
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1095

FELIS Programming Language for Rule Systems

D.S. Sfiris

Department of Civil Engineering

Democritus University of Thrace

Xanthi, Greece

Email: dmsfiris {at} otenet.gr

Abstract—The gaining popularity of production rule systems had

as a result the recent Rule Interchange Format (RIF)

extensibility framework. This framework, developed by the W3C

Consortium, is for modeling production rules in forward

chaining rule engines. Our research, based on this RIF

extensibility framework, sets the foundational work for a flexible

new rule language to facilitate knowledge representation with

syntax that incorporates features from both logic and functional

programming. The benefits are grammatical freedom, absolute

clarity and rigor. Formalizations of the new language and

examples are provided.

Keywords-computer languages; F-expressions; higher-order

logic programming; production rule systems; rule dialects

I. INTRODUCTION

In this paper, we set the foundational work of the abstract
core of a new production rule language. We call it FELIS
(Flexible Expert Language and Inference System), designed for
general use in Artificial Intelligence (AI) and the semantic
web. The popularity of production systems resulted in the Rule
Interchange Format (RIF) extensibility framework [1] to
provide a standard dialect for production rules. RIF is
compatible with the previously proposed standard of the Object
Management Group (OMG) for modeling production rules in
forward-chaining rule engines [2].

Based on the W3C Rule Interchange Format (RIF)
extensibility framework as starting point, we designed an
extension language with flexible syntax that incorporates
features from both logic and functional programming. Early
research has shown that functional and logic languages can be
amalgamated without loosing the efficiency of either functional
or logic language implementations [3].

A formal description of production systems resolves a lot of
ambiguities and incompatibilities between different
implementations. A recent formalization and refinement for a
general model of production system is presented in [4]. We
introduce predicate-free data structures, which we call F-
expressions, to express knowledge. Similar to predicates of
logic programming, F-expressions can formulate sentences
describing properties of objects and/or relations between
objects. They can also be used as functional terms to represent
complex data. The terms of these expressions do not rely on
any particular pattern such as that the first element must always
be a symbol which represents a relation or an operation. Their
syntax is rather free. Also, there is the ability to quantify not

only over objects but also over relations and functions. F-
expressions can be nested within each other to any depth, in
order to create complex expressions of object-oriented
properties and relations.

There is a long history of efforts to implement higher-order
logic initially into logic programming [5]. As it is the case with
programming languages such as HiLog [6], Lambda Prolog [7],
Mercury [8] and others which mix features from logic
programming and functional programming, we allow higher-
order expressions and thus we deviate from the standard first-
order logic paradigm. The definition of our core language
syntax is thus predicate free and function free without any loss
of the expressive power of first-order logic. This is because our
F-expressions are used to represent both predicates and
functions depending on the context.

Although the proposed language does not yet support the
full features of RIF-PRD [9] (e.g. subclass and frame-style
properties), it does have externally defined functions as well as
syntactic constructs for describing actions of production rule
systems. The final syntax turns out to be quite close to a natural
language as it can be seen in the examples provided.

This paper is structured as follows: In Section II we discuss
the production systems basics and relevant terminology, while
in Section III the W3C RIF recommendation rule dialects are
discussed. The proposed language is presented in Section IV.
The benefits of the language and examples follow.

II. CONCEPTS AND TERMINOLOGY

A. Production Systems

A production system is a forward-chaining reasoning

system which consists of production rules and a working

memory for the facts and relationships about a problem of a

specific domain. Its inference mechanism will search for a

solution to a problem by combining the facts and rules in its

knowledge base to infer new conclusions. The working

memory represents the short-term memory of the system as

the set of facts may change during the operation. The

production rules (or simply productions) constitute the long-

term memory of the system in the form of “IF conditions

THEN actions”. A simple condition is a statement either

propositional or predicate and when predicate, expressions

with variables or wildcards satisfied by any value are allowed.

The action side is a set of conclusions sometimes called results

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1096

or consequents that consist of action expressions which assert

or retract facts that modify the working memory. Inference

engine is the reasoning procedure, a control mechanism where

usually a cycle of three steps repeats until no more rules are

applicable to the working memory [10]:

 Recognition: finds which rules are applicable, that is,
those rules whose antecedent conditions are satisfied
by the current working memory;

 Conflict Resolution: among the rules found in the first
step (called a conflict set), chooses which of the rules
should “fire”, that is, get a chance to execute;

 Action: changes the working memory by performing
the consequent actions of all the rules selected in the
second step.

If facts from the working memory match all the expressions
in the condition side of a rule, the rule is called “to be satisfied”
at the current matching phase. The process of matching is
called unification [11]. Knowledge representation techniques
based on Petri nets [12] can provide a visualization of the
dynamic behavior of rule-based reasoning to designers for
development and to users for validation.

B. S- Expressions

Before discussing our predicate free F-expressions, we refer
to lisp S-expressions [13] not only for their historical
significance and their influence to AI languages but also for
their role to the theory of programming languages in general
[14]. This is a suitable basis for our theoretical framework of
language extensions. An S-expression is defined recursively:

 An atom is an S-expression;

 If s1, s2,...,sn are S-expressions, then so is the list (s1,
s2,...,sn).

C. Predicate free Expressions (F-Expressions)

An F-expression is an ordered sequence of elements of the

form 1e en
 separated by white-space and enclosed in

parentheses, where the elements
1e en

 may be either atomic

symbols or F-expressions, thus resulting in a free syntax.

F-expressions are used to represent any terms, variables,

constants, functions, operations, or relations. When regarded

as functions, they can have arbitrary number of arguments. F-

expressions can represent complex arithmetic expressions by

means of nesting. Also F-expressions can be well used as

predicates, i.e. functions that always return boolean values,

allowing us to write facts, rules and formulas as symbolic

expressions. Third and most importantly, there is no restriction

in what arguments (functions, operations or data) are passed,

which makes F-expressions a vehicle for expressing higher-

order abstractions.

III. RECOMMENDED RULE DIALECTS AND EXTENTIONS

The Rule Interchange Format (RIF) Working Group [15]
initially aiming to create a standard for the exchange of rules

between rule systems, in particular among web rule engines,
managed to provide more than just a format for rule
interchange. Specifically, it has also proposed an extensibility
framework which consists of RIF dialects that generally fall
into two categories: logic based dialects RIF-BLD [16] and
production based dialects RIF-PRD [9].

The framework for these dialects, the result of four years
effort, includes a great deal of commonly used syntactic and
semantic apparatus. However it purposely leaves certain
parameters unspecified for designers of logic programming
languages.

The Core dialect of the Rule Interchange Format, RIF-Core
[17], is a subset of RIF-BLD and of RIF-PRD. It is a language
of definite Horn rules without function symbols. The RIF-Core
presentation syntax and semantics are specified by restriction
in two different ways. First, RIF-Core is specified by restricting
the syntax and semantics of RIF-BLD, and second, by
restricting RIF-PRD.

IV. FELIS- A NEW FLEXIBLE PROGRAMMING LANGUAGE

We now present our contribution language, observing the

RIF-Core recommendation.

A. Alphabet and Terms

The underlying syntactic theory comprises of a first-order

signature without the logical predicate (and function) symbols

on top of which the alphabet is defined.

The alphabet of our sample language L is defined by a

signature = , , , , , , , =C V F Q A RS AU consisting of

eight classes of symbols:

 A countably infinite set of constant symbols,

 = |iC c i N ;

 A countably infinite set of variables,

 = |iV x i N ;

 A countably infinite set of externally defined function

symbols, = f |iF i N ;

 The set of connectives = , , ,Q or and not then ;

 The set of action symbols

 = , ,A assert retract execute ;

 The set of reserved symbols = ,AR if end ;

 The set of auxiliary symbols = (,),",?AU ;

 The equality symbol = .

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1097

Constants, c C , are arbitrary symbols representing

objects or values in a domain, while variables, x V , are

symbols (prefixed by ?) used to refer to a range of possible

objects or values. There no logical predicate and function

symbols in the usual first-order sense. Externally defined

function symbols f F are supported to interface with

external (non-logical) operations. Each f F has an

associated arity *far N .

The language is designed to have a small core without a

loss of semantic power. This is achieved by the provision of F-

expressions as data structure of higher-order. Let S denote

the countably infinite set of F-expressions in L . Terms of L

are extensions of the specification of RIF-Core, called F-

terms.

An F-term is either a constant c C , a variable x V ,

an F-expression, s S , of the form 1t nt , or a function

call of the form 1f nt t where 1t nt is an ordered

sequence of F-term arguments with 1n .

An F-term is called basic if it is either a constant or a

variable. Each s S has an associated arity *ar s N to

indicate the number of its arguments. We define functions in

L as a variation of F-expressions for invoking externally

defined functions.

An F-function is an F-expression of the form 1f ne e

where its first element is an externally defined function

symbol f F and 1n .

An F-term is said to be ground, if no variables occur in it.

The notion of Herbrand universe is extended to the F-

Herbrand universe.

The F-Herbrand universe, F HU , is the set consisting

of all the ground F-terms in the language L .

B. Atomic Formulas

F-expressions provide a unified way to represent both

terms and atomic formulas. For this it is necessary to extend

the notion of atomic formula to that of F-atomic formula.

Given arbitrary F-terms t, s and t i where 1 i n , F-

atomic formulas (or F-atoms) are either F-expressions of the

form 1t nt , equality expressions t = s or action

expressions 1t nt where A from the signature

 .

An F-atom which is not an equality expression neither an

action expression is called basic F-atom. Non-ground F-atoms

are thought of as being universally quantified. Action

expressions are extra-logical constructs for accommodating

actions in production rule systems. The translation of F-atoms

to RIF positional atoms is shown in the following definition,

by the introduction of a constant predicate symbol p .

An F-expression 1 nt t can be mapped into a

positional RIF atom 1, , np t t where p is any predicate

symbol.

An F-atom is said to be ground, if each of the it 's is

ground. A basic ground F-atom represents a fact. The

definition of the Herbrand base is also extended to the F-

Herbrand base.

The F-Herbrand base, F HB , is the set consisting of all

the basic ground F-atoms in the language L , formed using

elements of the F-Herbrand universe as arguments.

To avoid obtaining logic programs with a infinite F-

Herbrand base, a common practice is to restrict the language

to recursively enumerable fragments for which only a limited

number of nested F-terms is allowed.

C. Production Rules

An F-production rule (or rule) r in L is a conditional

statement of the form r: If T then A end, where the if-part is

a conditional formula and the then-part is an action block

consisting of action expressions. Each action expression is an

F-expression prefixed by an action symbol A from the

signature .

Condition formulas are inductively defined from basic F-

atomic formulas, conjunction 1 a nnd and

disjunction 1 o nr of conditional formulas or

negation not , where 1, , , >1n n are

conditional formulas.

An F-program is a pair = ,G R where G is a finite

set of ground basic F-atoms representing the set of facts, often

called the fact base, and R is a set of F-production rules.

D. Operational Semantics

As in RIF-PRD, the semantics of our language are

operational. A framework that gives both an operational and

model-theoretic semantics to production rules was studied by

[18].

A condition formula of a rule r , either atomic or

compound, is evaluated with respect to the state of the fact

base. The evaluation is performed in terms of matching

substitutions and if successful (is satisfied), the rule is

called instantiated. In the following we give the notions of

substitution, unification and matching substitutions for the

language L .

Let T be the universe of F-terms of the language L . A

substitution is a finitely non-identical assignment of F-terms

ti T , to variables ix V , written as
=1

= t /i i i n
x

where
=1

= i i n
Dom x and = t , =1i ix i n .

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1098

A substitution is called ground when it assigns only

ground terms to variables in Dom . The unification two

F-terms is recursive. If the terms in both F-terms are basic

(constants or variables), the unification of each pair of terms

from the two F-terms consists just of matching the basic terms.

If terms are themselves nested F-terms then the procedure for

unifying F-terms is re-entered. The recursion is terminated

when the terms of both F-terms are all basic.

The unification of two F-terms t , tA B T is a most

general substitution such that one of the following is true:

Case 1. If t , tA B C V then t = tA B if t A V

and t = tA A otherwise;

Case 2. If t , tA B S then goto Case 1.

It may happen that a term is a variable and the term in the

second F-terms is a nested F-expression. In this case, the F-

expression is get instantiated on the variable in the

corresponding term of the first F-term. Next, we define the

matching substitution of F-atomic formulas.

Let be a condition formula or a rule r ; let Var be a

function that maps a condition formula to the set of its free

variables; let be a ground substitution such that

 Var Dom ; and let G be a set of ground F-

atomic formulas. We say that the ground substitution

matches to G if and only if one of the following is true:

 is a basic F-atomic formula and G ;

 is an equality formula 1 2t = t and the ground

terms 1t and 2t have the same value;

 is not and does not match the condition

formula toG ;

 is a conjunction 1 a , > 0nnd n and

,1i i n , matches i to G ;

 is a disjunction 1 o , > 0nr n and

,1i i n
, such that matches i to G .

E. Conflict Resolution

If the conditions of more than one rule are satisfied at the

same time, the pattern matching of production rules leads to a

set instantiated rules , called the conflict set. The conflict set is

formally defined from the set of production rules R and the

state of the fact base (or working memory).

We call working memory state, denoted by Gw , a set of

ground F-atomic formulas G ; i.e. a subset of the F-Herbrand

universe defined on the signature .

For a given working memory state Gw and a set of

production rules R , the set
=1

| Ai i i i r
r R R

which is Gw -fireable is called Gw -conflict set and is denoted

by 1= , ,G R kw CS f f .

When several rules are found to be instantiated at the same

time, a conflict resolution strategy is used to select which rule

to apply.

A resolution strategy is a computable function that given a

Gw -conflict set of rules R , returns a unique element of the

G Rw CS set.

A specification of the conflict resolution strategy is

currently missing from RIF-PRD. A formalization is provided

in [19] showing how to specify conflict resolution strategies in

Answer-Set Programming (ASP) and illustrate a precise

encoding of the RIF-PRD strategy.

F. Atomic Atoms

The language defines several atomic actions for updating

the fact base or execute code:

 Assert fact: If is an F-atom, then Assert() is an

action expression;

 Retract fact: If is an F-atom, then Retract() is an

action expression;

 Execute: if is an F-atom, then Execute() is an

action expression.

G. Production Rule System

A production rule system can be semantically defined as a

labeled terminal transition system.

A production rule system is a tuple , , ,TRSS A FS ,

where SS is a set of working memory states (or system

states), A is a set of transition labels, where each transition

label is a sequence of ground action expressions, a set of

transition relations S ATR S FS such that

 , , TRss ss if and only if there is a transition labeled

 from the state ss to the state ss , FS SS is a set of

final system states where F =S

 S | L, S , , , }.ss S ss S ss ss

V. EXAMPLES

Various examples follow to clarify the capabilities of our

proposed language.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1099

A. F-Expressions as a Variable

(Aristotle was a (famous Greek natural philosopher))

(Asclepius was a (doctor of medicine))

(Socrates was a philosopher)

(Parmenion was a (Macedonian general))

(Aristotle was willing to teach)

(Asclepius was willing to teach)

(Socrates was willing to teach)

(Alcibiades was willing to teach)

if (?X was a ?Y) and (?X was willing to teach)

then (?X has been a good teacher because he was ?Y)

 Output:
(Aristotle has been a good teacher because he was (famous

Greek natural philosopher))

(Asclepius has been a good teacher because he was (doctor of

medicine))

(Socrates has been a good teacher because he was

philosopher)

B. Variables inside an F-Expression

(Aristotle was a (Greek philosopher))

(Spinoza was a (Dutch philosopher))

(Asclepius was a (Greek doctor))

if (?X was a (?Y ?Z)) and (?Y = Greek)

then (?X lived in Greece)

 Output:

 (Aristotle lived in Greece)

(Asclepius lived in Greece)

C. Nested F-Expressions as Facts

(The book (“Dr No” of 210 pages) is written by (author

(Fleming British journalist)))

(The book (“Moby Dick” of 600 pages) is written by (author

(Melville American novelist)))

D. Various Fact Types

(“Bob Dylan” plays (the guitar))

(“Bob Dylan” plays (the red guitar))

(“Bob Dylan” plays (the red guitar made in 1969))

E. Free Format

(“Da Vinci” painted (the portrait of “Mona Lisa”) in 1506)

(Picasso painted (the Guernica) in 1937)

(“Van Gogh” painted (the self portrait) in 1888)

IF (?anypainter painted ?anything in ?anyyear) and (?anyyear

1900)

THEN (?anything of ?anypainter has historical value)

 Output:
((the portrait of “Mona Lisa”) of “Da Vinci” has historical

value)

((the self portrait) of “Van Gogh” has historical value)

F. Higher-Order Logic

(Socrates was wise)

(Socrates had (great fame))

(Plato wrote dialogues)

(Socrates respected law)

if (?A ?Z ?B) and (?Z <> respected) then (?Z (?A ?B))

 Output:

(Socrates (was wise))

(Socrates(had (great fame)))

(Plato (wrote dialogues))

G. Extension to Fuzzy Domain

An Uncertainty Rule Dialect (RIF-URD) based on RIF-

BLD was proposed in [20]. Below is an example of how to

declare fuzzy linguistic variables, fuzzy facts and finally how

to syntax fuzzy rules, using FELIS language. The deails of the

fuzzy extension module will be given in a future publication.

##Fuzzy Linguistic Variables

(probability < less certain, certain, more certain >)

(sunshine < less sunshine, sunshine, more sunshine >)

##Fuzzy Facts

(there is < sunshine 73 percent >)

##Fuzzy Rules

IF (there is < more sunshine >) then (it is < more certain >

that we will have a barbeque)

IF (there is < sunshine >) then (it is < certain > that we will

have a barbeque)

IF (there is < less sunshine >) then (it is < less certain > that

we will have a barbeque)

etc.

VI. DISCUSSION OF RESEARCH

We see that predicates are removed from the signature of

the language and F-expressions become the vehicle to

represent either a function, a predicate, a data list and not only,

considering the extensibility achieved. We eliminate

restrictions of existing rule languages (OPS5 [21], CLIPS

[22], Jess [23], RIF-PRD [9]). OPS5, an early production

system developed by Charles Forgy, represents facts as a list

of attribute-value pairs. On the other hand, CLIPS or its

extension Jess adopt a lisp-like parenthesized syntax. They

possess two kinds of facts: ordered facts and defined

templates. CLIPS does not support nested lists. Indeed, each

nested expression is not an arbitrary sublist but an

attribute/value pair. Finally, the very recent RIF-PRD dialect

has a presentation syntax where a fact is represented by a

positional atomic formula. The syntax of RID-PRD for atomic

formulas resembles PROLOG's clausal form which is known

to lack higher-order capability, i.e. quantification over

predicate and function symbols is not allowed.

Our current work on production rule systems is a

characterization of general production systems by proposing a

rule language that enjoys the following features:

 Facts are expressed in free format as unstructured
ordered lists (Example E);

 F-expressions can be assigned to variables (Examples
A,D);

 Variables may appear inside an F-expression (Example
B);

 Arbitrary depth nesting (Example C);

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1100

 Quantification over predicate and function variables is
possible, leading to higher-order unification (Example
F);

 Extensibility to fuzzy domain (Example G).

A substantial interest exists in integrating aspects of

functional languages into logic programming

Error! Reference source not found.. Despite of the wide

research available in these multi-paradigm languages, to our

knowledge, the production rule languages widely used in

expert systems have not followed up this trend. One reason is

perhaps that production systems have not been considered to

be a fully declarative logic paradigm, due to additional

“impure” features usually added in their implementations. We

have seen that F-expressions as a single general kind of

expression, compared to other knowledge representations such

as horn clauses and attribute-value pairs, are much flexible

and yet constitute a richer domain.

VII. CONCLUSION AND FUTURE RESEARCH

We have set the foundational work for building a flexible

production rule language which is very close to a natural

language, as seen in the provided examples. The main vehicle

introduced is F-expressions which are permitted to appear as

terms of atomic formulas or assigned to variables resulting in

simple representation of complex structures. This framework

is extensible to higher-order programming, permitting

quantification over predicate and function variables. The

proposed knowledge representation scheme gives to the

community guidelines for the next generation of

programming.

Our prototype production system is part of a broad

research project “Applications of fuzzy information systems in

engineering and management” that involves a great number of

aspects besides formal language definition including pattern

matching, conflict resolution, inference mechanism and

interoperability with other rule systems.

REFERENCES

[1] M. Kifer, “Rule interchange format: The framework,” Web Reasoning
and Rule Systems, vol. 19(1-3), pp. 583-628, 2008.

[2] Documents associated with Production Rule Representation (PRR)
Version 1.0 Release date: December 2009.
http://www.omg.org/spec/PRR/1.0/

[3] M. Hanus, “The integration of functions into logic programming: From
theory to practice,” The Journal of Logic Programming, vol. 19(1-3), pp.
583-628, 1994.

[4] H. Cirstea, C. Kirchner, M. Moossen, and P. E. Moreau, “Production
systems and rete algorithm formalisation,” The Journal of Logic
Programming, vol. 19(1-3), pp. 583-628, 2004.

[5] L. Naish, “Higher-order logic programming in Prolog,” Proc. Workshop
on Multi-Paradigm Logic Programming, JICSLP, vol. 96, pp. 1-23,
1996.

[6] W. Chen, M. Kifer, M., and D. S. Warren, “HiLog: A foundation for
higher-order logic programming,” The Journal of Logic Programming,
vol. 15(3), pp. 187-230, 2004.

[7] G. Nadathur, “The metalanguage Prolog and its implementation,”
Functional and Logic Programming, vol. 15(3), pp. 187-230, 2001.

[8] Z. Somogyi, F. Henderson, and T. Conway, “The execution algorithm
of Mercury, an efficient purely declarative logic programming
language,” The Journal of Logic Programming, vol. 29(1-3), pp. 17-64,
1996.

[9] RIF Production Rule Dialect. W3C Recommendation (June 22, 2010),
http://www.w3.org/TR/2010/REC-rif-prd-20100622/

[10] R. J. Brachman, H. J. Levesque, Knowledge representation and
reasoning, Morgan Kaufmann Pub, 2004, pp.119-120.

[11] J. A Robinson, “Computational logic: The unification computation,” In
Machine Intelligence, vol. 6, B. Meltzer and D. Michie (Eds.).
Edinburgh Univ. Press, Edinburgh, Scotland, 1971, pp. 63-72.

[12] M. Tavana, “Knowledge-Based Expert System Development and
Validation with Petri Nets,” Journal of Information and Knowledge, vol.
19(1-3), pp. 161-170, 2008.

[13] R. Rivest, S-Expressions. Network Working Group Internet Draft.
http://people.csail.mit.edu/rivest/Sexp.txt, 1997.

[14] H. Barendregt, “The impact of the lambda calculus in logic and
computer science,” Bulletin of Symbolic Logic, vol. 29(1-3), pp. 181-
215, 1997.

[15] RIF W3C Working Group, Wiki (last modified on 14 October 2010)
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

[16] RIF Basic Logic Dialect. W3C Recommendation (June 22, 2010),
http://www.w3.org/TR/2010/REC-rif-bld-20100622/

[17] RIF Core Dialect, W3C Recommendation (22, June 2010),
http://www.w3.org/TR/2010/REC-rif-core-20100622/

[18] R. Kowalski, F. Sadri, “Integrating Logic Programming and Production
Systems in Abductive Logic Programming Agents,” Web Reasoning and
Rule Systems, pp. 1-23, 2009.

[19] C. V. Damasio, J. J. Alferes, and J. Leite, “Declarative semantics for the
rule interchange format production rule dialect,” ISWC 2010, Part I,
LNCS vol. 6496, pp. 798-813, 2010.

[20] J. Zhao, H. Boley, “Uncertainty treatment in the rule interchange format:
From encoding to extension,” Proceedings of the 4th International
Workshop on Uncertainty Reasoning for the Semantic Web (URSW
2008) vol. 29, pp. 17-64, 2008.

[21] C. L. Forgy, OPS5 user’s manual. Technical Report CMU-CS-81-135,
Carnegie Mellon University, 1981.

[22] Artificial Intelligence Section, CLIPS Reference Guide Vol. I and II,
Lyndon B. Johnson Space Center, June 2 1993.

[23] E. Friedman-Hill, Jess in action: rule-based systems in java,
MANNING, 2003.

