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AbstractðIn this paper, we applied versions of a two-

dimensional Self Organizing Feature Maps (SOFM) to the 

categorization of mathematical objects in the form of families of 

curves. We have considered two different categories of curves: 

functions and relations. The features have been extracted from 

the joint independent variable-frequency space obtained by 

transformations of the curves to spectrograms. New 

contributions have been attempted, such as the extraction of 

features from the joint independent variable-frequency space as 

well as modifications to the learning algorithm, namely the 

saturation of the learning rate. Although this study is significant, 

extensions to other space objects such as surfaces and spheres 

will be considered and later on several applications of the SOFM 

will evolve namely in the financial sector, the chemical field and 

physical applications. 

 

Keywords--  Self Organizing feature Map, Mathematical 

curves, learning rate, correlation, neighborhood function, winning 

nodes history, saturation, initialization. Introduction. 

 

I. INTRODUCTION 

The Self Organizing Feature Map (SOFM) often referred 

to as Kohonenôs Map is a form of competitive, unsupervised, 

self-organizing computer learning. The SOFM provides a 

method of visualizing multidimensional data in lower 

dimensional space; usually in 1 or 2 dimensions. The SOFMôs 

learning algorithm has been used for almost 30 years now and 

is still used today. There have numerous different applications 

of SOFM namely on recycling data, GPS data [1], digit 

recognition data, Animal Communication and sound 

discrimination including noises data sets [2], etc. Applications 

and extensions of SOFMs will continue to be a popular topic. 

SOFM performance depends primarily on critical learning 

parameters namely the learning rate, neighborhood function, 

and weight initialization. The SOFM also uses competition to 

find best matching nodes to decide the area of the map to be 

updated. From there, a neighborhood function is utilized to 

decide which nodes in the selected regions are updated. The 

learning rate determines the intensity of this process. The 

nodes autonomously organize themselves thus learning from 

the input data and storing that discovered knowledge in the 

map. 

In this paper, we propose contributions and by modifying 

the SOFM algorithm in its applications to the classifications of 

mathematical space curves, specifically functions and 

relations. Contributions include the extraction of features from 

mathematical curves converted to the joint independent 

variable-frequency space via fast Fourier transformation as 

well as the saturation of the learning rate.The next section will 

give a brief overview of the basic SOFM learning algorithm. 

The third section explains our contributions to the SOFM. The 

fourth section describes our novel application of the SOFM to 

math curves. Results and analysis are reported in the fifth 

section. Finally, the conclusion and future extensions are 

included in the last section. 

 

II. SUMMARY OF THE SELF ORGANIZING 

FEATURE MAP 

Learning Algorithm 

The Learning Algorithm is the process by which the 

learning map autonomously organizes itself to effectively 

represent the inputted data. The goal of learning in the self-

organizing map [4] is to cause different parts of the network to 

respond similarly to certain input patterns. The weights of the 

nodes are initialized either to small random values or in our 

case will be adjusted to see the impact on the learning map 

either using not only random but also K-mean. The training 

utilizes competitive learning. When a training example is fed 

http://en.wikipedia.org/wiki/Competitive_learning
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to learning map, Its Euclidean distance to all weight vectors is 

computed [8]. The node with weight vector most similar to the 

input is called the best-matching node (BMN). The weights of 

the BMN and its surrounding neighborhood of nodes are 

adjusted according to the input vector 

Step 1: Initialization: Choose random values for the initial 

weights W(0) 

Step 2: Find the winner : Find the best matching node j(k) 

 

ὮὯ = ὥὶὫάὭὲὼὯ ύὮ  (1) 

Ὦ= 1,ȣ,ὔ2 

WhereὼὯ = ὼ1 Ὧ,ȣ,ὼὲ(Ὧ)  represents the ὯὸὬinput 

pattern, and ὔ2 is the total number of inputs, and ᴁ.ᴁ indicates 

the use of the Euclidean norm. 

 

Step 3:Updating weights: Adjust the weights of the winning 

node and its neighborhood using the following equation: 

 

ὡ Ὧ+ 1 = ὡ Ὧ+ ‌Ὧ ‍z(Ὧ) (zὼὯ ὡ(Ὧ) (2) 

 W (k) : Node Weight 

 ‌(Ὧ) : Learning rate function 

 ‍(Ὧ) : Neighborhood function 

 

The learning rate determines the magnitude of each update 

based on the number of iterations. The greater the learning 

rate, the more aggressively the program learns. There exist 

many possible expressions for the learning rate[1], including 

constant values, reciprocal functions, logarithmic functions, 

exponential functions, and double exponential functions. 

Traditional SOFMs typically use a constant learning rate and 

in order to optimize our learning algorithm, we will saturate 

the learning rate and observe its impact. 

 

ᶿ ὸ=  ‌0   ύὬὩὶὩ 0 < ‌0  < 1         3  
‌0  ḊὭὲὭὸὭὥὰ ὰὩὥὶὲὭὲὫ ὶὥὸὩ  

 

The neighborhood function determines the amount each node 

is updated based on the distance for the updating node and the 

BMN. 

 

‍ ὸ= exp( ὨὄὓὟ
2  / 2 „2 Ὧ (4) 

 

Where „ὸ=  ‌0  exp
Ὧ

‎
,                              (5) 

And ‎ is the size of the neighborhood 

 

As „ὸ  decreases monotonically with the number of 

iterations, the size of the neighborhood follows. 

This process is repeated for each input vector depending for 

each iteration (t). The learning map associates output nodes 

with groups or patterns in the input data set. The measurement 

of similarity or distance is fundamental in the cluster analysis 

process as most clustering begin with the calculation of 

distances [14] 

III.  PROBLEM SOLUTIONS: CONTRIBUTION TO THE 

SOFM 

1. Learning rate saturation 

 
We study the convergence behavior of the learning map as 

it is applied to the registration of mathematical space curves. 
For the purposes of our research, we used a double exponential 
expression, because it tends to yield the clearest learning map. 
Using this learning rate expression, the learning rate is initially 
set to a value 0.3, and decreases through each epoch. The 
learning equation through which the training occurs is defined 
by:  

ᶿ ὸ=   ‌0  exp
 ɀ
ὸ

‗
    ύὬὩὶὩ  0 < ‌0  < 1        

(6) 

‌0  ḊὭὲὭὸὭὥὰ ὰὩὥὶὲὭὲὫ ὶὥὸὩ 

‌ὸὭί ὸὬὩ ὪὭὲὥὰ ὰὩὥὶὲὭὲὫ ὶὥὸὩὥὸ ὭὸὩὶὥὸὭέὲ 

 ὸ ύὬὭὧὬ ὨὩὧὶὩὥίὩί άέὲέὸέὲὭὧὥὰὰώ ύὭὸὬ ὸὭάὩ 

‗ Ὥί ὸὬὩ άέάὩὲὸ έὪ ὭὲὩὶὸὭὥ 
 

Unsaturated learning rates approach 0, thus limiting 

convergence. To improve the learning algorithm, we saturate 

the learning rate at a percentage of the initial learning rate, 

allowing the SOFM to continue learning through the duration 

of iterations. [21] 

  
For these simulations, the learning rate was initialized to Ŭ 

= 0.3; the reason being that if Ŭ is too large, the algorithm will 
learn aggressively and will never find the minimum distance so 
no pattern will be seen on the converged map. On the other 
hand, if Ŭ is too small the algorithm will learn very slowly due 
to the fact that each step is only changing its location by a 
small amount so more epochs will be necessary to achieve a 
converged map. [21] 

2. Normalization 

Due to the large variance of values in the spectrogram, the 
data must be normalized and interpolated. The ranges of the 
nodes on the initialized map and the input matrix should be 
similar, so that the nodes on the map can effectively represent 
the input data. Normalization of the inputs increases the 
organization of the map as well as the speed of convergence. 
The effect of normalization is greater with fewer dimensions. 
Nevertheless, normalization still noticeably improves SOFMs 
with more dimensions. [20] 

3. Independent Variable-Frequency Joint Space and 
Spectrograms: 

Converting mathematical space curves into spectrograms 

in the x-f joint space provides a more detailed representation 

of mathematical curves, which allows for more accurate node-

matching and differentiation between curves. This is useful 

considering how similar some families of mathematical curves 

are in the x-domain. Since data points are defined by functions 

and relations, noise is not an issue. 
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The independent variable-frequency joint space is a power 

density spectrum. We input the absolute value of the power 

density spectrum as a spectrogram. We used the entire data 

matrix because of the unique ófingerprintô representation of 

the data that seems to provide a clearer more pronounced 

representation of the curves than the curves themselves (in the 

x-domain). For the purposes of our research, we consider the 

spectrogram obtained from the x-f joint space as an image and 

we extracted data points as a matrix of elements, which turned 

out to be a 1032 x 8 matrix, due to the format of the 

spectrogram function in ñMATLABò.  

 
IV. APPLICATION TO MATHEMATICAL 

CURVES 

In order to test our modifications and contributions to the 
SOFM, we decided to first apply the learning algorithm to 
classify a variety of mathematical curves. We selected families 
of functions and relations. 

A) Functions 

Functions are a set of mathematical operations performed on 

one or more inputs (variables) that results in an output. 

We classified different types of functions including 

parabola(figure 1) and camel hump (figure 2) as spectrograms 

in the x-f joint space of the designated function and consider it 

as a picture so we can extract every data point and present it to 

the learning map as a matrix. (Fig.1) 

 

B) Relations 

Relations are commonly defined as a special type of 

functions. A relation from X to Y is a set of an ordered pair 

defines a function as a type of relation [3]. We studied 

relations throughout this project by first transferring them 

from the polar coordinate into a Theta-R domain where Theta 

represent the Horizontal axis and R the vertical axis; From 

there , we extracted features in the x-domain, the frequency 

domain and the X-F joint space presenting obtained matrices 

to the learning map for each domain. 

 

V. SIMULATION RESULTS AND DISCUSSION 

 

i) Simulation 

 

For each individual family of function and relation, we 

generated 12 unique curves by inputting 12 random values for 

each constant and scalar. The domain for each curve is -5<x< 

5. The óyô values were extracted for each interval of 0.1. The 

power spectral density of the curves was then generated via 

fast Fourier transformation.  

A 10 x 10 network is initialized using random weights. 

Two versions of the learning program were applied to the 

spectrogram data in order to analyze the effect of using a 

saturated learning rate.. Both methods use the same weight 

updating algorithm (3) and neighborhood function (4)(5). The 

learning equation (6) was adjusted for each method. Method 1 

uses the basic Learning Algorithm with an unsaturated 

learning rate. Method 2 incorporates a saturated learning rate 

For each trial we used the following parameters: 

Iterations: t = 2000 iterations 

Initial learning rate: Ŭ0 = 0.3 

Size of neighborhood:   ɔ = 1000/log (sigN) 

Wheresigma0 = N/3 and N is 10 

 Constant used for learning rate:  ɚ = 1000 

 

ii)  Results: 

 

Function Results: 

Figure [3] & [4]  shows the resultant feature maps constructed 

for the function curves data set using method 1 and method 2. 

The maps shown are after 1, 250,1000, and 2000 epochs. 

 

Relation Results: 

Figure [7]& [8]  shows the resultant feature maps constructed 

for the relation curves data set using method 1 and method 2. 

The maps shown are after 1, 250,1000, and 2000 epochs. 

 

iii)  Discussion 

It is difficult to see the SOFMôs learning because the 

output nodes have multiple dimensions. The picture 

representations do not fully display all of the learning and 

representations of the data, but to ease visualization of the 

learning, we manually outline the borders between the nodes 

of the different families of curves. 

 

 

Function Data Results: 

The SOFM has difficulty distinguishing between linear 

and parabolic curves, because of how similar their 

spectrograms look. But the fact that the SOFM correctly 

segregates the camel humps from the linear and parabolic 

curves shows how the map is learning. Figure [1] shows how 

both method 1 and 2 produce converged maps, correctly 

ordering the nodes to represent to the density distribution of 

the map.  

As early as the 10th epoch, we can see the early stages of 

convergence, as a topologically ordered map begins to appear. 

By the 250th epoch, we can see that the maps have converged, 

but more iterationis required to further adjust the map, in order 

to correctly represent the distribution of the input. By the 

1,000th epoch the map is topologically ordered, but further 

tuning is still needed to fully represent the correct densities. At 

this point, the SOFMôs learning becomes negligible under 

method 1. However, under method 2, the map continues to 

fine-tune itself, better representing the data. However if the 

SOFM is allowed to continue to learn under method 2, we 

would see that the map eventually over learns and becomes 

unstable.  
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Relations Data Results: 

The Self Organizing Feature Map produces better results 

when used with relations rather than functions. However, the 

convergence method follows the same path as functions. 

Relations appear to have unique and very distinctive features 

from each others. Three types of relations have been study in 

this paper namely the ñLemiscate of Bernouliò, the ñ 

tricuspoidò and theñhurricaneò like function. Twelve data 

points have been chosen for each relation (More or less data 

points can be chosen), and after been normalized and 

randomized, the matrix of (1032 * 36) is fed to the learning 

algorithm and the results are illustrated in figures (7) . The 

same data matrix is then fed to a learning program but at a 

saturated learning rate for this second trial. The results 

obtained are shown in figure (8). The close comparison of the 

saturated learning rate versus unsaturated learning rate maps at 

each outputted epoch shows that the clustering area of 

relations are interchanged. An in depth analysis also shows 

that the convergence is attained faster when the learning rate is 

saturated. 

 

VI. CONCLUSION 

In this research, we have been able to modify 

the ñSOFMò algorithm and effectively applied it to the 

learning of a variety of important mathematical curves. We 

can make the following conclusions: 

1. The SOFM can distinguish both functions and 

relations from features in the frequency domain and 

x-f joint space. The SOFM does a better job of 

learning relations. 

2. Normalizing data produces better results. 

3. The SOFM shows a better learning map when the 

learning rate is saturated at suitable value and the 

number of iterations is appropriate. 

 Our research helps improve the efficiency and accuracy of 

SOFM. However, there are still  limitations that must be 

examined  in the future; such as increasing the number of 

iterations of the learning maps with adjusted parameters, 

increasing the number of nodes, and possible saturation of the 

neighborhood function as well.  

Future work will be done to further modify and improve 

the SOFMôs application to mathematical space curves. One 

current idea is to add a best matching node history function 

that would improve the effectiveness of the neighborhood 

function. Other ideas include more effective initialization 

methods, such as k-means. 

Extensions to other space objects such as surfaces, spheres 

and families of elliptic curves will be considered. Further, 

different applications in the financial sector, 

chemistry/chemical engineering field as well as physical 

applications of the SOFM will evolve. 
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              Figure 1: List of functions 
 

Figure 2: spectrogram pertaining to each function 

Functions 
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Unsaturated: 

 

 
After 1 epoch 

 

 
After 250 epochs 

                               After 1000 epochs 

After 2000 epochs (final map) 

Saturated 

Figure 3: Unsaturated maps for functions Figure 4: Saturated Maps for functions 
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Relations 

 

 
 

 

 

 

          Figure 6: List of relations 
Figure 5: Spectrograms pertaining to each relation 
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Results: 

 

 

 

After 1 epoch  

 

  After 250 epochs 

After 1000 epochs 

 

 

Figure 7: Relations maps unsaturated Figure 8: Relations maps saturated 

After 2000 epochs 


