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Abstracd In this paper, we applied vesions of a twe  and weightinitialization The SOFM also uses competition to
dimensional Self Organizing Feature Maps (SOFM) to the find best matching nodes to decide the area of the map to be
categorization of mathematical objects in the form of families of updated. From there, a neighborhood function is utilized to
curves. We have considered two different categories @lrves:  gecide which nodes in the selected regions are updated. The
functions and relations. The features have been extracted from learning rate determines theténsity of this process. The

the joint independent variable-frequency space obtained by . .
transformations  of the curves to  spectrograms. New nodes autonomously organize themselves thus learning from

contributions have been attempted, such as the extraction of € iNput data and storing that discovered knowledge in the
features from the joint independent variablefrequency space as Map.
well as modifications to the learning algdthm, namely the In this paper, we propose contributions and by modifying
saturation of the learning rate. Although this study is significant, the SOFM algorithm in its applications to ttlessifications of
extensions to other space objects such as surfaces and spheresmathematical space curves, specifically functions and
will be considered and later on several applications of the SOFM  relations. Contributions include the extraction of features from
will evolve namely in the financial sectn the chemical field and  mathematical curves converted to the joint independent
physical applications. variablefrequency space via fastourier transformation as
well as the saturation of the learning rate.The next section will
Keywords-  Self Organizing feature Map, Mathematical give a_brief oyerview o_f the basic SOFM learning algorithm.
curves, learning rate, correlation, neighborhood function, winning 1he third section explains our contributions to the SOFM. The
nodes history, saturation, initializatiorintroduction. fourth section describes our novel application of the SOFM to
math cures. Results and analysis are reported in the fifth
section. Finally, the conclusion and future extensions are
l. INTRODUCTION included in the last section.

The Self Organizing Feature Map (SOFM) often referred
to as Kohonends Map is a form ofsuamaRy ©OF ITHE BELF ORGANIZING I V i
selforganizing computer learning. The SOFM provides a FEATUREMAP
method of visualizing multidimensional data in lower ) .
dimensional space; usuallyin 12r di mensi ons. TRRENIASING s
learning algorithm has been used for almost 30 years now and The Learning Algorithm is the process by which the
is still used today. There have numerous different applicationsarning map autonomously organizes itself to effectively
of SOFM namely on recycling data, GPS data [1], digitrepresent the inputted dafBhe goal of learning in the self
recognition data, Animal Communication and soundorganizing map [4] is to cause different parts of the network to
discrimination including noises data sets [2], etc. Applicationsrespond similarly to certain input patterns. The weights of the
and extensions of SOFMs will continue to be a popular topic. nodes ardnitialized either to small random values or in our
SOFM performance depends primarily on critical learninccase will be adjusted to see the impact on the learning map
parameters namely the learning rate, neighborhood functioeither using not only random but alseniean. The training
utilizes competitivelearning When a training example is fed
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to learning map, Its Euclidean distance to all weight vectors is .
computed [8]. The node with weight vector most similar to the
input is called the beshatching node (BMN). The weights of
the BMN and its surroundin neighborhood of nodes are

adjusted according to the input vector
Step linitialization: Choose random values for the initial
weights W(0)

Step 2:Find the winner : Find the best matching ngge

TQ=G"HQ ®Q 0y
& 1,8,02
Whereh Q = @ Q,8 ,6(Q represents th€%nput
pattern, anda) 2 is the total number of inputs, am&indicates
the use of the Euclidean norm.

@)

Step 3Updating weights: Adjust the weights of the winning
node and its neighborhood using the following equation:

O 1 =0Q+ Q21 (Qz(0Q »(Q (2
W () : Node Weight
| ("Q : Learning rate function
1 ("Q : Neighborhood function

The learning rate determines the magnitude of each update
based on the number of iterations. The greater the learning
rate, the more aggressively the program learns. Tehése
many possible expressions ftire learning rate[1], including
constant valueseciprocal functions, logarithmic functions,
exponential functions, and double exponential functions.
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PROBLEM SOLUTIONS CONTRIBUTION TO THE
SOFM

1. Learning rate saturation

We study the convergence behavior of the learning map as
it is applied tothe registratiorof mathematical space curves.
For the purposes of our research, we used a double exponential
expression, because it tends to yield the clearest learning map.
Using this learning rate expression, the learningisaitaitially
set to a value 0,3and decrases through each epoch. The
learning equation through which the training occurs is defined
by:

o] 1 ey ¢
0 o = Z; UmQO<|0<1 (6)

| o exp
| o D@AGHN &8O i
| 0 "REM'COGNELI £ QA QD A (HEE
00 OO QI 'Q & ££ £ E " EIOOL 'EA'Q
_"QOMa £a'E0£'AQA D
Unsaturated learning rates approach 0, thus limiting
convergence. To improve the learning algorithm, we saturate
the learning rate at a percentage of the initial learning rate,

allowing the SOFM to continue learning through the duration
of iterations[21]

For these simulations, the learning ratsinitialized to V]
= 0.3; the reason being thatUfis too largethe algorithm will

Traditional SOFMs typically use a constant learning rate and learn aggressively and will never find the minimum distance so

in order to optimize our learning algorithm, we will saturate
the learning rate and obsert®impact.

6 (‘)_:|0l')"m'QO<|O<1 3
| o D@AGNGA € Q0

no pattern will be seen on the converged map. On the other
hand, ifUis too small the algorithm will learn very slowly due

to the fact that each step is only changing dtsation by a
small amount so more epochs will be necessary to achieve a
converged mag21]

2. Normalization

The neighborhood function determines the amount each node ) )
is updated based on the distance for the updating node and the Due to the large variance of values in the spectrogram, the

BMN.

I o=expl Fyv/2.27Q (4)

\ Q
Where, 0 = | 5 exp o

And[ is the size of the neighborhood

(5)

As , 0 decreases monotonically with the number of

iterations, the size of the neighborhood follows

This process is repeated for each input vector depending for
each iteration (t). The learning map associates output nOdfﬁSt
with groups or patterns in the input data set. The measureme&t
of similarity or distance is fundamental in the cluster anaIysi;n
proces as most clustering begin with the calculation of

distances [14]

data must be normalized and interpolated. The ranges of the
nodes on the initialized magnd the input matrix should be
similar, so that the nodes on the map can effectively represent
the input data. Normalization of the inputs increases the
organization of the map as well as the speed of convergence.
The effect of normalization is greater wifewer dimensions.
Nevertheless, normalization still noticeably improves SOFMs
with more dimensiong20]

3. Independent Variablerequency Joint Space and
Spectrograms:

Converting mathematical space curves into spectrograms
he xf joint space provides more detailed representation
mathematical curves, which allows for more accurate-node
atching and differentiation between curves. This is useful
considering how similar some families of mathematical curves
are in the xdomain. Since data points ardided by functions

and relations, noise is not an issue.
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The independent variabfeequency joint space is a power uses the basic Learning Algorithm with an unsaturated
density spectrum We input the absolute value of the powerlearning rate. Method 2 incorporates a saturated learning rate
density spectrum as a spectrogram. We used the entire d&tar eab trial we used the following parameters:
matrix because of thenui que &éfingerprintdé [Heeaponsets@00Qiterationen o f

the data that seems to provide a clearer more pronounced Initial learning rate:(h = 0.3

representation of the curves than the curves themselves (in the Size of nei ghbog(sighyod: 2
x-domain). For the purposes of our research, we consider the WheresigmaO = N/3 and N is 10

spectrogram obtained from thef joint space as aimage and Constant wused E8000 | ear ni n¢
we extracted data points as a matrix of elements, which turned

out to be a 1032 x 8 matrix, due to the format of the i) Results

spectrogram function in AMATLABO.

Function Results:
V. APPLICATION TO MATHEMATICAL Figure [3]& [4] showsthe resultant feature maps constructed
CURVES for the function curves data set using method 1 and method 2.
In order to test our modifications amwntributions to the ~'he Maps shown are after 1, 250,1000, and 2000 epochs.

SOFM, we decided to first apply the learning algorithm to

classify a variety of mathematical curves. We selected familieg€lation Results:
of functions and relations. Figure [1& [8] shows the resultant feature maps constaict

. for the relation curves data set using method 1 and method 2.
A) Functions The maps shown are after 1, 250,1000, and 2000 epochs.

Functions are set of mathematical operations performed on ) )
one or more inpts (variablep that results in an output. ii) Discussion _
Weclassified different types of functions includng !t is difficult to see the
parabola(figure 1) and camel hump (figure 2) as spectrogran®/tput nodes have multiple dimensions. The picture
in the xf joint space of the designated function and consider ifepresentations doot fully display all of the learning and

as a picture SO we can extrace%x/data point and present itto representations of the data, but to ease visualization of the
the learning map as a matrix. (Fig.1) learning, we manually outline the borders between the nodes

of the different families of curves.

B) Relations

Relations are commonly defined as a special type of )
functions. A relation fromX to Y is a set of an ordered pair Function Data Results:
defines a function as a type of relation [3]. We studied The SOFM has difficulty distinguishing between linear
relations throughout this project by first transferring them@nd parabolic curves, because of how similar their
from the polar coordinate into a TheRadomain where Theta SPectrograms look. But the fact that the SOFM correctly
represent the Horizontal axis and R the vertieis; From Segregates the camel humps from the linear and parabolic
there , we extracted features in thelomain, the frequency curves shows how the map is learnifggure [1] shows how
domain and the >F joint space presenting obtained matricesPoth method 1 and 2 produce converged maps, correctly

to the learning map for each domain. ordering the nodes to represent to the density distribution of
the map.
V. SIMULATION RESULTS AND DISCUSSION As early as the 10th epoch, we can see the early stages of
convergence, as a topologically ordered map Iseirappear.
i) Simulation By the 250th epoch, we can see that the maps have converged,

but moreiterationisrequired to further adjust the map, in order

For each individual family of functiomnd relation, we 0 correctly represent the distribution of the input. By the
generated 12 unigue curves by inputting 12 random values f&000th epoch the map is topologically ordered, buthéur
each constant and scalar. The domain for each cureis  tuning is still needed to fully represent the correct densities. At
5. The o6yd values were dhetrtalcitSedP@ioRt eathei POEMPEI Iefarg

power spectraldensity of the curves waben generattvia ~ Method 1. However, under method 2, the map continues to
fastFouriertransformation. fine-tune itself, better representing the data. However if the

A 10 x 10 network is initialized using random weights. SOFM is allowed to continue to learn under method 2, we

Two versions of the learning program were applied to th&vould see that the map eventually over learns and becomes
spectrogram data in order to analyze the effect of using @hstable.

saturated learning rate.. Both methods use thee saeight

updating algorithm (3) and neighborhood function (4)(5). The

learning equation (6) was adjusted for each method. Method 1
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saturated learning rate for this second trial. The results
obtained are shown in figur8)( The close comparison of the
saturated learning ratessis unsaturated leaing rate maps at
each outputted epoch shows that the clustering area of
relations are interchanged. An in depth analysis also shows
that the convergence is attained faster when the learning rate is
saturated.

V1. CONCLUSION

In this research, we have beeable to modi
theiISOFMo algorithm and effectively applied it to the
learning of a variety of important mathematical curves. We
can make the following conclusions:

1. The SOFM can distinguish both functions and
relations from features in the frequency domaid
x-f joint space. The SOFM does a better job of
learning relations.

Normalizing data produces better results.

The SOFM shows a better learning map when the
learning rate is saturated at suitable value and the
number of iterations is appropriate.

Our research helps improve the efficignand accuracy of
SOFM. However there are still limitations that must be
examined in the future; such as increasing the number of
iterations of the learning maps with adjusted parameters,
increasing the number of nodesd possible saturation of the
neighborhood function as well.

Future work will be done to further modify and improve
the SOFM6s application to mathemati cal Sspace curves. Or
current idea is to add a best matching node history function
that would improvethe effectiveness of the neighborhood
function. Other ideas include more effective initialization
methods, such asrkeans.

Extensions to other space objects such as surfaces, spheres
and familiesof elliptic curves will be considered. Further,
different  applications in  the financial  sector,
chemistry/chemicalengineering fieldas well as physical
applications of the SOFM will evolve.

w N
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Camel Hump: y = h./(x,2+a2) witha=[21131]8&b=[123225]
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Figure 1: List of functions Figure 2: spectrogram pertaining to each function
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Figure 4. Saturated Maps for functions

Figure 3: Unsaturated maps for functions
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Relations

Lemniscate of Bernoulli: r=afcos(theta)."((:i.’(sin(theta).z)) -1) with a=2
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Figure 6: List of relations
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Figure 5: Spectrograms pertaining to each relatior
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Results:
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After 1 epoch

After 250 epochs

After 1000 epochs

After 2000 epochs

Figure 7: Relations maps unsaturated Figure 8: Relations maps saturated
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