
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 958

The Usability of Free/Libre/Open Source Projects
A Review

Ljiljana Despalatović

The University Department of Professional Studies

University of Split

Split, Croatia

Email: ljiljana.despalatovic {at} gmail.com

Abstract—The open source software is widely spread, yet still

unpopular in the personal computer market. The reason for that

could be the common opinion that the open source systems are

created for advanced users, and that ordinary users do not have

the time to learn how to use different user interfaces. Based on

our selection and analysis of scientific articles we tried to find the

answers to the following questions: is there a usability problem in

open source projects, and what could be the solutions? The root

of the problem seems to lie in the open source development

process itself, where the focus is not placed on the user or

usability, but on the system or the programmer.

Keywords-HCI;FLOSS;usability

I. INTRODUCTION

Ever since it was crated, the UNIX operating system has
been considered “complicated to use.” Donald Norman's
famous text, “The trouble with UNIX: The user interface is
horrid” [1] sealed the fate of the UNIX operating system as
unusable for an average user. It is interesting that, even though
it was written in 1981, it is still taken as a reference when
talking about the usability of UNIX and similar systems.

The UNIX has come a long way since then. It had started
as free software, and in time became proprietary and less
available to the software community. To fill the gap, Richard
Stallman started the GNU project with the idea to provide an
operating system with a similar functionality and interface as
the UNIX has, though completely rewritten. Out of the need to
protect the right to modify and redistribute software, copyleft
licenses were created, and software released under such
licenses began to be called Open Source Software (OSS) or
Free Software. Since recently, a frequently used abbreviation is
FLOSS (Free/Libre/Open Source Software).

The most prominent examples of FLOSS software are
GNU/Linux operating system, Apache HTTP server, Mozilla
Firefox web browser, MySQL, Libre Office and Android
operating system.

The FLOSS has gained a reputation as a reliable, efficient,
transparent and functional software. The expansion of the
Internet has enabled developers worldwide to participate in
superior FLOSS projects within their area (e.g., Apache web
server) [2]. However, most users of FLOSS have a
technological background, while the average user is still using
proprietary solutions. One of the reasons for that is the

common notion that the FLOSS systems have poor user
interfaces [3].

The objective of this article is to select and review
published literature and to answer the following research
question: What are the main research themes in scientific
literature regarding the usability problem in FLOSS?

The remainder of this article is organized as follows. The
second chapter lays out the basic principles of the open source
software development and explains the life cycles of FLOSS
projects. In the third chapter we provide our selection of
articles from the relevant databases, investigating the usability
of FLOSS projects and possible approaches to improve the
usability aspects of a project. Major challenges recognized in
the literature deal with the user-centred model in FLOSS, using
developers’ motivation and human computer interaction (HCI)
experts for the improvement of usability, and development of
tools for evaluation of usability. Other challenges and
approaches are described in the last section of the chapter.
Finally, the last chapter concludes the article.

II. FLOSS CHARACTERISTICS

A. The FLOSS development model

The FLOSS development model fundamentally differs
from the classical development model of software
engineering. From the perspective of usability it has a two-
fold meaning. On the one hand, insufficient attention is paid to
the user interface design and usability, and, on the other, the
project development is such that the user can easily be
involved in all stages of development. That gives a great
opportunity for the FLOSS projects development, and also for
improving usability and design.

A FLOSS project usually starts as an early release of a
product by an individual programmer who tries to gather a
community of supporters that would later on join the
development team. In most cases, there is no plan or
specification of the project. The community, if gathered,
communicates via the Internet and members do not know each
other. Majority of FLOSS programmers (88%) are hobbyists
[4] who have other primary jobs.

Projects rarely start from scratch. In the open code
community the usual way to start a project is to legally
download someone else's project and continue its development

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 959

in a different direction than the original. The alternative
project is called fork.

After the first release of the software, the software testing
community that communicates through mailing lists and
communication tools provides comments, bug reports and
fixes. Their feedback is then being considered and, if
accepted, implemented in the next beta release. The process
continues until the project members announce a stable release.
After that, the project development process continues to the
next stable version.

It is a surprise that the FLOSS projects are so successful
since they violate the rules of traditional software engineering,
where well-managed projects are planned in advance by
collecting user requirements and creating design specifications
prior to the beginning of implementation. In contrast, FLOSS
projects include early coding relying on the community, which
will continue with the development and design of the project.

B. Lifecycle

The FLOSS project lifecycle is divided into several
phases: Introductory Phase, Growth, Maturity, Decline or
Revive [5]. In the Introductory Phase a programmer or a
group of programmers create the initial version of a software.
The project is then registered at one of the web-based hosting
services for software development projects, such as
Sourceforge.net, Github, or similar, which allows other
developers to engage in software development. At this stage,
the task of the programmer-project manager, maintainer, is to
create the initial version of the software, assemble a team and
roll out the vision of the project’s future. However, the project
manager does not allocate tasks to other developers, but they
choose jobs according to their interests.

The project grows when users recognize and accept it.
Administrative obligations are growing along with the growth
of the project: analysis of reported errors, customer support,
and change requests. New roles are assigned to the
programmers, beta versions are released, but the initial team is
still controlling the project, while other developers take less
important functions.

At the maturity stage, the project reaches a critical mass.
Project managers delegate programmers, evaluate source code
and determine the direction of the project development. The
majority of decisions are made by consensus, but in case of
conflicting opinions within the community, the project
managers take the role of moderators. A motivation for the
project becomes weaker, and part of the community takes
upon themselves to motivate new members.

Finally, the project can reach the stage where the project
manager has fulfilled his or her plans and leaves the project. If
in such a case someone else is interested in this role, the
project revives. Otherwise, the project declines. Often, a part
of the community does not agree with the direction in which
the project manager is leading the project. In such a case, the
project branches and the community moves on to a forked
project.

C. Roles

The FLOSS projects do not only involve programmers.
There are many jobs that can be performed by people with
different interests and technical skills: testing and reporting

errors, requirements for new functionality, translation, helping
other customers, making illustrations and artwork, writing
documentation, and collecting donations. The exact
mechanisms for participation in the FLOSS project depend on
the governance model. There are two basic governance
models: benevolent dictatorship model and meritocratic model
[6].

Benevolent dictators are generally people who started the
project. Their role is to determine the general guidelines of the
project, and to resolve any disagreements within the
community. In small communities the benevolent dictator can
decide in a similar way as in the classical management model,
while in larger projects he or she usually takes the role of an
arbitrator and coordinator. Examples of such management
roles are Linus Torvalds in the Linux kernel project, Guido
van Rossum in the Python project, Rasmus Lerdorf in PHP
project, and Larry Wall in Perl project [7]. As they became
famous in the FLOSS world, their role was renamed to
"Benevolent Dictator for Life".

In the meritocratic management model, management roles
are assigned by excellence, and not by social or political
status. This does not mean technological superiority, but the
ability to balance between the different constraints: trends,
customer needs and available resources [8].

Other notable roles in FLOSS projects are contributors.
They participate in FLOSS projects in many different ways:
activities on forums and mailing lists, and active participation
on public bug system, where they can report errors and feature
requests, create patches, report duplicate requests or errors,
etc. There is also a subset of contributors called the
committers: the developers who can modify the code.

III. THE USABILITY OF FLOSS PROJECTS

Despite being rather unusual, the FLOSS development
model has introduced new concepts in software engineering,
and proved to be sufficiently tough to have grown stronger
over the years. However, although the FLOSS principles
themselves do have a perspective, a wide range of users still
does not fully accept FLOSS projects. What is the reason for
that? Why the free operating system Linux has never
succeeded to knock down the widespread and in many ways
inferior MS Windows operating system. Why are Mozilla
Firefox and Chrome Web Browser still struggling with
Internet Explorer? Why do people buy the expensive
Photoshop, when there is the easily accessible GIMP? Why do
users write documents in MS Word? In this chapter, we will
try to provide answers to these questions.

It should be noted that usability is not the only reason for
not using the FLOSS solutions. Some of the credit should be
given to poor marketing or no marketing at all. Then there are
hardware manufacturers having contracts with the proprietary
software companies. The lack of understanding of licence
policies is also a barrier [9]. But the greatest of all is a
widespread opinion that the user interface is not good enough
for nonprogrammers. The contribution to this opinion gave
Donald Norman in his article [1], where he had rated UNIX as
unusable. UNIX is no longer considered to be free software,
but Linux inherited UNIX principles and also its usability
assessment. As a renowned UNIX hater, Norman was invited
to write the foreword to the book "UNIX-HATERS

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 960

handbook" [10]. The preface ended with the words "As for
me? I switched to the Mac. No more grep, no more piping, no
more SED scripts. Just a simple, elegant life: Your application
has unexpectedly quit due to error number -1. OK?"

However, years have passed since and the situation has
changed. At the time of its creation, free software was designed
for programmers. Today, it is not so. The usage of the FLOSS
projects increases rapidly with the growth and availability of
the Internet. The FLOSS is not a "reserved arena" for
technologically educated users; beginners and technologically
untrained users around the world use FLOSS solutions.

The research [11] conducted among 106 developers from
18 different FLOSS projects showed that 87% of developers
believe that the user's requirements improve the usability of
FLOSS. On the other hand, there is no positive association
towards the inclusion of HCI experts (usability experts'
opinion). And as the most important attribute towards usability
improvement is considered to be an incremental design
approach and usability testing. All of the participants in the
survey agreed with the statement that computer science
students should be aware of the aspects of user-centred
software design and to have full knowledge of the UCD
methods.

The usability is described by five characteristics:
learnability, efficiency, memorability, low user error rate, and
users’ subjective satisfaction [12], and should be separated
from the questions of reliability, functionality and efficiency of
the program itself. Usability of the programs intended for
developers, such as compilers or source code editors, are not
included in the usability survey. Ordinary users have no
technological background, do not have the patience and they
want to have the whole of functionality in just "two mouse
clicks". The usability is not a technical problem, but a problem
of ergonomic design and user interface psychology, and
developers have always been bad at it [13]. An unprofessional
user can hardly be attracted by the availability of the source
code and his/her choice of software solutions will more likely
be based on other criteria.

A. The FLOSS and User-centred Design

The basic idea behind the user-centred design is user
involvement in all phases of software development: analysis,
design, implementation and deployment. Basic principles of
FLOSS projects are in line with that: to allow the users to use,
change and distribute software means to allow the user the
ability to participate in all stages of development. However, in
the FLOSS development model that consists of early
prototypes, frequent software updates and an active
community of testers, not only that the user participates in the
design and testing of the software, but also in assessing the
usability once the project is released, in the post-deployment
stage. Users participating in that way are active users. Beside
them, there is a large community of passive users, who do not
participate in the software development process [14].

The HCI as a discipline tends to underestimate the
importance of the software usability testing at the post-
deployment stage [15]. From the standard model of software
engineering it is known that it is easier and cheaper to correct
errors in the early stages of software development. Most HCI
experts emphasized the need to incorporate the HCI method in

the specifications phase and prototypes production phase. In
standard development models of the proprietary software that
makes sense: once the product is shipped, the communication
with the user is weak. Such software release cycles are long
and the user has a chance to evaluate the product until the next
release, but the waiting time for changes is long [16].

Nichols [14] highlights several trends in the software
development that allow the adding of usability test methods in
the development phase after the release of the product. These
are the ease of establishing communication between the users
and the development team via the Internet, incremental
versions of the software, and the ease of upgrading existing
software.

In a study of user frustration [17] it was observed that one
third to one half of the time the users spend in front of a
computer is lost due to frustrating experiences. The question
posed by Nichols is: what a computer program should do in
"moments of frustration"?

He provides several possible answers. The first answer is
the standard answer: do nothing. Most of the today's software
is passive, instructing the user to use the system for help and
to wait for the next version. The affective response (the second
answer) describes the software's ability to respond to
emotional states of the user. The third answer is the
engineering response, which means that programs should be
made more flexible, configurable, i.e. to change the way it
interacts with the user.

The last two responses give the user a more active role in
software development, by proposing to the user to improve the
source code or enabling communication between users and the
development team. The former is a FLOSS solution and the
latter the "post-deployment" usability. The limiting factor of
the FLOSS solutions is possible technological ignorance of
users. One article [18] stresses the need for easier
communication with users, by involving them in the design
process and providing them with tools for easier
troubleshooting. Bach and Twidale [19] propose the use of
reflective-user reports and sharing of reflections, and the
elaboration of these reflections by social network platforms.
They call these users reflective users.

B. Motivation for Participation in FLOSS Projects

Although it seems that the FLOSS development model is
democratic and user-centred, it is actually a system-centred
model. FLOSS users generally are developers themselves or
technically educated users. Such users value functionality,
speed and the beauty of the source code above usability.

The researches in programmers' motivation [4, 20, 21]
investigate the motivation of developers to participate in
FLOSS projects.

There is an internal (cognitive) and an external (social)
motivation for participation in FLOSS projects [22]. The
internal motivation is learning, while the external are social
status and reputation in the FLOSS community. Moreover, the
main motivation of programmers is ideology. In one survey
[21], the most commonly selected answer (88%) to the
question of motivation was "To strengthen the free software".
However, to answer the question about the motivation to
improve usability, one of the participants in the survey replied:

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 961

“... hackers are programming for fun, and there is certainly
more fun in adding support for a protocol, than repairing
dialogues for Grandma.”

The attitude towards the customers is also the attitude
towards the usability of software. Programmers often have
prejudices against inexperienced users and call them "simple
users" or "stupid users", as opposed to the terms used for
technical users, "advanced user" or "power user" [4]. While
pointing out the ideals of freedom and cooperation, FLOSS
developers do not appreciate the views of stakeholders outside
the technologically advanced users.

HCI experts are not motivated in the same way as hackers
and typically they do not feel welcome to the FLOSS
community [23]. One way to change that is to educate
developers about the basic usability principles. To avoid
disagreements with the (re)design done by HCI experts, the
usability analysis and design rationale could convince
developers of the need for user-centred design, as opposed to
their system-oriented design. On the other hand, FLOSS could
be an interesting area of research for HCI students. But
FLOSS projects are mostly done by volunteers or have a small
budget so they can hardly attract HCI experts.

In order to find a suitable way to introduce usability
activities in a FLOSS project, one study [24] compared two
approaches, a consultative role and a participative role of
usability specialists. The study suggested that a usability
specialist should adopt the participative role and become a
member of the team, meaning that he or she should understand
the philosophy and the development process of FLOSS and
play by the rules of community, while promoting the interests
of nontechnical users.

C. Tools for usability evaluation

FLOSS projects use in their development a variety of
tools: compilers, mailing lists, version control systems (CVS),
memory leak detectors, repositories, etc. However, except for
the tools for rapid development of user interfaces, they do not
use any tools for evaluating usability. The HCI community
does not have well-developed tools for automatic evaluation
of non-web applications [25]. Besides that, the FLOSS
community developers are willing to use only FLOSS tools. A
research [26] conducted on a dataset consisting of 1753
FLOSS projects showed that online forums play a significant
role in identifying and fixing usability bugs. Although online
forums could be important for gaining feedback from users,
they are not suitable for error reporting. Usability bugs
handled by mailing lists and forums are hard to follow [27],
and should be moved to a bug tracker system to be recognized
and resolved by developers.

Bug reporting systems are not customized for reporting
usability errors. Adapting such systems for HCI experts would
facilitate their use. For example, to allow screenshot images in
the text. Although it may appear trivial, the main lesson
learned from usability studies is that details are essential and a
small amount of extra effort is sufficient to distract users from
participation [12]. Error reporting systems (e.g., Bugzilla) are
complicated for the average user, and require registration and
a specific amount of time to learn the user interface. Crash
reporting tools would be much more useful.

As for the interface design and evaluation by users, the
shift has been made to facilitate the users to report usability
errors. Two methods stand out: the design-by-blog, like
Firefox Input Dashboard (formerly Hendrix), and distributed
heuristic evaluation through the bug reporting tool (Bugzilla)
[28]. Such tools can be used for post-deployment evaluation of
the project.

Customization of the error reporting tools in distributed
heuristic evaluation could change the way developers see the
problem of usability. The FLOSS community uses a dictionary
to explain the good and bad things appearing in the project,
such as performance, crashing, and data loss. Expanding the
dictionary with words related to usability, like consistency and
feedback, would facilitate the naming of the problem and
connecting similar problems. Typically, usability issues in
error reporting systems are delineated descriptively. Faaborg
[28] described the integration of HCI principles in the Bugzilla
project, the bug tracker system used by FLOSS communities.
It was performed by defining 17 heuristic principles, with
keywords assigned to them, which enabled programmers to
easily identify usability problems and connect them with other
errors (and solutions) of the same type.

D. Other approaches

Nichols and Twidale [20] suggest more approaches in
order to maximize usability.

 The commercial approach is the inclusion of large
companies in development projects. It is a common
practice in the FLOSS world. Large companies already
participate in FLOSS projects by paying developers
and performing usability testing [29].

 Involving the end user. Creating a usability
discussion infrastructure. Fragmenting usability
analysis and design. In a similar way to how the
FLOSS development divides a project into smaller
pieces, usability testing can also be fragmented so that
only a certain number of people around the world, each
of whom doing a usability study, combine their work
into a common result. It is surprising how much
information about the usability can be drawn from a
small number of such studies [12].

 Education and evangelism. As commercial software
producers need to learn that the usability is essential to
sell their products, the FLOSS community should also
need to be educated about the importance of usability.
Although sales and earnings in FLOSS projects hardly
play any role, the distribution of the software does.
Large user base is the common motivation of FLOSS
developers. On the other hand, it is also important that
the HCI experts feel welcome in the FLOSS
community so as to be able to communicate with each
other productively.

Recommended guidelines to be followed in the usability
of FLOSS in [18] include developing the standard for usability
evaluation. A reconceptualization of HCI methods to better fit
the FLOSS culture is proposed in [30]. The opposite of that is
the model proposed in [31]. The model extends the role
structure in software development model of FLOSS by adding

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 962

the level of communications and roles. Existing technical level
consists of technical core team, committers, contributors, and
active users. An additional human level consisting of HCI
core team, usability designers, usability evaluators and
nontechnical users will be equally important in the
development process. Both approaches, the HCI and FLOSS
software development model reconceptualizations are a huge
shift in their own fields.

IV. CONCLUSION

The FLOSS community is one of the largest
collaborations in the world that has produced much of the
existing software. However, it is not sufficiently recognized
by software engineering, or by HCI experts, so it is not the
subject of a large number of studies. But, the question of
usability in FLOSS projects has been opened and suggestions
are given for improving usability.

In this review, articles are divided in four groups based on
their focus concerning the usability problems in FLOSS and
suggestions for improvement. The first group includes studies

that emphasize the necessity of the shift from the system-
centred design to the user-centred design. The next group
focuses on developers and HCI experts’ motivation for
participation in FLOSS projects and investigates the
relationship between these two communities. The third group
consists of studies that emphasize the importance of automatic
usability testing tools. And finally, the last group gives us a
few more suggestions how to improve usability in FLOSS
projects.

The purpose of this work is to motivate HCI researchers to
put more emphasis on the FLOSS project and to motivate
developers to put more emphasis on the usability of their
projects.

 With the increased number of users participating in the
development of FLOSS projects, the prospects for the
improvement of usability have risen. If FLOSS communities
enable channels for easier communication between users and
developers, FLOSS could make a breakthrough with regard to
the issue of usability, as it has already made in terms of
functionality and reliability.

REFERENCES

[1] D. Norman, “The trouble with unix, 139-150,”
Datamation, Nov, 1981.

[2] D. Nichols and M. Twidale, “The usability of open
source software,” First Monday, vol. 8, no. 1, 2003.

[3] C. Benson, M. Muller-Prove, and J. Mzourek,
“Professional usability in open source projects: Gnome,
openoffice. org, netbeans,” in CHI’04 extended abstracts on
Human factors in computing systems. ACM, 2004, pp.
1083–1084.

[4] D. Yeats, “Open-source software development and
user-centered design: a study of open-source practices and
participants,” Ph.D. dissertation, Texas Tech University,
2006.

[5] D. E. Wynn, “Organizational structure of open
source projects: A life cycle approach,” in Abstract for 7th
Annual Conference of the Southern Association for
Information Systems, Georgia, 2003.

[6] G. H. Ross Gardler, “Meritocratic governance
model,” URL: http://www.oss-
watch.ac.uk/resources/meritocraticGovernanceModel.xml,
Jun. 2010.

[7] J. Malcolm, Multi-stakeholder governance and the
Internet Governance Forum. Consumers International,
2008.

[8] E. Lee, “Open source development: The
diversocracy,” URL:
http://www.redhat.com/magazine/016feb06/features/meritoc
racy/, Tech. Rep., 2006.

[9] S. Walli, D. Gynn, and B. Rotz, “The growth of
open source software in organizations,” A report, 2005.

[10] S. Garfinkle, D. Weise, and S. Strassmann, “Unix-
hater handbook,” 1994.

[11] A. Raza, L. F. Capretz, and F. Ahmed,
“Improvement of open source software usability: an
empirical evaluation from developers’ perspective,”
Advances in Software Engineering, vol. 2010, 2010.

[12] J. Nielsen, Usability engineering. Access Online
via Elsevier, 1994.

[13] E. Raymond, The cathedral and the bazaar.
Springer, 1999, vol. 12, no. 3.

[14] K. Crowston and J. Howison, “The social structure
of free and open source software development,” First
Monday, vol. 10, no. 2, 2005.

[15] D. M. Nichols, D. McKay, and M. B. Twidale,
“Participatory usability: supporting proactive users,” in
Proceedings of the 4th Annual Conference of the ACM
Special Interest Group on Computer-Human Interaction.
ACM, 2003, pp. 63–68.

[16] P. K. Chilana, A. J. Ko, J. O. Wobbrock,
T. Grossman, and G. Fitzmaurice, “Post-deployment
usability: a survey of current practices,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011, pp. 2243–2246.

[17] K. Bessiere, I. Ceaparu, J. Lazar, J. Robinson, and
B. Shneiderman, “Understanding computer user frustration:
Measuring and modeling the disruption from poor designs,”
Tech. Rep., 2003.

[18] M. C. Yelleswarapu, “An assessment of the
usability quality attribute in open source software,” 2010.

[19] P. M. Bach and M. Twidale, “Involving reflective
users in design,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2010, pp.
2037–2040.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 963

[20] Y. Ye and K. Kishida, “Toward an understanding
of the motivation of open source software developers,” pp.
419–429, 2003.

[21] M. Andreasen, H. Nielsen, S. Schrøder, and
J. Stage, “Usability in open source software development:
opinions and practice,” Information technology and control,
vol. 25, no. 3A, pp. 303–312, 2006.

[22] G. Hertel, S. Niedner, and S. Herrmann,
“Motivation of software developers in open source projects:
an internet-based survey of contributors to the linux kernel,”
Research policy, vol. 32, no. 7, pp. 1159–1177, 2003.

[23] D. Nichols and M. Twidale, “The usability of open
source software,” First Monday, vol. 8, no. 1, 2003.

[24] M. Rajanen, N. Iivari, and K. Anttila, “Introducing
usability activities into open source software development
projects–searching for a suitable approach,” Journal of
Information Technology Theory and Application (JITTA),
vol. 12, no. 4, pp. 5–26, 2011.

[25] D. M. Nichols and M. B. Twidale, “Usability
processes in open source projects,” Software Process:
Improvement and Practice, vol. 11, no. 2, pp. 149–162,
2006.

[26] A. Raza, L. F. Capretz, and F. Ahmed, “Usability
bugs in open-source software and online forums,” IET
software, vol. 6, no. 3, pp. 226–230, 2012.

[27] G. Çetin, D. Verzulli, and S. Frings, “An analysis
of involvement of hci experts in distributed software

development: practical issues,” in Online Communities and
Social Computing. Springer, 2007, pp. 32–40.

[28] A. Faaborg and D. Schwartz, “Using a distributed
heuristic evaluation to improve the usability of open source
software,” 2010.

[29] P. M. Bach, R. DeLine, and J. M. Carroll,
“Designers wanted: participation and the user experience in
open source software development,” in Proceedings of the
27th international conference on Human factors in
computing systems. ACM, 2009, pp. 985–994.

[30] M. Terry, M. Kay, and B. Lafreniere, “Perceptions
and practices of usability in the free/open source software
(foss) community,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 2010, pp. 999–1008.

[31] H. Hedberg and N. Iivari, “Integrating hci
specialists into open source software development projects,”
in Open Source Ecosystems: Diverse Communities
Interacting. Springer, 2009, pp. 251–263.

