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Abstract— One of the challenges of cloud programming is to 

achieve the right balance between availability and consistency in 

a distributed database. Cloud computing environments, 

particularly cloud databases, are rapidly increasing in 

importance, acceptance and usage in major applications, which 

need the partition-tolerance and availability for scalability 

purposes, thus sacrificing the consistency side (CAP theorem). 

With this approach, use of paradigms such as eventual 

consistency became more widespread. In these environments, a 

large number of user’s access data stored in highly available 

storage systems. In this research we use eventually consistent 

transactions with revision diagrams for visibility and arbitration 

to manage updates in replicates. We present a new non-blocking 

algorithm to implement eventual consistency using revision 

diagrams and fork-join data in a distributed environment. 

Finally, we show that the proposed method solves the problem. 

Keywords: cloud computing, eventual consistency, replication 

I.  INTRODUCTION  

Clouds are a large pool of easily usable and accessible 
virtualized resources (such as hardware, development 
platforms and/or services). These resources can be dynamically 
reconfigured to adjust to a variable load (scale), allowing also 
for an optimum resource utilization. This pool of resources is 
typically exploited by a pay-per-use model in which guarantees 
are offered by the infrastructure provider by means of 
customized SLAs [21]. 

To achieve high scalability at low cost, cloud services are 
typically highly distributed systems running on commodity 
hardware. Here scaling just requires adding a new off the shelf 
server.  

CAP theorem, also known as Brewer's theorem [7, 18] later 
formally shown by Gilbert and Lynch [11],  states that it is 
impossible for a distributed computer system to simultaneously 
provide all three of the following guarantees: 

• Consistency   : all nodes see the same data at the same 
time 

• Availability: a guarantee that every request receives a 
response about whether it was successful or failed 

• Partition tolerance: the system continues to operate 
despite arbitrary message loss or failure of part of the system 

According to the theorem, a distributed system can satisfy 
any two of these guarantees at the same time, but not all three.  

This raises the concern about which property is the least 
important one, since all three properties are both desirable and 
expected in distributed systems [11]. Strong consistency is 
expected because many systems are often used together with 
databases where the so called ACID (Atomicity, Consistency, 
Isolation, and Durability) properties apply. The databases 
provide strong consistency by the use of transactions.  

High availability is expected as distributed systems are 
connected to a network and whenever the network is available, 
the system is supposed to be available [11]. Finally, tolerance 
to network partitions is expected because it is a basic fault-
tolerance technique. If a link goes down or a node crashes, the 
rest of the system should continue to work as before - even if 
the crash results in fewer nodes or even two separate partitions 
[11]. In order to completely avoid network partitioning, or at 
least to make it extremely unlikely, single servers or servers on 
the same rack can be used. Both solutions do not scale and, 
hence, are not suited for cloud systems. Furthermore, these 
solutions also decrease the tolerance against other failures. 
Also, to use more reliable links between the networks does not 
eliminate the chance of partitioning, and increases the cost 
significantly. Thus, network partitions are unavoidable and 
either consistency or availability can be achieved. As a result, a 
cloud service needs to position itself somewhere in the design 
space between consistency and availability. 

Consistency requirement principle is similar to the 
atomicity property in ACID. Each transaction will be atomic in 
strictly consistent database. On the flip side, if a database is not 
strongly consistent, then different nodes may have different 
views of the same data. 

Partition tolerance is achieved when a distributed system is 
built to “allow arbitrarily loss of messages sent from one node 
to another” [11]. The current demand makes it impractical to 
keep all data at one source. This is because when the source 
fails, it means the entire system becomes unavailable. 
Therefore, partition tolerance allows for system states to be 
kept in different locations. In the case of a distributed database 
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if it is partition tolerant then it will still be able to perform 
read/write operations while partitioned. If it is not partition 
tolerant, when partitioned, the database may become 
completely unusable or only available for read operations. 

CAP summarizes trade-offs from decades of distributed-
system designs and shows that maintaining a single-system 
image in a distributed system has a cost [13]. If processes 
within a distributed system are partitioned then updates cannot 
be synchronously propagated to all processes without blocking. 
Under partitions, a system cannot safely complete updates and 
hence presents unavailability to some or all of its users. 
Moreover, even without partitions, a system that chooses 
availability over consistency enjoys benefits of low latency: if a 
server can safely respond to a user’s request when it is 
partitioned from all other servers, then it can also respond to a 
user’s request without contacting other servers even when it is 
able to do so [1].  Sacrificing partitioning tolerance is not an 
option as noted on [13]. The choice is between consistency and 
availability. 

Brewer [8] again noted that two of the three requirements 
can be guaranteed simultaneously if one of the requirements 
can be traded-off [9]. It would be possible to have every kind 
of combination, CP, AP and CA. But in practice, every system 
wants to be tolerant to partition. In fact the only question of 
interest regarding CAP is what do we do when some nodes are 
unavailable?! This is why the CA choice does not really make 
sense, it would be a system that does not tolerate network 
partition, but what would happen if a partition occurs is that it 
would lose availability. Therefore, the choices provided by the 
CAP theorem are CP and AP. 

Therefore, distributed databases can either be strongly 
consistent or available. Consequently, most of the NOSQL-
databases can only provide eventual consistency, a weaker type 
of strong consistency. 

Eventual consistency states that in an updatable replicated 
database, eventually all copies of each data item converge to 
the same value. The origin of eventual consistency can be 
traced back to Thomas’ majority consensus algorithm [19]. The 
term was coined by Terry et al. [17] and later popularized by 
Amazon in their Dynamo system, which supported only 
eventual consistency [10]. 

Eventual consistency is a specific form of weak 
consistency; the storage system guarantees that if no new 
updates are made to the object, eventually all accesses will 
return the last updated value [4]. If no failures occur, the 
maximum size of the inconsistency window can be determined 
based on factors such as communication delays, the load on the 
system, and the number of replicas involved in the replication 
scheme. The most popular system that implements eventual 
consistency is DNS (Domain Name System). Updates to a 
name are distributed according to a configured pattern and in 
combination with time-controlled caches; eventually, all clients 
will see the update [23]. 

Eventual consistency means that given enough time, over 
which no changes are performed, all updates will propagate 
through the system and all replicas will be synchronized. At 

any given time, there is no guarantee that the data accessed is 
consistent, therefore the conflicts have to be resolved. 

While eventual consistency is easy to achieve, the current 
definition is not precise [23]. Firstly, from the definition it is 
not clear what eventually consistent database state is. A 
database always returning the value 42 is eventually consistent, 
even if 42 were never written. One possible addition would be 
that eventually all accesses return the last updated value thus 
the database cannot converge to an arbitrary value [22]. Even 
this new definition has another problem: what values can be 
returned before the eventual state of the database is reached? If 
replicas have not yet converged, what guarantees can be made 
on the data returned? In this case only possible solution would 
be to return last known consistent value. Problem here is how 
to know what version of data item was converged to same state 
on all replicas. 

Eventual consistency is often strongly consistent. Several 
recent projects have verified the consistency of real-world 
eventually consistent stores. One study found that Amazon 
SimpleDB’s inconsistency window for eventually consistent 
reads was almost always less than 500ms [24] while another 
study found that Amazon S3’s inconsistency window lasted up 
to 12 seconds [2,5]. Other recent work shows results similar 
from Cassandra where inconsistency window is around 200ms 
[15]. 

In this paper out major motivation is to use eventual 
consistency as a consistency in a traditional distributed 
relational database system. 

The rest of this paper is organized as follows. We first 
review the related work in Section 2. This is followed by 
motivating example from real word problem in Section 3. A 
new non-blocking eventually consistent protocol is presented 
in Section 4. Finally, conclusions are presented in Section 5. 

II. RELATED WORK 

 

In [6] Burckhardt et al. propose a novel consistency model 
based on eventually consistent transactions ordered by two 
order relations (visibility and arbitration) rather than a single 
order relation. That establishes a handful of simple operational 
rules for managing replicas, versions and updates, based on 
graphs called revision diagrams. They also prove a theorem 
stating that the revision diagram rules are sufficient to 
guarantee eventual consistency. 

Apache CouchDB presented in [3], commonly referred to 
as CouchDB, and is an open source database that focuses on 
ease of use. It is a NoSQL database that store data using JSON, 
JavaScript as its query language using MapReduce and HTTP 
for an application interface. One of its distinguishing features is 
multi-master replication.  

Unlike traditional relational database, CouchDB does not 
store data and relationships in tables. Instead, each database is 
a collection of independent documents. Each document 
maintains its own data and self-contained schema. An 
application may access multiple databases, such as one stored 
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on a user's mobile phone and another on a server. Document 
metadata contains revision information, making it possible to 
merge any differences that may have occurred while the 
databases were disconnected. 

CouchDB implements a form of Multi-Version 
Concurrency Control (MVCC) in order to avoid the need to 
lock the database file during writes. Documents in CouchDB 
are versioned, much like they would be in a regular version 
control system such as Subversion. If you want to change a 
value in a document, you create an entire new version of that 
document and save it over the old one. This leads to situation 
where you have two versions of the same document, one old 
and one new. 

CouchDB achieves eventual consistency between databases 
by using incremental replication, a process where document 
changes are periodically copied between servers. CouchDB’s 
replication system comes with automatic conflict detection and 
resolution. When CouchDB detects that a document has been 
changed in both databases, it flags this document as being in 
conflict, much like they would be in a regular version control 
system. 

When two versions of a document conflict during 
replication, the winning version is saved as the most recent 
version in the document’s history. CouchDB preservers the 
other copy of the document as a previous version in the 
document’s history. This happens automatically and 
consistently, so both databases will make exactly the same 
choice. It is up to you to handle conflicts in a way that makes 
sense for your application. You can leave the chosen document 
versions in place, revert to the older version, or try to merge the 
two versions and save the result. 

Dynamo is a proprietary, highly available key-value 
structured storage system [10,16] or a distributed data store.  It 
has properties of both databases and distributed hash tables 
(DHTs). It is directly exposed as Amazon DynamoDB [16], as 
well as being used to power other Amazon Web Services such 
as Amazon S3. 

DynamoDB is a fast, fully managed NoSQL database 
service where customers can store and retrieve any amount of 
data, and serve any level of request traffic. All data items are 
stored on Solid State Drives (SSDs), and are replicated across 3 
availability zones for high availability and durability. 

DynamoDB tables do not have fixed schemas and each 
item may have a different number of attributes. Multiple data 
types add richness to the data model. Local secondary indexes 
add flexibility to the queries you can perform, without 
impacting performance. 

Performance, reliability and security are built-in, with SSD-
storage and automatic 3-way replication.  Amazon DynamoDB 
uses proven cryptographic methods to securely authenticate 
users and prevent unauthorized data access. 

When Amazon DynamoDB returns an operation successful 
response to your write request, Amazon DynamoDB ensures 
the write is durable on multiple servers. However, it takes time 
for the update to propagate to all copies. That is, the data is 

eventually consistent, meaning that your read request 
immediately after a write might not show the change. 

To authors knowledge this paper is the first where eventual 
consistency is used on traditional RDBMS. 

III. MOVIVATION 

 
Eventual consistency as seen is mostly used on key-value 

or document databases. The most popular system that 
implements eventual consistency is DNS, the domain name 
system. Updates to a name are distributed according to a 
configured pattern and in combination with time controlled 
caches, eventually of client will see the update. However, 
eventual consistency can be used also in traditional relational 
database systems where exact strong consistency is not 
required. These kinds of systems consists e.g. game servers, 
social networks, document databases. 

As an example using eventual consistency on traditional 
relational database system we use distributed online gaming 
containing virtual money banking consisting five branches. At 
each branch the local database has an object known as accounts 
which stores the set of accounts in that branch. There is one 
database copy per branch respectively as Databases A, B, C, D 
and E. Each account in the branch is associated with a balance, 
denoted accbal. Let’s assume that this balance is 1000. The 
banking enterprise has two local integrity constraints: the 
balance of each account is positive, and an account is 
associated with only one balance. At present, the application 
has no global integrity constraints. The banking enterprise has 
a number of local and global transactions. The local 
transactions are Ldeposit; Lwithdraw; Ltransfer, and Laudit. 

Let’s assume that customer visits all branches A, B, C, D, 
and E and withdraws $300 and this withdraw happens before 
the earlier withdrawals from other branches has been 
replicated. 

In this execution, all transactions read the same initial 
value, and then update the account with the new value $700.  
Note that as far as each transaction is concerned, the integrity 
constraint of non-negative accounts is not violated.  However, 
in the interleaved execution, the overall result does not reflect 
the correct execution of five withdraw transactions.  In 
particular, if the five transactions were not interleaved, the 
fourth of the five transactions would have violated the integrity 
constraints, and hence would not have been executed. Now if 
all transactions are replicated before customer can visit the last 
bank we still have a inconsistency because balance = 1000 - 
300 *4= -200.This problem is referred to as the inconsistent 
retrieval problem. 

IV. PROPOSED METHOD 

Proposed non-blocking distributed commit protocol is now 
presented. We start presenting how transactions are first 
executed on master (or primary) server and then how changes 
are replicated to other servers in the system. 

Read only transactions can be executed on any of the nodes 
reachable by the client. Because read only transaction does not 
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affect database consistency, there is no need to assign global 
transaction identifier for them. Therefore, only a local 
transaction identifier is used. In this work we assume that there 
are no distributed queries, i.e. query can be executed on a 
single database server. 

All write transactions are first executed on master and when 
master has committed the transaction, it is replicated to the 
other nodes for execution. Master is normally selected to be a 
server nearest to the client but any of the nodes reachable can 
be selected as a master for this transaction. 

Internally, data consistency is maintained by using a 
multiversion model (Multiversion Concurrency Control, 
MVCC [26, 20]). This means that while querying a database 
each transaction sees a snapshot of data (a database version) as 
it was some time ago, regardless of the current state of the 
underlying data. This protects the transaction from viewing 
inconsistent data that could be caused by (other) concurrent 
transaction updates on the same data rows, providing 
transaction isolation for each database session. MVCC, by 
eschewing the locking methodologies of traditional database 
systems, minimizes lock contention in order to allow for 
reasonable performance in multiuser environments.  
Additionally, standard write-a-head logging is used to 
guarantee durability.  

When a transaction is executed for the first time on the 
master, the master assigns to it a global transaction ID GTID. 
GTID associated with each transaction. Since ID is the server’s 
UUID, it remains constant for transactions executed on that 
server. GTID is represented as a pair of coordinates GTID = 
source_id:transaction_id, where transaction_id is globally 
unique. One method to implement globally unique transaction 
identifiers is to use Lamport's clocks [14]. 

GTIDs are persisted in the log as a new log record type that 
holds the actual identifier. The event is called Gtid_log. As 
such, when the group of events for a given transaction is to be 
written to the log, a new Gtid_log record is also written, 
preceding the group. Store GTID in log of the master to 
guarantees that no transaction is re-executed more than once 
and two different transactions cannot have the same GTID. 
(Therefore, before applying a transaction a server checks that it 
has not applied it before. If it has, it skips it).  

First before Start executions transaction Check GTID is 
unique from log file, which means GTID is not found from the 
log. If it is found then there is no need to do anything i.e. 
guarantee there is no two transaction with same GTID and not 
execute transaction more than once  

For every statement on a transaction, we check if the 
statements does writes (INSERT, UPDATE, or DELETE 
statements on SQL) and if it does master must be able to reach 
(send messages and receive replies) from majority of the nodes. 

When transaction is read operation the transaction find 
snapshot of data using fork operation that allows creating a 
copy of data and read it. If transaction is write operation the 
transaction finds snapshot of data using fork operation that 
allow to create a copy of data to work with them in isolation 

from the original or main version.  Check version that updated 
is not old snapshot or version of data by equation: current 
version equal to new version minus one if not true go to 
previous step to create current version, then check integrity 
constraint to guarantee the new update not violate constraint 
means consistent state. It’s the main idea of revision go with 
data from consistent state to consistent state if true then 
commit. (2nd phase) Otherwise set transaction to wait queue 
and execute later.  

Finally merge these update with main version using join all 
operation that is discussed in revision diagram then GTID is 
written to the log (immediately preceding the transaction itself 
in the log).  

Then check queue if there is operation fork and execute else 
end transaction (still in master). Send transaction log and GTID 
to other node that means other node can’t see version until 
committed in master. 

 

Figure 1.  Master algorithm: 

Now we consider how transactions are executed on a server 
(or node) that is not a master. There are basically two 
possibilities. Either transaction is read only transaction or 

transaction is already committed on a master and now 
replicated to this node. For read only transactions we only need 

1  GTID := Source_id:+next_transaction_id; 
2  If GTID can be found from master’s log { 
3      End; /* transaction is already executed and we can skip it. */ 
4  } 
5  For every statement Sk in the transaction T { 
6    If Sk is done at least one write statement { 
7      If # nodes reachable from master < (# total nodes / 2) + 1 {    /* 

Majority?*/ 
8        Abort transaction T; /* we do not have majority */ 
9      } 
10    } 
11    public transaction fork { 
12       revision r = fork { tuple } 
13     If Sk is read { 
14       Execute read and exit; 
15     } Else If Sk is Write { 
16       If revision = current version {  
17         Execute transaction; 
18       } Else {  
19         request current version 
20       } 
21       If statement aborts because database would be inconsistent { 
22           Abort; 
23       } 
24    }; /* Sk is write */ 
25  };  /*for executes statements on master*/ 
26  Join r;} 
27  Write transaction operations and gtid to the log; 
28  Send transaction log and gtid to other nodes for execution;  
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to provide current consistent version. There is no need to use 
any special protocol for this. For write transactions coming 
from master there is need to do additional checking presented 
below. 

Transactions containing only read only statements can be 
executed on any of the nodes, but transactions containing write 
statements (update, insert or delete SQL-statements) needs to 
be executed on master. Nodes are not autonomous i.e. master 
makes always the decision whether the transaction commits or 
aborts. If the non master aborts the transaction, it requests 
normal REDO-log records of the transaction from the master. 
Then, it executes normal ARIES style recovery for that 
transaction. 

Every node remove that transaction from queue after it 
checks gtid is not already executed on this node. If it is, we can 
ignore the transaction. Then we check if this is the next in the 
log file if not put transaction back to the queue (for order 
manner) and send REDO log request to master, master will 
reply with REDO logs and we will redo transaction using 
normal ARIES style recovery. Finally node writes transaction 
operations and GTID to the log. 

When executing write transaction we need to check that 
data item versions are consistent. They must represent 
consistent view.  If data item versions do not represent 
consistent view or integrity constraints would be violated after 
transaction execution, we send request to master for REDO 
logs. Master replies with REDO logs for all data items in read 
and write set of the transaction. These REDO logs are then 
executed on this node using traditional ARIES style recovery. 
When transaction finally commits, it will represent consistent 
(eventually) database state and the transaction log and GTID 
can be written to log followed by transaction commit log 
record. 

Figure 2.  Other nodes: 

We consider banking enterprise consists of a five branches. 
At each branch the local database has an object known as 
accounts which stores the set of accounts in that branch. There 
is one database copy per branch respectively as Databases A, 
B, C, D and E. Each account in the branch is associated with a 
balance, denoted accbal. Let’s assume that this balance is 1000. 
The banking enterprise has two local integrity constraints: the 
balance of each account is positive, and an account is 
associated with only one balance. At present, the application 
has no global integrity constraints. The banking enterprise has 
a number of local and global transactions. The local 
transactions are Ldeposit; Lwithdraw; Ltransfer, and Laudit. 

Let’s assume that customer visits all branches A, B, C, D, 
and E and withdraws $300 and this withdraw happens before 
the earlier withdrawals from other branches has been 
replicated. 

In this execution, all transactions read the same initial 
value, and then update the account with the new value $700.  
Note that as far as each transaction is concerned, the integrity 
constraint of non-negative accounts is not violated.  However, 
in the interleaved execution, the overall result does not reflect 
the correct execution of five withdraw transactions.  In 
particular, if the five transactions were not interleaved, the 
fourth of the five transactions would have violated the integrity 
constraints, and hence would not have been executed. Now if 
all transactions are replicated before customer can visit the last 
bank we still have a inconsistency because balance = 1000 - 
300 *5= -500.This problem is referred to as the inconsistent 
retrieval problem 

Let at T1 and T2 denote two concurrently running 
transactions. Each transaction see, for example, that accbal(A) 
= 1000$ and accbal(B) = 1000$. Now T1 thinks it can 
withdraw 300$ from A and T2 thinks it can withdraw 300$ 
from B, because each transaction will not see the other 
transaction’s change, which is the property of snapshot 
isolation. Thus, after all transaction has run, we have that 
Balance(A) = -500$, which violates the constraint.  

By using algorithm when customer visit branch A is 
master: 

1. Transaction receives GTID= A:1; 

2. This transaction can’t be found from master’s log, 
thus we need to execute it. 

3. All nodes are reachable thus we continue. 

4. Transaction withdraws $300 from the account and 
account balance is $700. Thus database is consistent 
and transaction commits. 

5. Transaction GTID and operations are written to 
master log. 

6. Transaction is sent to other nodes for execution. 

Now let’s consider the situation on branch B where 
customer arrives before withdraw at branch A has not yet 
replicated. Now branch B naturally is the master and all other’s 
including branch A are replicated nodes. 

1  Remove transaction T from Queue; 
2  If received gtid from Master is found from log { 
3    End; /* This transaction is already executed */ 
4  } 
5  If received transaction_id > transaction_id +1 on log { 
6    Put transaction T back to Queue; /* We need to execute 

transactions in order */ 
7  }; 
8  For every statement Sk in transaction T { 
9    Check that data items versions touched on Sk are consistent; 
10    Execute statement; 
11    If statement aborts because database would be inconsistent { 
12      Abort transaction; 
13      Send REDO log request to Master; /* Master will reply with 

REDO logs and we will redo transaction using normal ARIES style 

recovery*/; 
14      End; 
15    } 
16  } /* End For; 
17  Write transaction operations and gtid to the log; 
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1. Transaction receives GTID = B:2 (remember that 
transaction identifiers are globally unique) 

2. From master’s log we note that there is no 
transactions executed thus last executed GTID on this 
master =B: 0. Thus we know that we are missing one 
update. 

3. At step 12 we request a new revision to accbal, from 
above we know that database is not yet eventually 
consistent, thus we request a new current revision at 
step 19. 

4. If revision diagram is not acyclic when transaction 
will be aborted at step 26. 

When transaction with GTID=A:1 has been executed the 
transaction with GTID=B:2 can continue and in that execution 
the balance would have the correct value i.e. $700 and 
withdraw is still possible. If we continue the example, in all 
branches transaction either needs to wait until the transaction 
with previous global transaction identifier has been executed or 
if it is execute then we can continue. When balance is < $300 at 
some branch, the transaction is aborted because withdraw 
would violate the integrity constraint. 

Now let’s consider the network is partitioned such that 
branches A, B, and C are in network partition 1 and branches D 
and E in network partition 2. These partitions can’t reach each 
other. Customer can withdraw money from any of branches at 
partition 1 because they form a majority but not from any of 
the branches at partition 2 because they do not form the 
majority. Customer can ask his/hers account but that may not 
represent current value. But the algorithm proposed makes sure 
that branches at partition 2 will eventually see consistent 
database.  In this work we assume that network will eventually 
be fixed and all branches can see each other and that message 
changes between nodes can be reliable detected on link layer. 

To show that proposed method produces correct 
consistency level, we need to establish some precise 
terminology and we do this similarly as in [6]. For 
uniformness, we require that all operations are part of a 
transaction and thus all operations are inside the transactions. 
We can describe the interaction between transactions and the 
database by the following three types of operations (query-
update interface): 

1. Updates       issued by the transactions 

2. Pairs (q, p) representing a query      issued by 
the transaction together with a response      by 
the database system. 

3. The end of transaction operations issued by the 
transactions. 

Formally, we can represent the activity as a stream of 
operations forming a history. 

DEFINITION 1:  A history H for a set T transactions and 
query-update interface (Q, V, U) is a map H which maps each 
transaction      to a finite or infinite sequence H (c) 
operation from alphabet                     

Furthermore, we need to define a program order (i.e.) the 
order where operations are executed on a transaction. 

DEFINITION 2: Program order. For a given history H, 
we define a partial order    over events in H such that 

      
  iff e appear before    in some sequence H(t). 

Then we define an equivalence relation. 

DEFINITION 3: Factoring: We define an equivalence 
relation    over events such that          iff trans (e) = trans 
(  ). For any partial order   ver events, we say that   factors 
over    iff for any events x and y from different transactions 
     implies        for any x, y such that        
and        . This induces a corresponding partial order on the 
transactions. 

With following formalization we can specify the 
information about relationships between events declaratively, 
without referring to implementation-level concepts, such as 
replicas or messages. Namely, F takes as a parameter not a 
sequence, but an operation context, which encapsulates “all we 
need to know” about a system execution to determine the 
return value of a given operation. 

Eventual consistency relaxes other consistency models by 
allowing queries in a transaction t to see only a subset of all 
transactions that are globally ordered before t. It does so by 
distinguishing between a visibility order (a partial order that 
defines what updates are visible to a query), and an arbitration 
order (a partial order that determines the relative order of 
updates). 

DEFINITION 4:  A history H is eventually consistent if 
there exist two partial orders    (the visibility order) and   
(the arbitration order) over events in H, such that the following 
conditions are satisfied for all events               

 (Arbitration extends visibility): 

if        then        . 

 (Total order on past events): if         

and       , then either          or        . 

 (Compatible with program order) if 

        then          

 (Consistent query results): for all         , 

                                  

Thus query returns the state as it results from 

applying all preceding visible updates (as 

determined by the visibility order) to the initial 

state, in the order given by the arbitration order. 

 (Atomicity): Both    and    factor over   . 

 (Isolation): If                  and 

        , then        . That is, events in 

uncommitted transactions are visible only to later 

events by the same client. 

 (Eventual delivery): For all committed 

transactions t, there exists only finitely many 

transactions       such that      . 
. 
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The reason why eventual consistency can tolerate 
temporary network partitions is that the arbitration order can be 
constructed incrementally, i.e. may remain only partially 
determined for some time after a transaction commits. This 
allows conflicting updates to be committed even in the 
presence of network partitions. Now we are ready to prove the 
correctness of the proposed method. 

THEOREM 1: A history H produced by the proposed 
method is eventually consistent. 

PROOF:  

 Compatible with program order: All transaction 

operations are executed on all nodes in the order 

they appear on program in step 9 of the proposed 

method. Thus, proposed method is compatible 

with program order. 

 Arbitration extents visibility: In step 2 of the 

proposed method we make sure that slaves 

execute transactions in the same order as they are 

executed on master. Because we use MVCC for 

local concurrency control, we know that revision 

diagram is acyclic and a partial order. For 

versions we use revision diagram fork and join 

operations (see [6]) thus    is acyclic, transitive 

and partial order. Thus we know that if        

and      , then either        or       . 

Now define         , then 

if         then        .  

 (Consistent query results): We let at step 2 query 

to continue if and only if all preceding 

transactions are executed. Thus query returns the 

state as it results from applying all preceding 

visible updates. 

 (Atomicity): Lets again using step 2 of the 

proposed method use the total order i.e. if 

       and      , then either        

or      . Now define        , then we can 

easily see that both    and    factor over    

 (Isolation): Because local concurrency control 

method uses multiple versions (steps 20--24) and 

is compatible with program order, thus if 

                 and         , 

then       . That is, events in uncommitted 

transactions are visible only to later events by the 

same client. 

 Eventual delivery: As noted if a server comes 

down or its network is separated from rest of 

servers in the cloud. The server when up and can 

reach the rest of servers requests log records of 

the missing transactions. These log records are 

then applied using standard ARIES method.  

When node is up it can serve only read-only 

transactions if the node does not belong to 

majority. If node is not separated, write 

transactions are executed only after the missing 

transactions are executed (step 2). Thus for every 

transaction t, there exists only finitely many 

transactions       such that         

V. CONCLUSIONS 

One of the challenges in distributed system is to achieve 
both consistency and availability not choose one of them. 
Consistency means when update is achieve will see to all node 
in database system at same time and it is difficult to achieve 
this strong consistency and guarantee availability of that 
system, according to that was necessary to take a look to 
properties of databases throughout the ACID, BASE and CAP 
theorem, strong consistency is main property of database, but 
in distributed environment there scarifies consistency to 
maintain availability through partition tolerance this led to need 
balance between availability and consistency it was eventual 
consistency the best solution. 

To understand and build it eventual consistency model in 
distributed environment concurrency control is an essential 
issue whenever it comes to many users and shared resources. 
MVCC is an efficient method to let multiple processes access 
the same data in parallel without corrupting the data and the 
possibility of deadlocks. It is an alternative to the more strict 
lock based approaches, where every process first has to request 
an exclusive lock on a data item, before it can be read or 
updated.  

For optimistic replication it is necessary to determine if 
multiple versions of the same data item were created in 
parallel. Furthermore, the database needs to know which 
version the newest is.  

In this paper we have proposed a solution to non-blocking 
for eventual consistent replicated cloud database. A new 
algorithm was proposed as solution for this problem and 
validate by case study in bank example and how using MVCC 
that is good for read and no blocking but when the received 
request to update it check version to make sure that the newest 
version before commit. The algorithm also treated with 
eventual consistency in distributed environment or replica is 
guarantee local consistency then eventually to all other node.          

One possible research direction would be implementing the 
proposed method inside a database management system 
capable of replication and measuring the availability, 
consistency and partitioning avoidance. 

As future research, one interesting direction is to design 
encapsulated solutions that offer good isolation for common 
scenarios. Examples are use of convergent and commutative 
replicated data types and convergent merges for non 
commutative operations. Another direction is scenario-specific 
patterns, such as compensations and queued transactions, 
which can be leveraged to achieve high availability while 
providing consistency that applications can reason about.  

This study could be also extended to find out what potential 
stronger consistency guarantees or isolation levels can be 
provided for transactions containing multiple statements. 
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