
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 860

Secure Watemarking Method with Smart Card

Hafid Mammass*

MMS, Faculty of Sciences,IbnZohr University

Agadir, Morocco

Email: * hmammass {at} gmail.com

Fattehallah Ghadi& Mohamed Elhajji

MMS, Faculty of Sciences,IbnZohr University

Agadir, Morocco

Abstract—we treat in this paper a secure authentication method

using watermarking, smart card and cryptography. It can serve to

control logical and physical access and the network access and to

prove the card owner identity.This method is very secure because

the high level of security of smart card, the method of

watermarking and detection and the complexity of the algorithm

RSA and DES aim to remove the most known attacks.

Keywords-component; Smart card, cryptography, RSA,

symmetric and asymmetric algorithms, watermarking, detection,

DCT, DCT inverse

I. INTRODUCTION

The smartcard are world widely spread in the banking

field, the health field, the ticketing field, and several another

domains because they can store confidential data and handling

a dynamic or static authentication scheme and compute the

last ones symmetric and asymmetric algorithms.

The watermarking consists of adding a message to video,

image, audio signal or digital document to prove who the

owner is and then protect the copyright.

In this paper, we store into the card, the keys whose served

to embed the ciphered message into the image (of the card

owner) and in the step of detection, the tool asks the card to

send it the secret keys stored during the watermarking step and

use them to extract the ciphered message from the image and

asks the card to decrypt the message and then compare the

extracted message and the original message.

We can install an applet Java Card into the card in the

EEPROM after the step of manufacturing, with this

functionality we can install as we want and modify the applet

in Java Card language which is a subset of java language but

with a minimum of features because of the restricted resources

on the card.

With the technology Java Card introduced by Sun

Microsystem, the last ones smartcard are multi-application

(see Fig. 1) and we can install several applets into the same

card, hence, we can have an electronic purse applet, a ticketing

applet and a payment applet. The Java Card technology

assumes that an applet cannot access to data of another applet

because a firewall protects every applet and the JVCM (Java

Card Virtual Machine) offers a context to each applet. But, it

is possible to access to another context for the applets

belonging to the same package.

II. SMART CARD ARCHITECTURE

The central processing unit in the most smart card is a

micro-controller 8-bit and we use a set of instructions

Motorola 6805 or Intel 8051 with a 5 MHZ clock and the most

recent cards have microcontroller 16-bit or 32 bits and

processors with RISC architecture (Reduced Instruction Set

Computer) are now available.

The ROM (Read Only Memory) is 16Ko to 64Ko, the

EEPROM (Electrically Erasable Programmable Read Only

Memory) is 64 Ko and RAM is 256 bytes to 1 Ko and the

CPU has the capacity to execute the instructions from the

ROM or the EEPROM and it is capable to realize all that

microcomputer is capable of doing.

The Smart Card have 8 contacts whose are used to achieve

to communication between the card and external world and the

most important is the I/O contact which is used to transfer the

commands data between the Smart Card and the external

world in the half-duplex mode.

The operating system is burned in the ROM and persists in

this memory area until the end of life of the smartcard.

The RAM contains the transient objects (temporary) and

the intermediates calculations realized by the card.

The EEPROM contains the applets and their attributes,

hence, the applets are loadable in this zone during all the life

cycle of the card.

The smart cards used in safety or security applications

often have a coprocessor, a cryptographic coprocessor is a

specific integrated circuit which realizes calculations,

particularly the modular arithmetic and a big number

calculations , these calculations are necessary to cryptographic

operations as the RSA Algorithm and the inclusion of a

cryptographic coprocessor influences the cost of a smart card

manufacturing.

The ROM is used to store the operating system of the card

and no power is required to maintain data in this area,

however, she cannot be modified after the manufacturing of

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 861

the card, some ROM contain the operating system and

permanent data of supported applications.

The EEPROM as the ROM can maintain data in absence

of energy, the difference is that the contents can be modified

during the use of the card, so, it is used to store the data and it

is for the card as the equivalent of the hard disk for the

microcomputer.

The users applications can be loaded in this area after

manufacturing of the card and the main parameters of the

EEPROM are the number of write cycles during the life cycle,

the period of retention and the access time.

In most of the cards, the EEPROM can accept in most

100.000 write cycles and hold data during 10 years.

The reading of an EEPROM is as well fast as the reading

of the RAM but the writing of an EEPROM is 1000 times as

slow as a RAM.

Fig1. Smartcard Architecture

III. APDU PROTOCOL (ISO7816)

The Application Data Unit Protocol is the standard

ISO7816 which defines the structure of the commands

exchanged between the card and the external world as well as

the predefined answers sent by the card in case of error what

allows a more appropriate management of the exceptions (see

TABLE I).

TABLE I. APDU SELECTION

class instru

ction

Param1 Param2 Data

Length

Data Length

expected

CLA INS P1 P2 LC DATA LE

CLA : class of instruction 0x90

INS : code of instruction as defined in the applet

P1: first parameter

P2 : second parameter

LC : length of data in bytes

DATA: array of bytes

LE: length expected of the card answer

Example:SELECT command(see TABLE II)

This command allows to select an application installed on

the card via its AID (Application Identifier) so after this

selection, the application can be requested by the terminal to

execute the services proposed by the applet and by the

application.

TABLE II. SELECT COMMAND

CLA INS P1 P2 LC DATA LE

0x90 A04 4 Len.AID AID 0x00

The answer is defined as followed (see TABLE III)

TABLE III. CARD RESPONSE

DATA SW1 SW2

SW1 SW2 = 0x 9000 if the command is successful

IV. WATERMARKING METHOD

We use a DCT transform and IDCT transform for

embedding the message in the dominant blocks as [3]

proposed with Waveletand we use three parameters seed1 and

seed2 for randomization of the image data and opacity to

adjust the brightness of image, they are the secret keys for this

step because during the step of detection (see Fig.2) we can

read the three parameters from the card and use them to

randomize and adjust the image result.

Fig2. Watermarking Method

The formula of DCT-II

The DCT-III is the inverse of DCT-II

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 862

V. JAVACARD TECHNOLOGY

A. JavaCard Language

Because of its limited resources in memory, the Java Card

platform supports only care-fully chosen, customized subset of

the features of Java language but the Java Card preserves the

object-oriented capabilities of the Java programming

language, hence, the Java Card language supports small

primitive data types: boolean, byte, short, one-dimensional

arrays, Java packages, classes, interface and exceptions, Java

object-oriented features: inheritance, virtual methods,

overloading and dynamic object creation, access scope, and

binding rules and the type’s int and integer are optional.

The Java Card language don’t supports: large primitive

data types: long, double, float, characters and strings,

multidimensional arrays, dynamic class loading, security

manager, garbage collection and finalization, threads, Object

serialization, Object cloning [1],[2].

B. JavaCard Virtual Machine

The Java Card is compiled and interpreted language

because the first step generates a byte code which is

compatible with all platforms and this step is realized off-card

by the converter which generates a CAP file and an export file

and the second step is executed by the interpreter which load

and execute the CAP file on the card (see Fig. 3).

Fig 3.JavaCard Virtual Machine

C. The Converter

By opposition, the Java Virtual Machine, which processes

one class at time, the conversion unit of the converter is a

package, class files are produced by a Java Compiler from the

source code, then the converter treats all the class files of the

package and converts them to CAP file.

The converter (see Fig. 4) verifies that the load images of

the Java classes are well formed; hence, it checks the Java

Card language subset violations, it performs static variables

initialization, it resolves symbolic references to classes,

methods and fields, it optimizes bytecode and it allocates

storage and creates virtual machine data structures

Fig 4. The Converter

D. Applet Implemenation

The methods install, select, deselect, and process are applet

entry point methods. They are invoked by the JCRE at the

appropriate state of applet creation and execution. The base

Applet class gives only the default behavior for these methods.

An applet must have to override some of all of these methods

to implement its functions.

All the applet are derived from the class

javacard.framework.Applet and to load an applet, the off-card

installer takes the CAP file and transforms it into a sequence

of APDU commands, which carry the CAP file content, by

exchanging the APDU commands with the off-card

installation program, the on-card installer writes the CAP file

into the card’s persistent memory and links the classes in the

CAP file with other classes that reside on card.

The last step during an applet installation, the installer

creates an applet instance and registers the instance with the

JCRE (Java Card Runtime Environment) by invoking the

install methodpublic static void install(byte [] bArray, short

offset, byte length), then, Every applet must implement the

method install and in this method, the applet must call the

applet’s constructor to create an applet instance.

After the applet is initialized and registered with the JCRE,

it can be selected and run.

The applet can register itself with the JCRE by using the

default AID found in the CAP file.

E. Applet Registration

We use two methods to register an applet with the JCRE

protected final void register();

protected final void register(byte [] bArray, short bOffset,

byte bLength)

The first register method without arguments registers the

applet with the JCRE using the default AID from the CAP file.

The second register method with arguments registers the

applet instance with the JCRE using the AID specified in the

argument bArray

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 863

F. Applet Selection

An applet remains in a suspended state until it is explicitly

selected, an applet selection occurs when the JCRE receives

the SELECT APDU with the application AID and then the

JCRE informs the applet of its selection by invoking its select

method, then, the applet returns true if it is ready to receive

incoming APDU via its process method.

G. Applet Deselection

Before a new applet is selected, the JCRE deactivates the

current applet by invoking its deselect method and during the

processing of deselect method, the applet prepares itself to go

“of-stage” and to allow another applet to execute

H. Applet Behaviour

At the reception of an APDU, the JCRE calls the current

applet’s process method, the behavior of this method is related

to the function requested in the APDU.

On receiving an APDU, the process method analyze the

APDU header and determines which function is requested and

to will be executed.

To retrieve an APDU Buffer, the method process must call

the method apdu.getBuffer

To read data into the APDU buffer, the applet invokes the

setIncommingAndReceive.

public short setIncomingAndRReceive() throws

APDUException

This method sets the JCRE in the data-receiving mode and

requests the JCRE to receive the incoming command data

bytes starting at the offset ISO7816.OFFSET_DATA in the

APDU and returns the number of bytes read.

To receive long command data, the method

SetIncomingAndReceive is not sufficient then we use the

receiveBytes APDU method

public short receiveBytes (short bOff) throws

APDUException

I. Applet Response

After the execution of the function requested in the

incoming APDU, the applet can send the answer to the host,

because of the half-duplex mode, the applet must call the

setOutGoing method to indicate that it wants to send out

response data and this method don’t send any data, it sets only

the data transfer mode and it returns the number of response

data bytes (LE) expected by the host.

public void SetOutGoing() throws APDUException

After the call of SetOutGoing method, the applet calls the

method SetOutGoingLength to indicate to the host the number

of bytes the applet will send to it.

public void setOutGoingLength(short length) throws APDU

Exception

At the last step, the applet calls the sendBytes method to

send out the response data

psublic void sendBytes (short bOff, short len) throws

APDUException

VI. SOLUTION OVERVIEW

A. Card Authentication

The tattooer asks the card to send it, the RSA public key of

the card, then it sends to the card a challenge generated

randomly and the card generates a signature RSA with its

private key and send the signature to the tattooer which

verifies it with the public key already retrieved from the card

[4],[5],[6].

Before this card authentication, the tattooer is not able to

insert a watermark into the image and to store into the card,

the keys which are used in this process.

The command for retrieving the RSA public key (see

TABLE IV)

TABLE IV . APDU GET PUBLIC RSA KEY

CLA Instruction P1 P2 LC Data LE

0x90 INS_GET_PUBLIC_

KEY

0x00 0x00 LC challenge 0x00

 And the algorithm RSA is described below:

 n = p*q , p et q are big prime integer with similar lengths

ᶲ = (p-1)*(q-1) mod N

ed = 1 (mod ᶲ)

 C = Me (mod N)

 M = Cd (mod N)

For each card, we generate a couple of RSA public key

and RSA private key and we use them in the applet to sign

message and to encrypt and decrypt data and we use a key

length of 1024 bits.

To sign signature we use the object signature as followed

Signature signature;

Signature =

Signature.getInstance(Signature.ALG_RSA_SHA1_PKCS1,

false);

And we use the method init :

public void init (Key theKey, byte theMode);

MODE_SIGN or MODE_VERIFY

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 864

Signature.init(privateKey,Signature.MODE_SIGN)

signature.update(challenge, (short)0, (short)

(challenge.length));

signature.sign(challenge,(short)0,(short)challenge,sig_buffer,

(short)0)

To verify the signature, we use the verify method

signature.init(publicKey,Signature.MODE_VERIFY)

signature.update(s1,(short)s1.length);

signature.verify(s2,(short)0,(short)(s2.length), sig_bufffer,

sig_offset,sig_length);

To encrypt data, we use the init, update, and doFinal

methods

Cipher cipher;

cipher = Cipher.getInstance

(Cipher.ALG_DES_CBC_NO_PAD, false);

cipher.init(desKey, Cipher.MODE_ENCRYPT);

And we use cipher.update and cipher.doFinal.

To decrypt data, we use the init, update, and doFinal

methods

Cipher cipher;

Cipher = Cipher.getInstance

(Cipher.ALG_DES_CBC_NO_PAD, false);

Cipher.init(desKey, Cipher.MODE_DECRYPT);

And we use cipher.update and cipher.doFinal

B. Storage of the keys

We send to the card the commands INS_PUT_SEED1 (see

TABLE V), INS_PUT_SEED2 (see TABLE VI),

INS_PUT_OPACITY (see TABLE VII)and

INS_PUT_MESSAGE (see TABLE VIII) to store the seed1,

seed2, opacity and the message on the CARD.

TABLE V. APDU PUT SEED1

CLA instruction P1 P2 LC Data

0x90 INS_PUT_SEED1 0x00 0x00 LC SEED1

TABLE VI. APDU PUT SEED2

CLA instruction P1 P2 LC Data

0x90 INS_PUT_SEED2 0x00 0x00 LC SEED2

TABLE VII. APDU PUT OPACITY

CLA instruction P1 P2 LC Data

0x90 INS_PUT_OPACITY 0x00 0x00 LC OPACITY

TABLE VIII. APDU PUT CIPHERED MESSAGE

CLA instruction P1 P2 LC Data

0x90 INS_PUT_MESSAGE 0x00 0x00 LC MESSAGE

Before embedding the message into the image, the tool

asks the card to cipher the message with DES algorithm and

secret key stored into the card (see TABLE IX).

TABLE IX. APDUENCRYPT MESSAGE

CLA instruction P1 P2 LC Data

0x90 INS_DES_ENCRYPT 0x00 0x00 LC Message

VII. DETECTION METHOD

We send to the card the commands INS_GET_SEED1 (see

TABLE IX), INS_GET_SEED2 (see TABLE X),

INS_GET_OPACITY (see TABLE XI) and

INS_GET_MESSAGE (see TABLE VIII) to read the seed1,

seed2, opacity and the message from the CARD.

The tool uses the parameters seed1, seed2 and opacity

which have just been readfrom the card and having served in

the process of watermarking to extract the message by using

the discrete transform in cosine (DCT) and its inverse,

decrypts the message (see TABLE XIV) and compares the

extracted message, and the original to authenticate the

cardholder.

TABLE X. APDU GET SEED1

CLA Instruction P1 P2 LE

0x90 INS_GET_SEED1 0x00 0x00 LE

TABLE XI. APDU GET SEED2

CLA Instruction P1 P2 LE

0x90 INS_GET_SEED2 0x00 0x00 LE

TABLE XII. APDU GET OPACITY

CLA Instruction P1 P2 LE

0x90 INS_GET_OPACITY 0x00 0x00 LE

TABLE XIII. APDU GET MESSAGE

CLA Instruction P1 P2 LE

0x90 INS_GET_MESSAGE 0x00 0x00 LE

TABLE XIV.APDU DECRYPT MESSAGE

CLA Instruction P1 P2 LC Data LE

0x90 INS_DES_DEC

RYPT

0x00 0x00 LC Message 0x00

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 865

The schema of the detection is described below (see Fig. 5)

Fig5. Schema of Detection

VIII. CONCLUSION

The use of watermarking and the cryptography with Smart

Card can provides a multiple methods to secure the process of

watermarking and detection and handling a strong card

authentication and remove the most known attacks because of

the high level of security supplied by Smart Card and the last

one of symmetric and asymmetric algorithms like DES and

RSA.

This method can be used to control the physical, logical

and network access and to prove the identity of the Smart Card

owner and to prevents the cases of card theft and card loss.

We can add to watermarking and Smart Card the use of

biometry to insert instead a simple message a characteristic

biometric vector calculated in the step of enrolment and by

defining a distance and by calculating in the step of detection

the distance between the original image and the watermarked

image and decide that the two images are similar according

the distance and the parameterized thresholds.

REFERENCES

[1] Z. Chen, “Java CardTMTechnology for Smart CardsArchitecture and

Programmer’s Guide”,Pearson Educationpp. 1-359 (2000)

[2] V.Hassler, “Java Card for E-Payment Applications”Artech House

Publisher , pp. 1-361, November 2001

[3] M. El Hajji, H. Douzi, D. Mammass, R. Harba and F. Ros,”New Image

Watermarking Algorithm Based on Mixed Scales Wavelet”, Journal of

Electronic Imaging , Vol. 21, 013003 , 2012.

[4] D. Pointcheval and P. Nguyen, 1st Edition.(2010), XIII, Softcover,

ISBN: 978-3-642-13012-0, “13th International Conference on Practice

and theory in Public Key Cryptography”, PKC 201d0,pp. 519, May 26-

28, Paris.

[5] Jean-Sebastien.Coron, “Cryptanalyses and Security Proofs of Public-

Key Schemes”, PhD Thesis 2001 at EcoleNormaleSupérieure , Paris,

(2001).

[6] A. Menezes, P. van Oorschot and S. Vanstone, “Handbook of Applied

Cryptography”, CRC Press, (1996).

[7] H. Mammass, “Implementation of Smart Card Personalization

Software”,ICMCS'11 - IEEE cosponsored Conference, 2nd International

Conference on Multimedia Computing and Systems, Ouarzazate,

Morocco.

[8] C. Delannoy (EYROLLES), “Programmer en Java 5ème édition Java 5

et 6“ pp. 787.

