
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 873

Network Worm Containment Using Markov Chain

Approach

Akinwumi David

Information and Communication Application Centre,

Adekunle Ajasin University,

Akungba-Akoko, Ondo State, Nigeria

Alese Boniface Kayode & Oluwadare Samuel

Adebayo*

Department of Computer Science,

The Federal University of Technology,

Akure, Ondo State, Nigeria

Email: *samoluwadare2013 {at} gmail.com

Abstract— In recent years, computer worms have emerged as one of

the most potent threat to the security of many networked computing

communities. The need for more reliable and efficient systems for

worm containment has continued to be on the rise. Different systems

for worm containment have been developed by different authors with

attending strengths and weaknesses. Vigilante is a host based

Intrusion Detection System (IDS) that detect worms by instrumenting

vulnerable programs to analyse infection attempts. In this work, an

improved Vigilante system that generates Self-Certifying Alerts

(SCAs) using Markov Chain algorithm was developed. The algorithm

is formulated such that upon detection, host generates Self-Certifying

Alerts, which can be verified by any vulnerable host. Hosts receiving

an SCA protect themselves by generating filters that block worm

attack. The developed mechanism is implemented in Windows Vista

environment using Visual Basic.Net programming language.

Experimental results on different worms in the selected network

demonstrate the system’s ability to successfully detect and contain

worms that are invoked into the network. A comparison of the results

obtained with results of some other algorithms shows an overall good

performance.

Keywords- Vigilante, Self-Certifying Alerts, Worm containment,

Markov Chain

I. INTRODUCTION

 Computers worldwide have become increasingly

interconnected particularly with the popularization of World

Wide Web (www). The growing relevance of inter-network

communication in our society today has made the Internet to

become critically important to the viability of every sector of

the national and global economy. However, an upsurge in the

incidents of malicious codes in the form of computer viruses

and worms witnessed in the communication system has posed

a serious threat to the computing community. One class of

such malicious code, known as worms, spreads itself without

human intervention by using a scanning strategy to find

vulnerable hosts to infect. Some of the famous examples of

worms that have caused considerable damages are Code Red,

SQL Slammer, and Blaster [1].

 A worm is defined as self-propagating malicious program

that exploits security vulnerabilities and flaws to propagate

itself without requiring user action or human intervention. It

performs self-replication by sending copies of their codes in

network packets and ensuring the codes are executed by the

computers that receive them [2]. Meanwhile, when a host or

computers on network becomes a victim of its infection, it

spreads further copies of the worm by exploiting low-level

software defects [1]. The Slammer worm, for instance,

attained probe and dissemination levels of as high as 26,000

scans for every second, a significantly high rate as compared

to those that are realized for common viruses [3]. The

following characteristics have been associated with the

activities of worms:

a. Infection

Worms gain control of the execution of a remote

program using one of these mechanisms: injecting new code

into the program, injecting new control-flow edges into the

program, and corrupting data used by the program [4].

 b. Spreading

After infecting a computer, worms typically replicate

itself to infect other computers, giving rise to a propagation

process which has many similarities with the spread of human

diseases [3]. The speed of propagation of worms depends on

how fast infected computers can find new victims to infect [5].

 c. Hiding

The following are the techniques used by worms to

avoid being detected on the internet:

traffic shaping, polymorphism, and fingerprinting detectors

i. Traffic shaping: Worms usually have complete control over

the network traffic generated by the computers they infect. By

this means they can blend attack traffic with normal traffic,

making it difficult to detect them by analyzing traffic patterns

[6].

ii. Polymorphism: Another technique that worms can use to

hide themselves is polymorphism. Polymorphic worms

constantly change the content of their attack messages using

techniques such as encryption and code obfuscation [7].

iii. Fingerprinting: Another technique that worms can use to

avoid being detected is to try to identify if they are interacting

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 874

with a detector, before fully revealing their attack. This type of

activity is referred to as fingerprinting the detector [8, 9].

 The aggressive scanning traffic generated by the infected

hosts usually cause network congestion, equipment failure,

and blocking of physical facilities. For example, the Code Red

worm version 2 released on July 19th, 2001 and over a period

of less than 14 hours exploited buffer overflow vulnerability in

the Microsoft Internet Information Service (MIIS) web

servers, infected more than 359,000 machines. The cost of this

epidemic, including subsequent strains of Code Red is

estimated by a computer economist to be $2.6 billion [10].

This statistics revealed that Code Red was particularly virulent

and the economic impact it provides indicates the magnitude

of the damages that can be inflicted by such worms. Hence,

there is a need to carefully characterize the spread of worms

and develop an efficient strategy to contain them.

 In this research publication, worm behaviours, methods of

detecting them was examined, and an efficient and reliable

Vigilante system for worm containment was developed using

Markov Chain.

The major objectives of this research are to explore and bring

to the fore the challenges of worm in a networked community

and design and implement a Markov Chain based Vigilante

system for worm containment that will also generate Self-

Certifying Alerts (SCAs).

 Markov chain, named after Andrey Markov, is a

mathematical system that undergoes transitions from one state

to another, between a finite or countable number of possible

states. It is a random process characterized as memoryless: the

next state depends only on the current state and not on the

sequence of events that preceded it. This specific kind of

"memorylessness" is called the Markov property [10].

 The term "Markov chain" is used to mean a Markov

process which has a discrete (finite or countable) state-space.

Usually a Markov chain is defined for a discrete set of times

[12]. A discrete-time random process involves a system which

is in a certain state at each step, with the state changing

randomly between steps. Since the system changes randomly,

it is generally impossible to predict with certainty the state of a

Markov chain at a given point in the future. However, the

statistical properties of the system's future can be predicted. In

many applications, it is these statistical properties that are

important in the propose system. The changes of state of the

system are called transitions, and the probabilities associated

with various state-changes are called transition probabilities.

The set of all states and transition probabilities completely

characterizes a Markov chain.

 A Markov chain is a sequence of random variables X1, X2,

X3, ... with the Markov property, namely that, given the

present state, the future and past states are independent.

Formally,

Pr(Xn+1=x│X1= x1, X2= x2, …, Xn= xn)

= Pr(Xn+1=x│Xn= xn) (1.1)

 Markov chains are often described by a directed graph,

where the edges are labeled by the probabilities of going from

one state to the other states. A state i is called absorbing if it is

impossible to leave this state. Therefore, the state i is

absorbing if and only if

II. LITERATURE REVIEW

 To highlight worm behaviours and methods of detecting it,

survey of some worm-related literature was carried out. The

question that often arises when discussing worms is: what is

the difference between a worm and a virus? Both are

considered to be malware and can perform the same malicious

actions. Viruses typically don’t self-propagate, and rely on

users to activate and transport the virus to a new destination.

However, worms are generally self-propagating [5].

 By definition, a worm is a self-propagating malicious

program that exploits security vulnerabilities and does not

require user action to propagate [2]. However, it has been

shown that a computer worm is an extremely handy tool to

perform a particular task in a distributed fashion or repetitively

on several machines. A worm tries to hop on from one idle

host to another carrying with it a sub-task in search of

computing power to accomplish its tasks and return the results

to the parent process that waits for the results on a different

machine [13].

 Worm’s history of interest are discussed and presented as

follows:

Creeper Worm was written by Bob Thomas and released in

early 1970's, it was an experimental program to demonstrate

the power of programming there was not malicious intent and

the worms did not hide. Morris Worm was released in 1988. It

located vulnerable hosts and accounts, exploited security holes

on them to transfer a copy of the worm and finally ran the

worm code. It penetrated remote systems by exploiting the

vulnerabilities in either the finger daemon, send mail, or by

guessing passwords of accounts and penetrate hosts that

shared the same account [14.

 Melissa Worm was a worm that caused wide spread damage

to the internet and for the first time huge losses to everyone

around the world. It caused over 400 million USD in damages

across the globe and shutdown many organizations. It was

written as a MACRO on Microsoft Word Document and this

helped its widespread propagation. It was released in Mid

March 1999 and was authored by David L. Smith [15].

 ExploreZip took the concept of Melissa worm one step

further. Melissa worm was not designed to reside on the

system. ExploreZip was. The worm propagated via email, just

like Melissa. Once the user opened the attachment, the worm

would seem like a self extracting zip archive and then error

out. Behind the scenes it would install itself on to the system

and register itself in the Windows Registry. The worm would

then stay dormant and do nothing. When the user reboots the

system, the worm would get activated and mail a copy of itself

to all the people in the address book of the user on the host. It

would also delete all the C and C++ source files from the hard

drive [16].

 ILOVEYOU was written in VB Script and propagated as

an attachment in the email with a message "ILOVEYOU".

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 875

When users opened this attachment, it would register itself

onto the Windows Registry. This would activate the worm

after every restart of the system. It would then, search all the

drives connected to the host for all files with extensions

*.JPG, *.JPEG, *.VBS, *.VBE, *.JS, *.JSE, *.CSS, *.WSH,

*.SCT, *.DOC *.HTA, *.MP3, *.MP2 and rename them to

.VBS [17].

 Mydoom was the most notorious worms of all times with

the highest damage of 22 billion USD. It propagated as a

"Sending Failed" mail from the mail server and asked the user

to click on the attachment to resent the mail. If the user opened

the attachment, it would show that it's resending the mail and

in parallel, installed the worm. The worm would then send a

copy of itself to all the address in the address book and also

copy itself to Peer-to-Peer shared drives. The worm also

opened a back door for the hacker to get back anytime [5].

 Code Red used a buffer overflow vulnerability to infect

Microsoft IIS web servers. It would scan and infect other hosts

until the 20th day of the month and then send a DoS attack to

the whitehouse website until the 28th and then become

dormant for the remainder of the month. Code Red was a

memory-resident worm, so it did not persist across reboots [3].

Code Red II used the same buffer overflow vulnerability as

Code Red, but was otherwise completely different. It first

determined if Code Red II was already installed, and if not it

installed a backdoor, went dormant for a day and then

rebooted the machine. It then began to spread. Installing the

backdoor allowed a remote user to execute arbitrary code at a

later date. Slammer was the fastest computer worm in history

[3]. It infected more than 90 percent of vulnerable hosts within

10 minutes [18]. Slammer exploited a buffer overflow

vulnerability in computers on the Internet running Microsoft's

SQL Server or MSDE 2000. It was a worm that picked its

next victim randomly.

 If a worm author collects a hit-list of a few thousand

potentially vulnerable machines, ideally ones with good

network connections. When released onto a machine on this

hit-list, the worm begins infecting hosts on the list. When it

infects a machine, it divides the hit-list into half,

communicating one half to the recipient worm and keeping the

other half. Such a worm is called a Warhol Worm and such a

scanning technique hit-list scanning [5].

Nimda copied itself to network drives, shared the computer’s

folders, and created a guest account with Administrator

privileges. It attached itself to explorer.exe to hide itself. It

emailed itself to email addresses in the user’s contact list. It

was self-modifying, so hashes wouldn’t identify it [19].

Slapper spread by exploiting vulnerability in the OpenSSL

implementation used by the Apache web server. It scanned for

targets by randomly choosing a network, and then sequentially

scanning each IP in that network[20].

Blaster exploited a buffer overflow vulnerability in the RPC

implementations of Windows XP and 2000. Blaster was

uploaded to the target in two stages. The first stage transmitted

itself via the RPC vulnerability, which then retrieved and

executed the rest of the worm. Blaster was designed to send a

SYN flood to windowsupdate.com on certain dates [21].

III. DESIGN OF THE PROPOSED VIGILANTE

SYSTEM

a. Method and materials

The major focus of this work and publication is to develop an

enhanced Vigilante system for worm containment using

Markov Chain algorithm. The rationale behind the proposed

system is to provide a system that guarantees a reliable and

efficient worm containment system in a network.

b. Detecting and Containing a Worm

The first step towards containing the outbreak of an unknown

worm is to detect it. To detect a worm outbreak, a defensive

program must be instrumented to analyze its infection

attempts. The detector must be duly informed about the

outbreak and must be able to generate automatic self certified

alerts (SCA), i.e. a security alerts that can be verified by the

computers that receive them. The hosts receiving an SCA,

protects themselves by generating filters that block worm

attack, thus cooperating to contain an outbreak.

The self-certifying alert mechanism allows detection in

Vigilante to be very dynamic, for the following reasons.

i. any host to independently decide to become a

detector at any time, because detectors are not

trusted. This makes it harder for an attacker to

know exactly where detectors are deployed, thus

making evasion more difficult.

ii. rapid deployment of new detection algorithms is

allowed, because they do not need to be

deployed at every machine in the network.

 Detecting a worm outbreak is not sufficient to contain it,

vulnerable computers that have not yet been infected need to

be protected. Vigilante enables computers to protect

themselves, but first they need to be informed about the

outbreak. To do this, detectors in Vigilante generate Self-

Certifying Alerts (SCAs). These are security alerts that can be

verified by the computers that receive them. Using SCAs,

machines cooperate to contain an outbreak, without having to

trust each other.

 In order to achieve this, the first step is the implementation

of the containment structure, working to make it as flexible as

possible so that the worms become contained in a fine grained

structure. The second part is the integration of an intelligent

decision-making structure into the framework, allowing the

system to make rational decision according to the balance that

exists between security and the operations of the computer

network. Accordingly, the implementation of the Markov

Chain algorithm to quantitatively evaluate the different worm

containment functionalities that are available at the disposal of

network administrators together with the total sum of expected

positive results is proposed.

 Figure 1 below was adopted from the work of Costa [1]. It

depicts a Vigilante Architecture of the proposed system for

worm containment. In the design, the host detects worms by

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 876

instrumenting network-facing services to analyse infection

attempts. The detectors use this analysis to generate SCAs

automatically and distribute them to other hosts. Before a host

distributes an SCA or after it receives an SCSA from another

host, it will verify the SCA by reproducing the infection

process described in the SCA in a sand box. If verification is

successful, the host is certain that the service is vulnerable.

Alerted hosts will protect themselves by generating filters that

block worm traffic before they are delivered to a vulnerable

service. Each vulnerable host will run this procedure locally

and installs the filter to protect itself from the worm [22].

Figure 1. Vigilante Architecture [1].

The proposed system has four components which collaborate

with each other to achieve the design goal as shown in Figure

1. The components are presented as follows:

i. Host based detection engine: It analyze infection

attempts, there are cooperative detection without

trust. Any host can be a detector, which

generates Self-Certifying Alerts (SCAs), verify

and broadcast SCAs.

ii. SCA generation: Detectors generate SCA when

worm is detected, search log for relevant

messages, compute verification information,

generate tentative version of SCA and repeat

until verification succeeds.

iii. SCA distribution: uses overlay of superpeers,

detectors flood alerts over overlay links and

hosts receive SCAs with high probability.

iv. Protection: Vulnerable hosts generate filter from

SCA that block worm traffic.

Figure 2 shows the procedures for alert verification which are

outlined as follows:

i. SCA verifier receives an SCA

ii. Sends the SCA to the verification manager inside the

virtual machine

iii. Verification manager uses the data in the SCA to

identify the vulnerable service

 modifies the sequence of messages in the SCA to

trigger execution of Verified

 when the messages are sent to the susceptible service

iv. If Verified is executed, the verification manager

signals success

v. Failure after Timeout

 In this research work, worm detection took place inside

virtual machines (VMs). This was performed by the honey pot

hosts. This makes it harder for the worm code to threaten the

security of the physical system or vigilante itself.

 The Algorithm was implemented on a Laboratory Local

Area Network at the Information and Communication

Technology Application Centre (ICTAC), Adekunle Ajasin

University, Akungba Akoko with the following specifications:

A Compaq D550 Pentium 4 Server running on Windows Vista

Operating System with 2.4 Ghz processor speed and 2GB

RAM, Fast Ethernet Network cards and the hosts were

connected through a 100Mbps D-Link Ethernet switch. The

Tools used for the system implementation include the Visual

Basic.Net programming language.

SCA

SCA Verifier

Verification

Manager

Vulnerable
Service

Verified

Virtual Machine

Host

1

5
2

3

4

Figure 2. SCA verification component and flow of

control [1].

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 877

Five computers with the above specifications were connected

on the network for the experiment. One of the systems was

infected with the following three commonly known worms:

CodeRed, Blaster and Slammer. Tests were then carried out

with regards to the processes and programs that each of the

worms invokes, together with the capability of the vigilante

architecture to detect when these programs are invoked and

contain them.

IV. RESULTS AND DISCUSSION

An experiment was necessary to measure the time it takes to

generate the Self-Certifying Alerts with the use of the

algorithm as a means of detecting and generating arbitrary

control over the chosen worms: Slammer, CodeRed and

Blaster. In Figure 3 the SCA generation time was calculated as

the time from the reception of the last message from the

worms to the time when the detector generates a Self-

Certifying Alert to indicate that it has noted an incoming

malicious code.

Verification was done through running the worms inside a

virtual machine that runs the worms and has all the code

necessary for verification of the SCA. In this case, Virtual PC

2004 virtual machine was used, with the initial state of the

virtual machine being stored on the disk and running the code

of the worm. An average time to verify the SCA for each of

the worms was developed and the result is as presented in

Figure 4.

The results of the experiments reveal that the Vigilante

Architecture system remains effective even when there is an

increase in the Self-Certifying Alert verification time and a

rise in the number of nodes that are initially infected.

However, the effectiveness of the system is reduced when the

number of infected nodes increases. Denials of Service attacks

also occur with the increase in the number of infected nodes,

with their occurrence increasing with increase in the SCA

verification time.

V. COMPARATIVE ANALYSIS WITH PREVIOUS

WORKS
In this paper, a novel Markov Chain based Vigilante

Architecture for the worm containment system is proposed.

The performance of the Markov Chain Model with Dynamic

Dataflow Analysis model proposed in Costa (2006) was

evaluated. SCA generation time, and SCA verification time

were computed for each worm (Slammer, Blaster and

CodeRed) as follows: The time was calculated from the

reception of the last message from the worms to the time when

the detector generates self-certifying alerts to indicate that it

T
i
m

e

(
m

s
)

Slammer Blaster CodeRed

10
0

500

1000

1500

2000

2500

Legend

Markov Chain
Model

3000

208

2667

 Figure 3. SCA Generation Time

Legend

Markov Chain
Model

Figure 4: SCA Verification Time

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 878

has an incoming malicious code. The verification time was

calculated by running the worms inside a virtual machine that

runs the worm and has all the codes necessary for verification

of the SCA.

 The average SCA generation time for each worm is shown

in Figure 5. It could be observed in Figure 5 that SCA

generation is faster with the proposed Markov Chain based

Vigilante System for slammer worm but slower for Blaster.

Similarly, SCA verification time was identical in both

techniques as indicated in Figure 6. However, the SCA

generation time was the same for codeRed in both techniques.

VI. CONCLUSION

With the increase in the organizational dependence of today’s

society on the use of computers, it has become necessary to

experiment on the deployment and containment of worms so

as to come up with algorithms that will reduce their malicious

effects. These worm containment algorithms have to run

accurately and automatically, without necessarily causing

blockage of harmless traffic in the network. In this regards, the

Vigilante Architecture presents an end-to-end worm vigilante

system that seeks to automate the worm containment process

through analysis of incoming coded messages in the hosts and

checking whether they attempt to run or access functions that

they should not.

 In this research, a technique for the Vigilante system

approach to worm containment in a network that will generate

Self-Certifying Alert (SCA) is proposed. The Self-Certifying

Alert is the core idea of the Vigilante system which argues that

one machine should not trust security alerts originated from

other machines. Therefore, the SCA contains the necessary

information to generate and verify filters, which is to be

installed to prevent worm attacks. The Self-certifying Alerts

present a language through which the common system

vulnerabilities can be defined, allowing for the verification of

detector alerts that are sent when a worm tries to run an

invalid function. The verification of these SCAs presents an

effective way of reducing false positives that can be created by

the Vigilante Architecture.

REFERENCES

[1] M. Costa. End-to-End Containment of

 Internet Worm Epidemics Churchill

 College University of Cambridge, PhD Thesis, 2006.

[2] N. Weaver, V. Paxson, S. Staniford and R.

 Cunningham. ―A taxonomy of computer

 worms‖. In The First ACM Workshop on Rapid

 Malcode WORM, 2003.

[3] D. Moore, C. Shannon, G. Voelker and S. Savage.

 Internet quarantine Requirements for containing self-

 propagating code. In Infocom, San Francisco, USA,

 2003

[4] Nerga (2001). The advanced return-into-lib(c)

 exploits: Pax case study. Phrack, 2001, pp 58).

[5] S. Staniford, V. Paxson and N. Weaver. ―How to own

 the internet in your spare time‖. In USENIX Security

 Symposium 2002, San Francisco, USA.

[6] V. Paxson. ―A system for detecting network intruders

 in real time‖. Computer Networks, 31(23-24

 1999, pp 2435–2463.

[7] P. Szor and P. Ferrie. ―Hunting for metamorphic‖. In

 International Virus Bulletin Conference 2001.

[8] T. Holz and F. Raynal. ―Detecting honeypots and

 other suspicious environments‖. In Workshop on

 Information Assurance and Security, 2005.

[9] J. Bethencourt, J. Franklin and M. Vernon(2005).

 Mapping Internet sensors with probe response

 attacks. In Usenix Security Symposium, 2005.

T
im

e
 (

m
s
)

Slammer Blaster CodeRed

10
0

500

1000

1500

2000

2500

Legend

Markov Chain
Model

Dynamic Dataflow
Analysis

3000

18

208 206

2667 2667

Figure 5: SCA Generation Time (Markov model Vs

Dynamic dataflow Analysis)

T
im

e
 (

m
s
)

Slammer Blaster CodeRed

Series1 751810

0

10

20

30

40

50

60

70

80

Legend

Markov Chain
Model

Dynamic Dataflow
Analysis

Figure 6: SCA Verification Time (Markov model Vs

Dynamic dataflow Analysis)

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 879

[10] D. Moore, C. Shannon and J. Brown .―Code Red: A

 case study on the Spread and Victims of Internet

 Worm.‖ Proc. 2nd ACM Internet Measurement

 Workshop, ACM Press, 2002.

[11] Wikipedia. Computer Networks;

 http://www.en.wikipedia.org, 2012

[12] B.S. Everitt. The Cambridge Dictionary of Statistics.

 CUP. ISBN 0-521-81099-X, 2002.

[13] J.F. Shoch and J.A. Hupp. ―The ―Worm" Programs –

 Early Experience with a Distributed Computation".

 Communications of the ACM, 25(3):172-180,

 March 1982.

[14] M. W. Eichin and J. A. Rochlis. ―With Microscope

 and Tweezers: An analysis of the Internet Virus". In

 Proceedings of the symposium on Research in

 Security and Privacy, May 1988. Oakland, CA.

[15] T.M. Chen and J. M. Robert (2004). "Worm

 epidemics in high-speed networks" IEEE, 2004.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1

306386

[16] Symantec. "Worm.ExploreZip", 1999

 http://www.symantec.com/security_

response/writeup.jsp?docid=2000-121514-1418-

99&tabid=1

[17] M. K. Darrell and C. E. Matthew). "Recent Worms:

 A Survey and Trends" ACM workshop on Rapid

 malcode, (2003.

 http://portal.acm.org/citation.cfm?id=948189

[18] S. Staniford, G.Grim and R. Jonkman. ―Flash

 Worms: Thirty Seconds to Infect the Internet". Silion

 Defense - Security Information, August 2001.

[19] A. Mackie, J. Roculan, R. Russell and M.V. Velzen.

 ―Nimda Worm Analysis‖. September 2001. ARIS

 predictor, Attack Registry & Intelligence Service,

 Incident Analysis Report Version 2, Security-Focus.

[20] I. Arce and E. Levy. ―An Analysis of the Slapper

 Worm‖. IEEE Security and Privacy, 1(1), 2003, pp

 82–87.

[21] M Bailey, E. Cooke, F. Jahanian, D. Watson and J

 Nazario. The Blaster Worm: Then and Now. IEEE

 Security and Privacy, 03(4), 2005, pp26–31

[22] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.

 Zhou, L. Zhang and Barham. P. (2005). ―Vigilante:

 end-to- end containment of internet worms‖. In

 SOSP ’05: Proceedings of the twentieth ACM

 symposium on Operating systems principles, volume

 39, pp.133–147, New York, NY, USA, ACM Press.

http://www.en.wikipedia.org/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1306386
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1306386
http://www.symantec.com/security_%20%20%20%20%20%20response/writeup.jsp?docid=2000-121514-1418-99&tabid=1
http://www.symantec.com/security_%20%20%20%20%20%20response/writeup.jsp?docid=2000-121514-1418-99&tabid=1
http://www.symantec.com/security_%20%20%20%20%20%20response/writeup.jsp?docid=2000-121514-1418-99&tabid=1
http://www.symantec.com/security_%20%20%20%20%20%20response/writeup.jsp?docid=2000-121514-1418-99&tabid=1
http://portal.acm.org/citation.cfm?id=948189

