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Abstract—In this paper, we applied versions of a two-
dimensional Self Organizing Feature Maps (SOFM) to the
categorization of mathematical objects in the form of families of
curves. We have considered two different categories of curves:
functions and relations. The features have been extracted from
the joint independent variable-frequency space obtained by
transformations of the curves to spectrograms. New
contributions have been attempted, such as the extraction of
features from the joint independent variable-frequency space as
well as modifications to the learning algorithm, namely the
saturation of the learning rate. Although this study is significant,
extensions to other space objects such as surfaces and spheres
will be considered and later on several applications of the SOFM
will evolve namely in the financial sector, the chemical field and
physical applications.
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L INTRODUCTION

The Self Organizing Feature Map (SOFM) often referred
to as Kohonen’s Map is a form of competitive, unsupervised,
self-organizing computer learning. The SOFM provides a
method of visualizing multidimensional data in lower
dimensional space; usually in 1 or 2 dimensions. The SOFM’s
learning algorithm has been used for almost 30 years now and
is still used today. There have numerous different applications
of SOFM namely on recycling data, GPS data [1], digit
recognition data, Animal Communication and sound
discrimination including noises data sets [2], etc. Applications
and extensions of SOFMs will continue to be a popular topic.

SOFM performance depends primarily on critical learning
parameters namely the learning rate, neighborhood function,

and weight initialization. The SOFM also uses competition to
find best matching nodes to decide the area of the map to be
updated. From there, a neighborhood function is utilized to
decide which nodes in the selected regions are updated. The
learning rate determines the intensity of this process. The
nodes autonomously organize themselves thus learning from
the input data and storing that discovered knowledge in the
map.

In this paper, we propose contributions and by modifying
the SOFM algorithm in its applications to the classifications of
mathematical space curves, specifically functions and
relations. Contributions include the extraction of features from
mathematical curves converted to the joint independent
variable-frequency space via fast Fourier transformation as
well as the saturation of the learning rate.The next section will
give a brief overview of the basic SOFM learning algorithm.
The third section explains our contributions to the SOFM. The
fourth section describes our novel application of the SOFM to
math curves. Results and analysis are reported in the fifth
section. Finally, the conclusion and future extensions are
included in the last section.

1L SUMMARY OF THE SELF ORGANIZING
FEATURE MAP
Learning Algorithm

The Learning Algorithm is the process by which the
learning map autonomously organizes itself to effectively
represent the inputted data. The goal of learning in the self-
organizing map [4] is to cause different parts of the network to
respond similarly to certain input patterns. The weights of the
nodes are initialized either to small random values or in our
case will be adjusted to see the impact on the learning map
either using not only random but also K-mean. The training
utilizes competitive learning. When a training example is fed
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to learning map, Its Euclidean distance to all weight vectors is
computed [8]. The node with weight vector most similar to the
input is called the best-matching node (BMN). The weights of
the BMN and its surrounding neighborhood of nodes are
adjusted according to the input vector

Step 1: Initialization: Choose random values for the initial
weights W(0)

Step 2: Find the winner : Find the best matching node j(k)

jk) = argmin”x(k) —w || (6))
j=1,..,N?
Wherex (k) = [x;(k), ..., x,, (k)] represents the kt"input
pattern, and N? is the total number of inputs, and ||. || indicates

the use of the Euclidean norm.

Step 3:Updating weights: Adjust the weights of the winning
node and its neighborhood using the following equation:

Wk +1) = W(k) + a(k) x B(k)  (x(k) = W(k) ()
W (k) : Node Weight
a(k) : Learning rate function
B (k) : Neighborhood function

The learning rate determines the magnitude of each update
based on the number of iterations. The greater the learning
rate, the more aggressively the program learns. There exist
many possible expressions for the learning rate[1], including
constant values, reciprocal functions, logarithmic functions,
exponential functions, and double exponential functions.
Traditional SOFMs typically use a constant learning rate and
in order to optimize our learning algorithm, we will saturate
the learning rate and observe its impact.

« (t) = ay where0<q; <1 3)
aq :initial learning rate

The neighborhood function determines the amount each node
is updated based on the distance for the updating node and the
BMN.

B () = exp(—diuy /2(c%(k))(4)

Where o(t) = a, exp (— S)’ 5)
And y is the size of the neighborhood

As o(t) decreases monotonically with the number of
iterations, the size of the neighborhood follows.

This process is repeated for each input vector depending for
each iteration (t). The learning map associates output nodes
with groups or patterns in the input data set. The measurement
of similarity or distance is fundamental in the cluster analysis
process as most clustering begin with the calculation of
distances [14]
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I1I. PROBLEM SOLUTIONS:
SOFM

CONTRIBUTION TO THE

1. Learning rate saturation

We study the convergence behavior of the learning map as
it is applied to the registration of mathematical space curves.
For the purposes of our research, we used a double exponential
expression, because it tends to yield the clearest learning map.
Using this learning rate expression, the learning rate is initially
set to a value 0.3, and decreases through each epoch. The
learning equation through which the training occurs is defined
by:

where 0 < a, <1

« () = ap exp ( _%) (6)

aq : initial learning rate
a(t)is the final learning rateat iteration
t which decreases monotonically with time

Ais the moment of inertia

Unsaturated learning rates approach 0, thus limiting
convergence. To improve the learning algorithm, we saturate
the learning rate at a percentage of the initial learning rate,
allowing the SOFM to continue learning through the duration
of iterations. [21]

For these simulations, the learning rate was initialized to a
= 0.3; the reason being that if a is too large, the algorithm will
learn aggressively and will never find the minimum distance so
no pattern will be seen on the converged map. On the other
hand, if a is too small the algorithm will learn very slowly due
to the fact that each step is only changing its location by a
small amount so more epochs will be necessary to achieve a
converged map. [21]

2. Normalization

Due to the large variance of values in the spectrogram, the
data must be normalized and interpolated. The ranges of the
nodes on the initialized map and the input matrix should be
similar, so that the nodes on the map can effectively represent
the input data. Normalization of the inputs increases the
organization of the map as well as the speed of convergence.
The effect of normalization is greater with fewer dimensions.
Nevertheless, normalization still noticeably improves SOFMs
with more dimensions. [20]

3. Independent Variable-Frequency Joint Space and
Spectrograms:

Converting mathematical space curves into spectrograms
in the x-f joint space provides a more detailed representation
of mathematical curves, which allows for more accurate node-
matching and differentiation between curves. This is useful
considering how similar some families of mathematical curves
are in the x-domain. Since data points are defined by functions
and relations, noise is not an issue.
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The independent variable-frequency joint space is a power
density spectrum. We input the absolute value of the power
density spectrum as a spectrogram. We used the entire data
matrix because of the unique ‘fingerprint’ representation of
the data that seems to provide a clearer more pronounced
representation of the curves than the curves themselves (in the
x-domain). For the purposes of our research, we consider the
spectrogram obtained from the x-f joint space as an image and
we extracted data points as a matrix of elements, which turned
out to be a 1032 x 8 matrix, due to the format of the
spectrogram function in “MATLAB”.

Iv. APPLICATION TO
CURVES

MATHEMATICAL

In order to test our modifications and contributions to the
SOFM, we decided to first apply the learning algorithm to
classify a variety of mathematical curves. We selected families
of functions and relations.

A) Functions

Functions are a set of mathematical operations performed on
one or more inputs (variables) that results in an output.
We classified different types of functions including
parabola(figure 1) and camel hump (figure 2) as spectrograms
in the x-f joint space of the designated function and consider it
as a picture so we can extract every data point and present it to
the learning map as a matrix. (Fig.1)

B) Relations

Relations are commonly defined as a special type of
functions. A relation from X to Y is a set of an ordered pair
defines a function as a type of relation [3]. We studied
relations throughout this project by first transferring them
from the polar coordinate into a Theta-R domain where Theta
represent the Horizontal axis and R the vertical axis; From
there , we extracted features in the x-domain, the frequency
domain and the X-F joint space presenting obtained matrices
to the learning map for each domain.

V. SIMULATION RESULTS AND DISCUSSION
i) Simulation

For each individual family of function and relation, we
generated 12 unique curves by inputting 12 random values for
each constant and scalar. The domain for each curve is -5<x<
5. The ‘y’ values were extracted for each interval of 0.1. The
power spectral density of the curves was then generated via
fast Fourier transformation.

A 10 x 10 network is initialized using random weights.
Two versions of the learning program were applied to the
spectrogram data in order to analyze the effect of using a
saturated learning rate.. Both methods use the same weight
updating algorithm (3) and neighborhood function (4)(5). The
learning equation (6) was adjusted for each method. Method 1
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uses the basic Learning Algorithm with an unsaturated
learning rate. Method 2 incorporates a saturated learning rate
For each trial we used the following parameters:

Iterations: t = 2000 iterations

Initial learning rate: ay = 0.3

Size of neighborhood: y = 1000/log (sigN)

WheresigmaO = N/3 and N is 10

Constant used for learning rate: A = 1000

ii) Results:

Function Results:

Figure [3] & [4] shows the resultant feature maps constructed
for the function curves data set using method 1 and method 2.
The maps shown are after 1, 250,1000, and 2000 epochs.

Relation Results:

Figure [7]& [8] shows the resultant feature maps constructed
for the relation curves data set using method 1 and method 2.
The maps shown are after 1, 250,1000, and 2000 epochs.

iii) Discussion

It is difficult to see the SOFM’s learning because the
output nodes have multiple dimensions. The picture
representations do not fully display all of the learning and
representations of the data, but to ease visualization of the
learning, we manually outline the borders between the nodes
of the different families of curves.

Function Data Results:

The SOFM has difficulty distinguishing between linear
and parabolic curves, because of how similar their
spectrograms look. But the fact that the SOFM correctly
segregates the camel humps from the linear and parabolic
curves shows how the map is learning. Figure [1] shows how
both method 1 and 2 produce converged maps, correctly
ordering the nodes to represent to the density distribution of
the map.

As early as the 10th epoch, we can see the early stages of
convergence, as a topologically ordered map begins to appear.
By the 250th epoch, we can see that the maps have converged,
but more iterationis required to further adjust the map, in order
to correctly represent the distribution of the input. By the
1,000th epoch the map is topologically ordered, but further
tuning is still needed to fully represent the correct densities. At
this point, the SOFM’s learning becomes negligible under
method 1. However, under method 2, the map continues to
fine-tune itself, better representing the data. However if the
SOFM is allowed to continue to learn under method 2, we
would see that the map eventually over learns and becomes
unstable.
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Relations Data Results:

The Self Organizing Feature Map produces better results
when used with relations rather than functions. However, the
convergence method follows the same path as functions.
Relations appear to have unique and very distinctive features
from each others. Three types of relations have been study in
this paper namely the “Lemiscate of Bernouli”, the *
tricuspoid” and the“hurricane” like function. Twelve data
points have been chosen for each relation (More or less data
points can be chosen), and after been normalized and
randomized, the matrix of (1032 * 36) is fed to the learning
algorithm and the results are illustrated in figures (7) . The
same data matrix is then fed to a learning program but at a
saturated learning rate for this second trial. The results
obtained are shown in figure (8). The close comparison of the
saturated learning rate versus unsaturated learning rate maps at
each outputted epoch shows that the clustering area of
relations are interchanged. An in depth analysis also shows
that the convergence is attained faster when the learning rate is
saturated.

VL CONCLUSION

In this research, we have been able to modify
the “SOFM” algorithm and effectively applied it to the
learning of a variety of important mathematical curves. We
can make the following conclusions:

1. The SOFM can distinguish both functions and
relations from features in the frequency domain and
x-f joint space. The SOFM does a better job of
learning relations.

2. Normalizing data produces better results.

3. The SOFM shows a better learning map when the
learning rate is saturated at suitable value and the
number of iterations is appropriate.

Our research helps improve the efficiency and accuracy of
SOFM. However, there are still limitations that must be
examined in the future; such as increasing the number of
iterations of the learning maps with adjusted parameters,
increasing the number of nodes, and possible saturation of the
neighborhood function as well.

Future work will be done to further modify and improve
the SOFM’s application to mathematical space curves. One
current idea is to add a best matching node history function
that would improve the effectiveness of the neighborhood
function. Other ideas include more effective initialization
methods, such as k-means.

Extensions to other space objects such as surfaces, spheres
and families of elliptic curves will be considered. Further,
different  applications in  the  financial  sector,
chemistry/chemical engineering field as well as physical
applications of the SOFM will evolve.
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Figure 3: Unsaturated maps for functions
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Relations
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