
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1014

Non-blocking Algorithm for Eventual Consistent

Replicated Database on Cloud

Mawahib Musa Elbushra

Sudan University of Science and Technology

Department of Computer Science

Khartoum, Sudan

Jan Lindström

SkySQL Ab

Espoo, Finland

Email: jan.lindstrom {at} skysql.com

Abstract— One of the challenges of cloud programming is to

achieve the right balance between availability and consistency in

a distributed database. Cloud computing environments,

particularly cloud databases, are rapidly increasing in

importance, acceptance and usage in major applications, which

need the partition-tolerance and availability for scalability

purposes, thus sacrificing the consistency side (CAP theorem).

With this approach, use of paradigms such as eventual

consistency became more widespread. In these environments, a

large number of user’s access data stored in highly available

storage systems. In this research we use eventually consistent

transactions with revision diagrams for visibility and arbitration

to manage updates in replicates. We present a new non-blocking

algorithm to implement eventual consistency using revision

diagrams and fork-join data in a distributed environment.

Finally, we show that the proposed method solves the problem.

Keywords: cloud computing, eventual consistency, replication

I. INTRODUCTION

Clouds are a large pool of easily usable and accessible
virtualized resources (such as hardware, development
platforms and/or services). These resources can be dynamically
reconfigured to adjust to a variable load (scale), allowing also
for an optimum resource utilization. This pool of resources is
typically exploited by a pay-per-use model in which guarantees
are offered by the infrastructure provider by means of
customized SLAs [21].

To achieve high scalability at low cost, cloud services are
typically highly distributed systems running on commodity
hardware. Here scaling just requires adding a new off the shelf
server.

CAP theorem, also known as Brewer's theorem [7, 18] later
formally shown by Gilbert and Lynch [11], states that it is
impossible for a distributed computer system to simultaneously
provide all three of the following guarantees:

• Consistency : all nodes see the same data at the same
time

• Availability: a guarantee that every request receives a
response about whether it was successful or failed

• Partition tolerance: the system continues to operate
despite arbitrary message loss or failure of part of the system

According to the theorem, a distributed system can satisfy
any two of these guarantees at the same time, but not all three.

This raises the concern about which property is the least
important one, since all three properties are both desirable and
expected in distributed systems [11]. Strong consistency is
expected because many systems are often used together with
databases where the so called ACID (Atomicity, Consistency,
Isolation, and Durability) properties apply. The databases
provide strong consistency by the use of transactions.

High availability is expected as distributed systems are
connected to a network and whenever the network is available,
the system is supposed to be available [11]. Finally, tolerance
to network partitions is expected because it is a basic fault-
tolerance technique. If a link goes down or a node crashes, the
rest of the system should continue to work as before - even if
the crash results in fewer nodes or even two separate partitions
[11]. In order to completely avoid network partitioning, or at
least to make it extremely unlikely, single servers or servers on
the same rack can be used. Both solutions do not scale and,
hence, are not suited for cloud systems. Furthermore, these
solutions also decrease the tolerance against other failures.
Also, to use more reliable links between the networks does not
eliminate the chance of partitioning, and increases the cost
significantly. Thus, network partitions are unavoidable and
either consistency or availability can be achieved. As a result, a
cloud service needs to position itself somewhere in the design
space between consistency and availability.

Consistency requirement principle is similar to the
atomicity property in ACID. Each transaction will be atomic in
strictly consistent database. On the flip side, if a database is not
strongly consistent, then different nodes may have different
views of the same data.

Partition tolerance is achieved when a distributed system is
built to “allow arbitrarily loss of messages sent from one node
to another” [11]. The current demand makes it impractical to
keep all data at one source. This is because when the source
fails, it means the entire system becomes unavailable.
Therefore, partition tolerance allows for system states to be
kept in different locations. In the case of a distributed database

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1015

if it is partition tolerant then it will still be able to perform
read/write operations while partitioned. If it is not partition
tolerant, when partitioned, the database may become
completely unusable or only available for read operations.

CAP summarizes trade-offs from decades of distributed-
system designs and shows that maintaining a single-system
image in a distributed system has a cost [13]. If processes
within a distributed system are partitioned then updates cannot
be synchronously propagated to all processes without blocking.
Under partitions, a system cannot safely complete updates and
hence presents unavailability to some or all of its users.
Moreover, even without partitions, a system that chooses
availability over consistency enjoys benefits of low latency: if a
server can safely respond to a user’s request when it is
partitioned from all other servers, then it can also respond to a
user’s request without contacting other servers even when it is
able to do so [1]. Sacrificing partitioning tolerance is not an
option as noted on [13]. The choice is between consistency and
availability.

Brewer [8] again noted that two of the three requirements
can be guaranteed simultaneously if one of the requirements
can be traded-off [9]. It would be possible to have every kind
of combination, CP, AP and CA. But in practice, every system
wants to be tolerant to partition. In fact the only question of
interest regarding CAP is what do we do when some nodes are
unavailable?! This is why the CA choice does not really make
sense, it would be a system that does not tolerate network
partition, but what would happen if a partition occurs is that it
would lose availability. Therefore, the choices provided by the
CAP theorem are CP and AP.

Therefore, distributed databases can either be strongly
consistent or available. Consequently, most of the NOSQL-
databases can only provide eventual consistency, a weaker type
of strong consistency.

Eventual consistency states that in an updatable replicated
database, eventually all copies of each data item converge to
the same value. The origin of eventual consistency can be
traced back to Thomas’ majority consensus algorithm [19]. The
term was coined by Terry et al. [17] and later popularized by
Amazon in their Dynamo system, which supported only
eventual consistency [10].

Eventual consistency is a specific form of weak
consistency; the storage system guarantees that if no new
updates are made to the object, eventually all accesses will
return the last updated value [4]. If no failures occur, the
maximum size of the inconsistency window can be determined
based on factors such as communication delays, the load on the
system, and the number of replicas involved in the replication
scheme. The most popular system that implements eventual
consistency is DNS (Domain Name System). Updates to a
name are distributed according to a configured pattern and in
combination with time-controlled caches; eventually, all clients
will see the update [23].

Eventual consistency means that given enough time, over
which no changes are performed, all updates will propagate
through the system and all replicas will be synchronized. At

any given time, there is no guarantee that the data accessed is
consistent, therefore the conflicts have to be resolved.

While eventual consistency is easy to achieve, the current
definition is not precise [23]. Firstly, from the definition it is
not clear what eventually consistent database state is. A
database always returning the value 42 is eventually consistent,
even if 42 were never written. One possible addition would be
that eventually all accesses return the last updated value thus
the database cannot converge to an arbitrary value [22]. Even
this new definition has another problem: what values can be
returned before the eventual state of the database is reached? If
replicas have not yet converged, what guarantees can be made
on the data returned? In this case only possible solution would
be to return last known consistent value. Problem here is how
to know what version of data item was converged to same state
on all replicas.

Eventual consistency is often strongly consistent. Several
recent projects have verified the consistency of real-world
eventually consistent stores. One study found that Amazon
SimpleDB’s inconsistency window for eventually consistent
reads was almost always less than 500ms [24] while another
study found that Amazon S3’s inconsistency window lasted up
to 12 seconds [2,5]. Other recent work shows results similar
from Cassandra where inconsistency window is around 200ms
[15].

In this paper out major motivation is to use eventual
consistency as a consistency in a traditional distributed
relational database system.

The rest of this paper is organized as follows. We first
review the related work in Section 2. This is followed by
motivating example from real word problem in Section 3. A
new non-blocking eventually consistent protocol is presented
in Section 4. Finally, conclusions are presented in Section 5.

II. RELATED WORK

In [6] Burckhardt et al. propose a novel consistency model
based on eventually consistent transactions ordered by two
order relations (visibility and arbitration) rather than a single
order relation. That establishes a handful of simple operational
rules for managing replicas, versions and updates, based on
graphs called revision diagrams. They also prove a theorem
stating that the revision diagram rules are sufficient to
guarantee eventual consistency.

Apache CouchDB presented in [3], commonly referred to
as CouchDB, and is an open source database that focuses on
ease of use. It is a NoSQL database that store data using JSON,
JavaScript as its query language using MapReduce and HTTP
for an application interface. One of its distinguishing features is
multi-master replication.

Unlike traditional relational database, CouchDB does not
store data and relationships in tables. Instead, each database is
a collection of independent documents. Each document
maintains its own data and self-contained schema. An
application may access multiple databases, such as one stored

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1016

on a user's mobile phone and another on a server. Document
metadata contains revision information, making it possible to
merge any differences that may have occurred while the
databases were disconnected.

CouchDB implements a form of Multi-Version
Concurrency Control (MVCC) in order to avoid the need to
lock the database file during writes. Documents in CouchDB
are versioned, much like they would be in a regular version
control system such as Subversion. If you want to change a
value in a document, you create an entire new version of that
document and save it over the old one. This leads to situation
where you have two versions of the same document, one old
and one new.

CouchDB achieves eventual consistency between databases
by using incremental replication, a process where document
changes are periodically copied between servers. CouchDB’s
replication system comes with automatic conflict detection and
resolution. When CouchDB detects that a document has been
changed in both databases, it flags this document as being in
conflict, much like they would be in a regular version control
system.

When two versions of a document conflict during
replication, the winning version is saved as the most recent
version in the document’s history. CouchDB preservers the
other copy of the document as a previous version in the
document’s history. This happens automatically and
consistently, so both databases will make exactly the same
choice. It is up to you to handle conflicts in a way that makes
sense for your application. You can leave the chosen document
versions in place, revert to the older version, or try to merge the
two versions and save the result.

Dynamo is a proprietary, highly available key-value
structured storage system [10,16] or a distributed data store. It
has properties of both databases and distributed hash tables
(DHTs). It is directly exposed as Amazon DynamoDB [16], as
well as being used to power other Amazon Web Services such
as Amazon S3.

DynamoDB is a fast, fully managed NoSQL database
service where customers can store and retrieve any amount of
data, and serve any level of request traffic. All data items are
stored on Solid State Drives (SSDs), and are replicated across 3
availability zones for high availability and durability.

DynamoDB tables do not have fixed schemas and each
item may have a different number of attributes. Multiple data
types add richness to the data model. Local secondary indexes
add flexibility to the queries you can perform, without
impacting performance.

Performance, reliability and security are built-in, with SSD-
storage and automatic 3-way replication. Amazon DynamoDB
uses proven cryptographic methods to securely authenticate
users and prevent unauthorized data access.

When Amazon DynamoDB returns an operation successful
response to your write request, Amazon DynamoDB ensures
the write is durable on multiple servers. However, it takes time
for the update to propagate to all copies. That is, the data is

eventually consistent, meaning that your read request
immediately after a write might not show the change.

To authors knowledge this paper is the first where eventual
consistency is used on traditional RDBMS.

III. MOVIVATION

Eventual consistency as seen is mostly used on key-value

or document databases. The most popular system that
implements eventual consistency is DNS, the domain name
system. Updates to a name are distributed according to a
configured pattern and in combination with time controlled
caches, eventually of client will see the update. However,
eventual consistency can be used also in traditional relational
database systems where exact strong consistency is not
required. These kinds of systems consists e.g. game servers,
social networks, document databases.

As an example using eventual consistency on traditional
relational database system we use distributed online gaming
containing virtual money banking consisting five branches. At
each branch the local database has an object known as accounts
which stores the set of accounts in that branch. There is one
database copy per branch respectively as Databases A, B, C, D
and E. Each account in the branch is associated with a balance,
denoted accbal. Let’s assume that this balance is 1000. The
banking enterprise has two local integrity constraints: the
balance of each account is positive, and an account is
associated with only one balance. At present, the application
has no global integrity constraints. The banking enterprise has
a number of local and global transactions. The local
transactions are Ldeposit; Lwithdraw; Ltransfer, and Laudit.

Let’s assume that customer visits all branches A, B, C, D,
and E and withdraws $300 and this withdraw happens before
the earlier withdrawals from other branches has been
replicated.

In this execution, all transactions read the same initial
value, and then update the account with the new value $700.
Note that as far as each transaction is concerned, the integrity
constraint of non-negative accounts is not violated. However,
in the interleaved execution, the overall result does not reflect
the correct execution of five withdraw transactions. In
particular, if the five transactions were not interleaved, the
fourth of the five transactions would have violated the integrity
constraints, and hence would not have been executed. Now if
all transactions are replicated before customer can visit the last
bank we still have a inconsistency because balance = 1000 -
300 *4= -200.This problem is referred to as the inconsistent
retrieval problem.

IV. PROPOSED METHOD

Proposed non-blocking distributed commit protocol is now
presented. We start presenting how transactions are first
executed on master (or primary) server and then how changes
are replicated to other servers in the system.

Read only transactions can be executed on any of the nodes
reachable by the client. Because read only transaction does not

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1017

affect database consistency, there is no need to assign global
transaction identifier for them. Therefore, only a local
transaction identifier is used. In this work we assume that there
are no distributed queries, i.e. query can be executed on a
single database server.

All write transactions are first executed on master and when
master has committed the transaction, it is replicated to the
other nodes for execution. Master is normally selected to be a
server nearest to the client but any of the nodes reachable can
be selected as a master for this transaction.

Internally, data consistency is maintained by using a
multiversion model (Multiversion Concurrency Control,
MVCC [26, 20]). This means that while querying a database
each transaction sees a snapshot of data (a database version) as
it was some time ago, regardless of the current state of the
underlying data. This protects the transaction from viewing
inconsistent data that could be caused by (other) concurrent
transaction updates on the same data rows, providing
transaction isolation for each database session. MVCC, by
eschewing the locking methodologies of traditional database
systems, minimizes lock contention in order to allow for
reasonable performance in multiuser environments.
Additionally, standard write-a-head logging is used to
guarantee durability.

When a transaction is executed for the first time on the
master, the master assigns to it a global transaction ID GTID.
GTID associated with each transaction. Since ID is the server’s
UUID, it remains constant for transactions executed on that
server. GTID is represented as a pair of coordinates GTID =
source_id:transaction_id, where transaction_id is globally
unique. One method to implement globally unique transaction
identifiers is to use Lamport's clocks [14].

GTIDs are persisted in the log as a new log record type that
holds the actual identifier. The event is called Gtid_log. As
such, when the group of events for a given transaction is to be
written to the log, a new Gtid_log record is also written,
preceding the group. Store GTID in log of the master to
guarantees that no transaction is re-executed more than once
and two different transactions cannot have the same GTID.
(Therefore, before applying a transaction a server checks that it
has not applied it before. If it has, it skips it).

First before Start executions transaction Check GTID is
unique from log file, which means GTID is not found from the
log. If it is found then there is no need to do anything i.e.
guarantee there is no two transaction with same GTID and not
execute transaction more than once

For every statement on a transaction, we check if the
statements does writes (INSERT, UPDATE, or DELETE
statements on SQL) and if it does master must be able to reach
(send messages and receive replies) from majority of the nodes.

When transaction is read operation the transaction find
snapshot of data using fork operation that allows creating a
copy of data and read it. If transaction is write operation the
transaction finds snapshot of data using fork operation that
allow to create a copy of data to work with them in isolation

from the original or main version. Check version that updated
is not old snapshot or version of data by equation: current
version equal to new version minus one if not true go to
previous step to create current version, then check integrity
constraint to guarantee the new update not violate constraint
means consistent state. It’s the main idea of revision go with
data from consistent state to consistent state if true then
commit. (2nd phase) Otherwise set transaction to wait queue
and execute later.

Finally merge these update with main version using join all
operation that is discussed in revision diagram then GTID is
written to the log (immediately preceding the transaction itself
in the log).

Then check queue if there is operation fork and execute else
end transaction (still in master). Send transaction log and GTID
to other node that means other node can’t see version until
committed in master.

Figure 1. Master algorithm:

Now we consider how transactions are executed on a server
(or node) that is not a master. There are basically two
possibilities. Either transaction is read only transaction or

transaction is already committed on a master and now
replicated to this node. For read only transactions we only need

1 GTID := Source_id:+next_transaction_id;
2 If GTID can be found from master’s log {
3 End; /* transaction is already executed and we can skip it. */
4 }
5 For every statement Sk in the transaction T {
6 If Sk is done at least one write statement {
7 If # nodes reachable from master < (# total nodes / 2) + 1 { /*

Majority?*/
8 Abort transaction T; /* we do not have majority */
9 }
10 }
11 public transaction fork {
12 revision r = fork { tuple }
13 If Sk is read {
14 Execute read and exit;
15 } Else If Sk is Write {
16 If revision = current version {
17 Execute transaction;
18 } Else {
19 request current version
20 }
21 If statement aborts because database would be inconsistent {
22 Abort;
23 }
24 }; /* Sk is write */
25 }; /*for executes statements on master*/
26 Join r;}
27 Write transaction operations and gtid to the log;
28 Send transaction log and gtid to other nodes for execution;

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1018

to provide current consistent version. There is no need to use
any special protocol for this. For write transactions coming
from master there is need to do additional checking presented
below.

Transactions containing only read only statements can be
executed on any of the nodes, but transactions containing write
statements (update, insert or delete SQL-statements) needs to
be executed on master. Nodes are not autonomous i.e. master
makes always the decision whether the transaction commits or
aborts. If the non master aborts the transaction, it requests
normal REDO-log records of the transaction from the master.
Then, it executes normal ARIES style recovery for that
transaction.

Every node remove that transaction from queue after it
checks gtid is not already executed on this node. If it is, we can
ignore the transaction. Then we check if this is the next in the
log file if not put transaction back to the queue (for order
manner) and send REDO log request to master, master will
reply with REDO logs and we will redo transaction using
normal ARIES style recovery. Finally node writes transaction
operations and GTID to the log.

When executing write transaction we need to check that
data item versions are consistent. They must represent
consistent view. If data item versions do not represent
consistent view or integrity constraints would be violated after
transaction execution, we send request to master for REDO
logs. Master replies with REDO logs for all data items in read
and write set of the transaction. These REDO logs are then
executed on this node using traditional ARIES style recovery.
When transaction finally commits, it will represent consistent
(eventually) database state and the transaction log and GTID
can be written to log followed by transaction commit log
record.

Figure 2. Other nodes:

We consider banking enterprise consists of a five branches.
At each branch the local database has an object known as
accounts which stores the set of accounts in that branch. There
is one database copy per branch respectively as Databases A,
B, C, D and E. Each account in the branch is associated with a
balance, denoted accbal. Let’s assume that this balance is 1000.
The banking enterprise has two local integrity constraints: the
balance of each account is positive, and an account is
associated with only one balance. At present, the application
has no global integrity constraints. The banking enterprise has
a number of local and global transactions. The local
transactions are Ldeposit; Lwithdraw; Ltransfer, and Laudit.

Let’s assume that customer visits all branches A, B, C, D,
and E and withdraws $300 and this withdraw happens before
the earlier withdrawals from other branches has been
replicated.

In this execution, all transactions read the same initial
value, and then update the account with the new value $700.
Note that as far as each transaction is concerned, the integrity
constraint of non-negative accounts is not violated. However,
in the interleaved execution, the overall result does not reflect
the correct execution of five withdraw transactions. In
particular, if the five transactions were not interleaved, the
fourth of the five transactions would have violated the integrity
constraints, and hence would not have been executed. Now if
all transactions are replicated before customer can visit the last
bank we still have a inconsistency because balance = 1000 -
300 *5= -500.This problem is referred to as the inconsistent
retrieval problem

Let at T1 and T2 denote two concurrently running
transactions. Each transaction see, for example, that accbal(A)
= 1000$ and accbal(B) = 1000$. Now T1 thinks it can
withdraw 300$ from A and T2 thinks it can withdraw 300$
from B, because each transaction will not see the other
transaction’s change, which is the property of snapshot
isolation. Thus, after all transaction has run, we have that
Balance(A) = -500$, which violates the constraint.

By using algorithm when customer visit branch A is
master:

1. Transaction receives GTID= A:1;

2. This transaction can’t be found from master’s log,
thus we need to execute it.

3. All nodes are reachable thus we continue.

4. Transaction withdraws $300 from the account and
account balance is $700. Thus database is consistent
and transaction commits.

5. Transaction GTID and operations are written to
master log.

6. Transaction is sent to other nodes for execution.

Now let’s consider the situation on branch B where
customer arrives before withdraw at branch A has not yet
replicated. Now branch B naturally is the master and all other’s
including branch A are replicated nodes.

1 Remove transaction T from Queue;
2 If received gtid from Master is found from log {
3 End; /* This transaction is already executed */
4 }
5 If received transaction_id > transaction_id +1 on log {
6 Put transaction T back to Queue; /* We need to execute

transactions in order */
7 };
8 For every statement Sk in transaction T {
9 Check that data items versions touched on Sk are consistent;
10 Execute statement;
11 If statement aborts because database would be inconsistent {
12 Abort transaction;
13 Send REDO log request to Master; /* Master will reply with

REDO logs and we will redo transaction using normal ARIES style

recovery*/;
14 End;
15 }
16 } /* End For;
17 Write transaction operations and gtid to the log;

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1019

1. Transaction receives GTID = B:2 (remember that
transaction identifiers are globally unique)

2. From master’s log we note that there is no
transactions executed thus last executed GTID on this
master =B: 0. Thus we know that we are missing one
update.

3. At step 12 we request a new revision to accbal, from
above we know that database is not yet eventually
consistent, thus we request a new current revision at
step 19.

4. If revision diagram is not acyclic when transaction
will be aborted at step 26.

When transaction with GTID=A:1 has been executed the
transaction with GTID=B:2 can continue and in that execution
the balance would have the correct value i.e. $700 and
withdraw is still possible. If we continue the example, in all
branches transaction either needs to wait until the transaction
with previous global transaction identifier has been executed or
if it is execute then we can continue. When balance is < $300 at
some branch, the transaction is aborted because withdraw
would violate the integrity constraint.

Now let’s consider the network is partitioned such that
branches A, B, and C are in network partition 1 and branches D
and E in network partition 2. These partitions can’t reach each
other. Customer can withdraw money from any of branches at
partition 1 because they form a majority but not from any of
the branches at partition 2 because they do not form the
majority. Customer can ask his/hers account but that may not
represent current value. But the algorithm proposed makes sure
that branches at partition 2 will eventually see consistent
database. In this work we assume that network will eventually
be fixed and all branches can see each other and that message
changes between nodes can be reliable detected on link layer.

To show that proposed method produces correct
consistency level, we need to establish some precise
terminology and we do this similarly as in [6]. For
uniformness, we require that all operations are part of a
transaction and thus all operations are inside the transactions.
We can describe the interaction between transactions and the
database by the following three types of operations (query-
update interface):

1. Updates issued by the transactions

2. Pairs (q, p) representing a query issued by
the transaction together with a response by
the database system.

3. The end of transaction operations issued by the
transactions.

Formally, we can represent the activity as a stream of
operations forming a history.

DEFINITION 1: A history H for a set T transactions and
query-update interface (Q, V, U) is a map H which maps each
transaction to a finite or infinite sequence H (c)
operation from alphabet

Furthermore, we need to define a program order (i.e.) the
order where operations are executed on a transaction.

DEFINITION 2: Program order. For a given history H,
we define a partial order over events in H such that

 iff e appear before in some sequence H(t).

Then we define an equivalence relation.

DEFINITION 3: Factoring: We define an equivalence
relation over events such that iff trans (e) = trans
(). For any partial order ver events, we say that factors
over iff for any events x and y from different transactions
 implies for any x, y such that
and . This induces a corresponding partial order on the
transactions.

With following formalization we can specify the
information about relationships between events declaratively,
without referring to implementation-level concepts, such as
replicas or messages. Namely, F takes as a parameter not a
sequence, but an operation context, which encapsulates “all we
need to know” about a system execution to determine the
return value of a given operation.

Eventual consistency relaxes other consistency models by
allowing queries in a transaction t to see only a subset of all
transactions that are globally ordered before t. It does so by
distinguishing between a visibility order (a partial order that
defines what updates are visible to a query), and an arbitration
order (a partial order that determines the relative order of
updates).

DEFINITION 4: A history H is eventually consistent if
there exist two partial orders (the visibility order) and
(the arbitration order) over events in H, such that the following
conditions are satisfied for all events

 (Arbitration extends visibility):

if then .

 (Total order on past events): if

and , then either or .

 (Compatible with program order) if

 then

 (Consistent query results): for all ,

Thus query returns the state as it results from

applying all preceding visible updates (as

determined by the visibility order) to the initial

state, in the order given by the arbitration order.

 (Atomicity): Both and factor over .

 (Isolation): If and

 , then . That is, events in

uncommitted transactions are visible only to later

events by the same client.

 (Eventual delivery): For all committed

transactions t, there exists only finitely many

transactions such that .
.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1020

The reason why eventual consistency can tolerate
temporary network partitions is that the arbitration order can be
constructed incrementally, i.e. may remain only partially
determined for some time after a transaction commits. This
allows conflicting updates to be committed even in the
presence of network partitions. Now we are ready to prove the
correctness of the proposed method.

THEOREM 1: A history H produced by the proposed
method is eventually consistent.

PROOF:

 Compatible with program order: All transaction

operations are executed on all nodes in the order

they appear on program in step 9 of the proposed

method. Thus, proposed method is compatible

with program order.

 Arbitration extents visibility: In step 2 of the

proposed method we make sure that slaves

execute transactions in the same order as they are

executed on master. Because we use MVCC for

local concurrency control, we know that revision

diagram is acyclic and a partial order. For

versions we use revision diagram fork and join

operations (see [6]) thus is acyclic, transitive

and partial order. Thus we know that if

and , then either or .

Now define , then

if then .

 (Consistent query results): We let at step 2 query

to continue if and only if all preceding

transactions are executed. Thus query returns the

state as it results from applying all preceding

visible updates.

 (Atomicity): Lets again using step 2 of the

proposed method use the total order i.e. if

 and , then either

or . Now define , then we can

easily see that both and factor over

 (Isolation): Because local concurrency control

method uses multiple versions (steps 20--24) and

is compatible with program order, thus if

 and ,

then . That is, events in uncommitted

transactions are visible only to later events by the

same client.

 Eventual delivery: As noted if a server comes

down or its network is separated from rest of

servers in the cloud. The server when up and can

reach the rest of servers requests log records of

the missing transactions. These log records are

then applied using standard ARIES method.

When node is up it can serve only read-only

transactions if the node does not belong to

majority. If node is not separated, write

transactions are executed only after the missing

transactions are executed (step 2). Thus for every

transaction t, there exists only finitely many

transactions such that

V. CONCLUSIONS

One of the challenges in distributed system is to achieve
both consistency and availability not choose one of them.
Consistency means when update is achieve will see to all node
in database system at same time and it is difficult to achieve
this strong consistency and guarantee availability of that
system, according to that was necessary to take a look to
properties of databases throughout the ACID, BASE and CAP
theorem, strong consistency is main property of database, but
in distributed environment there scarifies consistency to
maintain availability through partition tolerance this led to need
balance between availability and consistency it was eventual
consistency the best solution.

To understand and build it eventual consistency model in
distributed environment concurrency control is an essential
issue whenever it comes to many users and shared resources.
MVCC is an efficient method to let multiple processes access
the same data in parallel without corrupting the data and the
possibility of deadlocks. It is an alternative to the more strict
lock based approaches, where every process first has to request
an exclusive lock on a data item, before it can be read or
updated.

For optimistic replication it is necessary to determine if
multiple versions of the same data item were created in
parallel. Furthermore, the database needs to know which
version the newest is.

In this paper we have proposed a solution to non-blocking
for eventual consistent replicated cloud database. A new
algorithm was proposed as solution for this problem and
validate by case study in bank example and how using MVCC
that is good for read and no blocking but when the received
request to update it check version to make sure that the newest
version before commit. The algorithm also treated with
eventual consistency in distributed environment or replica is
guarantee local consistency then eventually to all other node.

One possible research direction would be implementing the
proposed method inside a database management system
capable of replication and measuring the availability,
consistency and partitioning avoidance.

As future research, one interesting direction is to design
encapsulated solutions that offer good isolation for common
scenarios. Examples are use of convergent and commutative
replicated data types and convergent merges for non
commutative operations. Another direction is scenario-specific
patterns, such as compensations and queued transactions,
which can be leveraged to achieve high availability while
providing consistency that applications can reason about.

This study could be also extended to find out what potential
stronger consistency guarantees or isolation levels can be
provided for transactions containing multiple statements.

REFERENCES

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1021

[1] ABADI, D. Consistency tradeoffs in modern distributed database system

design: CAP is only part of the story. IEEE Computer vol. 45, no. 2, pp
37-42, February 2012.

[2] AMAZON. Simple Storage Service (S3). http://aws.amazon.com/s3/,
Aug. 2009.

[3] ANDERSON, C. J., Lehnardt, J., and Slater, N. CouchDB: The
Definitive Guide. Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472. January 2010, First Edition

[4] BAILIS, P., and Ghodsi, A. Eventual consistency today: limitations,
extensions, and beyond , In communications of the ACM vol. 56, no. 5,
PP. 55-63, May 2013

[5] BERMBACH, D. and Tai S. Eventual Consistency: How soon is
eventual?. In Proceedings of ACM MW4SOC '11 and 6 other workshop
on Service Oriented Computing, New York, December, 2011, no.1.

[6] BURSKHARDT, S., Leijen, D., Fähndrich, M., and Sagiv, M.
Eventually Consistent Transactions. ESOP , pp.67-86, 2012

[7] BREWER, E: PODC keynote.
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf,
2000.

[8] BREWER, E. Towards Robust Distributed Systems, (invited Talk)
Principles of Distributed Computing, Portland, Oregon, SIGOPS, And
SIGACT News, July 2000.

[9] BREWER, E. CAP twelve years later: How the “rules” have changed.
IEEE Computer, vol. 45, no. 2, pp. 23-29, February 2012.

[10] DECANDIA, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,
A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W.
Dynamo: Amazon's highly available key-value store. In Proceeding 21st
ACM Symposium on Operating Systems Principles (SOSP), pp. 205-
220, 2007.

[11] GILBERT, S., LYNCH, N. Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Service; SIGACT News,
v33, n2, p51-59, June 2002. http://doi.acm.org/10.1145/564585.564601

[12] GRAY, J.N., Lorie, R.A., Putzolu, G.R., and Traiger, I.L. Granularity
of locks and degrees of consistency in a shared data base. In G.M.
Nijssen, editor, Modelling in Data Base Management Systems, 365-294.
IFIP, January 1976

[13] HALE, C. You can’t sacrifice partition tolerance; Available from
http://codahale.com/you-cant-sacrificepartition-tolerance.

[14] LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system, Commun. ACM, vol. 21, no. 7, pp. 558–565, July 1978.

[15] RAHMAN, M., Golab, W., AuYoung, A., Keeton, K. and Wylie, J.
Toward a principled framework for benchmarking consistency.
Workshop on Hot Topics in System Dependability, 2012.

[16] SIVASUBRAMANIAN, S. Amazon dynamoDB: a seamlessly scalable
non-relational database service. In proceeding SIGMOD International
Conference on Management of Data. ACM New York, NY, USA, 2012,
pp. 729-730

[17] TERRY, D. B., Demers, A. J., Petersen, K., Spreitzer, M.J., Theimer,
M.M., Welch, B. B. Session guarantees for Weakly Consistent
Replicated Data. In proceeding of parallel and distributed information
system (PDIS). IEEE, Austin, TX, 1994, pp. 140-149.

[18] THARAKAN, R. Brewers CAP Theorem on distributed systems,
Scalable Web Architecture, February 14, 2010.
http://www.royans.net/arch/brewers-cap-theorem-on-distributed-
systems/

[19] THOMAS, R. H. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. on Database Systems, vol. 4,
no. 2, pp. 180–209, June 1979.

[20] TRAIGER, I. L. Gray, J., Galtieri, C. A. and Lindsay, B. G.
Transactions and consistency in distributed database systems, In ACM
Transactions on Database Systems, New York, vol. 7, no. 3, pp. 323–
342, September 1982.

[21] VAQUERO, L. M., Rodero-Merino, L., Caceres, J., and Lindner. M.. A
Break in the Clouds: Towards a Cloud Definition. ACM SIGCOMM
Computer communication Review, vol. 39, no. 1, pp50–55, January
2009.

[22] VOGELS, W. Scalable Web services: Eventually Consistent, ACM
Queue, vol. 6, no. 6, pp. 14-16, October 20089.

[23] VOGELS, W. Eventually consistent, Communications of the ACM, vol.
52, no. 1, pp. 40–44, January 2009.

[24] WADA, H., Fekete, A., Zhao, L., Lee, K., A. and Liu, A. Data
consistency and the tradeoffs in commercial cloud storage: the
consumers’ perspective. In Proceedings of the Conference on Innovative
Data Systems Research . Asilomar, CA, USA, January 2011 .

