , stop; Otherwise, go to Step 3. 

Step 3: Choose an element ( )k kV x . Let k nd R  be the 

solution of the linear system 

(( ) ) ( ) ( ).k k k k kV V I d V x   • •  

If kd  satisfies ( ) ( ) ,k k kx d x   ‖ ‖ ‖ ‖ then 

1 : , : 1,k k kx x d k k      

go to Step 5. Otherwise, go to Step 4. 

Step 4: Let km  be the smallest non-negative integer m such 

that  

( ) ( ) ( ) .k m k k m k kg x d g x g x d     •  

 Let 1 : kmk k kx x d   . 

Step 5: Set 1 1 2( ) , : 1,k kx k k     ‖ ‖  go to Step 2. 

For the above Algorithm 1, we assume that Algorithm 1 

generates an infinite sequence{ }kx . Using Theorem 2 and 4, 

combining the proof of Theorem 3.1 in [9], we can obtain the 
following global convergence Theorem. 

Theorem5. Let { }kx  be generated by Algorithm 1, then 

any accumulation point of the sequence { }kx  is a stationary 

point of g . Moreover, if an accumulation point *x  of the 

sequence { }kx  is a solution of (9). Then *( , )kdist x X converges 

to 0  quadratically. 

 In Theorem 5, the L-M algorithm is employed for 
obtaining solution of NCP, and the method has quadratic rate 
of convergence under local error bound, which is much 
weaker than the nonsingularity of Jacobian. It is an extension 
of the algorithm converges conclusion in [6, 7], which is a 
new result for NCP. 

In the end of this section, we present the following 
example on the supply chain network equilibrium problem 
[18], and the numerical experiment of the example is also 
reported.  Now, we will implement Algorithm 1 in Matlab and 

run it on a Pentium IV computer. We take parameter 
16

10


 , 

Iter denotes the number of iterations. 

Example We let  f x Mx p  , where 

6 1 0 1 9

2 4 0 1 6
,

2 0 2 2 4

1 1 2 0 3

M p




 



  

   
   
   
   
   
   

 

Using Algorithm 1, we obtain the solution of this problem 

* 4 7 4 2
( , , , )
3 9 9 9

T
x  . 

The results for this problem with different starting points are 
shown in Table 1. We see that the Algorithm 1 performs well 
for this problem. To illustrate the stability of Algorithm 1, the 

initial point 
0

x  is produced randomly in (0, 1.5), we use it to 

solve example, and the results are listed in Table 2. Table 1 
and Table 2 indicate that Algorithm 1 is not sensitive to the 
change of initial   point, thus it is very stable. 

Table 1. Numerical Results of this Example  

Starting point (0, 0, 0)
T

  1,1,1
T

  1, 1, 1
T

    

Iter  3 4 8 

Table 2. Numerical Results of this Example  

Trial 1 2 3 4 

Iter 2 5 2 3 

Trial 5 6 7 8 

Iter 6 4 2 3 

IV. CONCLUSIONS 

In this paper, we first established error estimation for 
nonlinear complementarity problem on management 
equilibrium model (NCP) by a new residual function. Then, 
we propose an algorithm to solve the NCP, and use the error 
estimation to establish the global and quadratic rate of 
convergence without nondegenerate solution instead of the 
nonsingular assumption, this conclusion can be viewed as 
extension of previously known result ([6, 7]). How to use our 
algorithm to solve the practical management problem based on 
the computer, this is a topic for future research. 
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