
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 1

Digital Equivalence of Biological Neural AND-gate,

OR-gate and MIN-Gate

Nicoladie D. Tam

Department of Biological Sciences

University of North Texas

Denton, TX 76203 USA

Email: nicoladie.tam {at} unt.edu

Abstract— This paper provides the mathematical derivation of

the equivalent logic gates for spike code processing in neurons.

It derives the computational equivalence between the binary

code and spike code to illustrate the correspondence between

binary and spike code logic operations theoretically. It identifies

the similarities and differences between biological neural

processing and binary logic gate processing. Using neural spike

code for processing, a neuron can be generalized to process the

equivalent of a multi-input OR-gate and a multi-input AND-gate

by requiring a minimal number of m input spikes (from a set of

all n inputs) before firing an output spike. A MINm-gate is

introduced as the equivalent of the generalized multi-input

ANDm-gate and multi-input ORm-gate that require a minimum of

m inputs to fire an output spike. The MINm-gate is an equivalent

of a statistical voting system that processes input spikes with a

threshold of a minimum of m ≥ n/2 input spikes for a majority-

rule system.

Keywords- massively parallel processing, biological neural

processing, digital logic gate operation, asynchronous processing

I. INTRODUCTION

This paper examines the computational equivalence
between biological neural circuitries and digital logic so that
the similarities and differences between them can be
established. Although the similarities between artificial neural
networks and digital logic circuitries have been explored [1-4],
this paper focuses on addressing the computational
equivalence of biological neurons using pulse-coded signals
for processing rather than binary-coded signals. The unique
computational characteristics using spike-coded signals (a
special class of pulse-coded signals) are addressed in this
paper, so that the computational equivalence between neural
processing and binary processing can be identified. It will be
shown below that if spike codes were used in the logic gates
(instead of binary code), there exists an equivalent between a
multi-input AND-gate and a multi-input OR-gate that can be
replaced by a MIN-gate with a minimum threshold of m active
inputs out of all total n inputs. Varying the threshold m will
provide a majority-rule voting logic gate by a set of
generalized AND-gates or OR-gates without requiring any
custom-design complex voting VLSI digital logic circuitry [5-
8]. Spike-coded signals can also be processed asynchronously
without relying on any external clock pulse for
synchronization.

II. BINARY CODE VS. SPIKE CODE ENCODING

In order to identify the computational differences between
a spike-coded signal and binary signal for the subsequent
mathematical derivation of the spike code processing logic, a
brief review is provided here. The difference between binary-
coded signals and spike-coded signals is that binary codes
represent time-independent up/down states, whereas spike
codes are time-dependent pulse-coded signals the represents a
point process.

Pulse code uses both pulse width and pulse height to
encode information [9]. That is, the time duration of the pulse
does encode information (in addition to encode information by
the amplitude of the pulse) [10]. In contrast, the time duration
of the binary signals does not encode any additional
information, since the binary information is encoded in the 0’s
and 1’s only (up/down states without any dependence on how
long the binary states last in time).

The spike code is a special type of binary-coded pulse code
in which it takes on the value of 0’s and 1’s (as amplitude),
except that the time duration of 1’s is always fixed (a constant

t), whereas the duration of 0’s is a variable t. This time-
dependent information encoding will result in producing some
major differences between how signals are processed and what
computations they can perform.

III. CHARACTERISTICS OF SPIKE TRAINS

The major difference is that spike code encodes the time
occurrence of events (by using 1’s to denote the time of
occurrence of an event at time t, and 0’s to denote absence of
any event). Thus, spike-coded signal is a special class of
pulse-coded signal with these distinct characteristics:

(1) The occurrences of an event and nonevent information
are encoded by the binary code (fixed amplitude
signals of 1’s for encoding occurrence of events, and
variable time duration of 0’s for encoding non-
occurrence of events, respectively);

(2) The timing information of the 1’s (spikes) is encoded
as the time of occurrence of an event;

(3) The timing information of the 0’s (non-spikes) is
encoded as silence (period of non-occurrence of
events);

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 822

(4) The pulse width of the 0’s (time duration of the 0’s)
encodes the silence period (without any intervening
events);

(5) But the pulse width of the 1’s does not encode any
additional timing information, since a spike is always
fixed in duration and amplitude (i.e., constant pulse

width of t and pulse height of 1, representing the
occurrence of an event only, but not the duration of the
event);

(6) The spike can be considered as representing a point in

time (with infinitesimal time t in duration);

(7) A series of spike code in time can be considered as a
time-series of point processes;

(8) The time-series of spikes is considered as a spike train,
representing the time of occurrence of spikes.

IV. INTERPRETATION OF 1’S AND 0’S IN SPIKE TRAINS

The 1’s and 0’s in spike code have very different meaning
from the 1’s and 0’s in binary code. Since spike codes are
encoding a time-series of events, the occurrence of an event
can be considered as a point (in time) with an infinitesimal

time t in duration. Therefore, spike code processing is
essentially processing a time-series of point processes [11],
which is different from the interpretation of the 1’s and 0’s of
binary coded signals. The spike train encodes the time-series
of spike occurrences in time [12] rather than a series of static
1’s and 0’s without any timing information embedded in the
binary code. Most biological neurons use spike trains to
encode information and to communicate instead of using
binary signals without any timing information (cf. [13, 14]).

Thus, the major difference between spike and binary codes
is that spike-coded signal processing essentially processes
event signals specifically, whereas binary-coded signal
processing can process any information encoded by the 1’s and
0’s. The information encoded by binary code is not limited
only to events and nonevents. That is, binary code encodes 1’s
and 0’s equally without any predetermined informational
content (usually representing up/down states or on/off states),
whereas spike code encodes 1’s specifically as the time of
occurrence of an event, while it encodes 0’s as the silence
period (the absence of any intervening events).

There is an asymmetry of the information encoded by 1’s
(as discrete events) and 0’s (as silence period) in spike-coded

signals. The duration t of the 1’s (spikes) has no significant
information, but the duration of 0’s (silence) has significant
information — encoding the silence period (with no
intervening events). We will show below that even though
spike code encodes very specific information content of event
occurrences, it has the advantage of simplifying the circuitry in
signal processing. It reduces the complexity of the
computational load, if the time-dependent spike code logic
were used, instead of the time-independent binary code logic.

V. NEURAL CODE

Biological neurons essentially use both digital and analog
signals for processing signals electrically. They use an
equivalent analog circuitry (embedded in the membrane) to
process the incoming signals, and then use the same circuitry
to generate the digital signals to be transmitted to the next
neurons. Higher animals use primarily digital signals for
transmission and communication, while lower animals use

analog signals. The digital signal is the spike-coded signal
represented by the waveform of an action potential [15]. The
mechanism for generating the electrical spike waveform is
well-understood in what is known as the Hodgkin-Huxley
equation [15]. The analog waveform of an action potential is
represented by an analog pulse signal caused by a sudden
change in the voltage across the neuron’s membrane. The
spike-coded signals used by neurons can be considered as
hybrid signals encoding digitally for transmission and
communication.

The spike codes are generated by action potentials (nerve
impulses) in neurons. The spikes (1’s) are often considered as
the active output of a neuron (firing an event), while 0’s
(silence) are considered as an inactive output (no firing). The
spike code of 1’s is propagated along the axon (output of
neuron), while maintaining the same pulse height electrically.

This ability to maintain the constant spike amplitude
provides the digital signal needed for communication and
processing. This constant spike amplitude is achieved by the
regenerative process of action potential when it propagates
over long distances without any signal decay. The
regenerative process of action potentials is described
mathematically by the Hodgkin-Huxley equation [15].

VI. NEURAL PROCESSING OF ARTIFICIAL NEURAL

NETWORKS

The time-dependent spike code processing is unique to
biological neurons, even though the computational equivalence
of binary coded artificial neural networks has been extensively
investigated and implemented in hardware [1-4]. The
difference between artificial and biological neural networks is
that artificial neurons often use binary code for processing,
whereas biological neurons use spike code. Even though
spiking neurons are used in some of the artificial neural
networks, a burst of spike firings is used to represent the
binary on-state, and the silent period is used to represent the
off-state [16-18].

That is, a burst of spike firings (a sequence of 1’s) is
lumped together as a single firing state (“on” state) rather than
treating individual single spike firing as an independent event.
These bursts of spike firing are often treated as a single up-
state (a single 1, not a sequence of 1’s) while non-firing is
treated as a single down-state (a single 0). Since the 1’s and
0’s are treated as on/off or up/down static “states,” the time-
dependence of spike firing is ignored. This reduces the spike
code back to the time-independent binary code rather than
retaining the time-dependence of event occurrence information
uniquely encoded by a spike.

Thus, the neural processing in artificial neural network
essentially processes binary state information (static state
without any time dependence), rather than spike event
information (dynamic state with time dependence on when
these event occurred). In other words, digital processing in
most artificial neural networks deals with state transitioning
between up (1’s) and down (0’s) states rather than processing
the spike train time-series.

In contrast, biological neural processing deals with point
processing of events in the spike train. It uses silence periods
to represent absence of any point events. Even though there
are significance differences between the coding processes, we
will introduce the equivalent processing between the binary
code processing and spike train processing below.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 823

VII. SPIKE CODE REPRESENTATION

A spike train can be expressed mathematically by a Dirac

delta, (t), function:



(t) 
,

0,





 t 0

t 0
 (1)

which is constrained to satisfy the identity:



(t)dt




 1 (2)

Although the above Dirac delta function theoretically has an
infinite spike amplitude at time 0 (the time of occurrence of

the spike), it can be reduced to a unit-delta, '(t), function with
a small finite time increment, ∆t at time t:



(t) 
1,

0,





 for 0  t  t

for t  0 or t  t
 (3)

The time-series of spike-coded signals x(t) at any given time t
is then given by:



x(t)  (t1) (t2)... (tn)  (4)

where ti is the time of occurrence of a spike. This is essentially
the digital signal needed for processing of signals in spike train
computation.

VIII. SPIKE TRAIN PROCESSING WITHOUT EXTERNAL CLOCK

PULSE FOR SYNCHRONIZATION

The important distinction between spike code and binary
code processing is that spike code processing is time sensitive.
Processing occurs only during a small finite time window of ∆t
when the inputs arrive simultaneously at the same time
window because the duration of 1’s only lasts for ∆t.
Furthermore, since ∆t is a constant, processing occurs only
during the time window of ∆t, without depending on any
external clock pulse for processing. The clock pulse is self-
contained in the spike code itself.

On the contrary, binary code processing is less time
sensitive because the duration of 1’s can last much longer than
∆t, and processing is dependent on an external clock pulse for
synchronization. Since binary code processing relies on an
external clock pulse, the time window for processing can vary
depending on the duration of the external clock pulse,
providing for some flexibility of processing, unlike neural
processing.

IX. ASYNCHRONOUS PROCESSING BY SPIKE TRAINS

Spike train processing implicitly carries its clock pulse ∆t
as the 1’s, it is self-contained in synchronization, which means
it can process asynchronously with any time delay in the signal
transmission (without relying on any extra transmission line
for delivering the clock pulse). This self-contained clock pulse
in spike code lends itself to asynchronous process for multi-
input processing even with variable time delays, which is
intrinsic to signal transmission. The processing is essentially
self-timed asynchronously by its self-contained clock pulse in
the spike.

X. MULTI-INPUT LOGIC GATE EQUIVALENTS

Most biological neurons integrate thousands of synaptic
spike inputs simultaneously by a neuron (neural processor) to
produce a single output spike. In contrast, most digital logic
gates process only two (or less) inputs to form one output. The
most common digital processing of two inputs to form one
output includes the following logic gates such as:

 AND-gate: for processing a = b AND c,

 OR-gate: for processing a = b OR c,

 NAND-gate: for processing a = b NAND c, and

 NOR-gate: for processing a = b NOR c.

An example of digital processing of one input to form a
different output is:

 NOT-gate: for processing a = NOT b.

On the contrary, a single biological neuron often processes
tens of thousands of inputs rather than two (or less) inputs,
compared to most digital logic gates in computers. For
example, a Purkinje neuron (in the cerebellum) processes more
than 100,000 synaptic inputs connections simultaneously [19],
which exemplifies the massively parallel operation performed
by a single neuron. The equivalent logic gates for processing
multiple inputs are:

 AND-gate: for processing y = x1 AND x2 AND … AND xn

 OR-gate: for processing y = x1 OR x2 OR … OR xn,

where xi are the i-th inputs (for a total of n inputs) and y(t) is
the output (Fig. 1).

Figure 1. Multi-input logic gates for ANDm-gate and ORm-gate that require a
minimum of m active input spikes to produce an output spike. The multi-in

The logic processing can be generalized to include
simultaneous multi-inputs to form a single output (see Table
1). All n-inputs can be operated on simultaneously, rather than
sequentially. If n is large, this provides a massively parallel
hardware implementation of the multi-input gates.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 824

Logic Gates Signal Processing of Multiple n-inputs

ANDn-gate y = x1 AND x2 AND … AND xn

ORn-gate y = x1 OR x2 OR … OR xn
Table 1. Digital logic gate operation for signal processing of multiple n-inputs
(variables x1, x2, …, xn) simultaneously to form a single output (variable y).

The multi-input time-independent n-input ANDn-gate can
be represented in hardware by:



y  x1 AND x2 AND ... AND xn (5)

or by the AND() function in software:



y  AND n (x1,x2, ... xn) (6)

where AND() is a function operating on the multiple
parameters x1, x2, …, xn to produce a single output variable y.
Note that this AND-gate binary code operation is time-
independent, unlike the time-dependent processing in spike
train processing of a time-series of x(t).

Although the multi-parameter ANDn() function is
implemented in software as a pseudo-parallel operation, it is
often done by the software compiler to instantiate the AND-
operations (multiple AND-ing operations) into a series of
repeated hardware implementations (multiple cascaded AND-
gate operations). This is accomplished by a sequential
operation (instead of parallel operation) in a pipeline fashion,
cascading a two-input AND-gate, i.e., AND(x1, x2) operation
iteratively (see Fig. 1). The software AND-operation does not
process all n inputs, i.e., ANDn(x1, x2, … , xn), simultaneously
nor in parallel. The difference between parallel multi-input
ANDn-gate operation and sequential two-input AND-gate
pipeline is shown in Fig. 1.

XI. TIME-DEPENDENT SPIKE TRAIN PROCESSING

The time-dependent nature of the spike events is denoted
by the time-series xi(t) and y(t) as a function of time t. For
time-dependent spike trains, the processing can be operated by
the equivalent multi-input logic operator:



y(t)  x1(t) AND x2(t) AND ... AND xn (t)

  ANDn x1(t), x2(t), ..., xn (t) 

 

1, if xi(t)
i1

in

  n, for 0  t  t

0, if x i(t)
i1

in

  n, for t  0 or t  t













(7)

where xi(t) is the i-th inputs (for a total of n inputs) and y(t) is
the output (Fig. 1). Note that we express the above ANDn-
operator with an equivalent ANDn-function, which takes on a
variable number of parameters x1, x2, …, xn (the second part of
Eq. 7). The last part of Eq. 7 indicates that, if the sum of all n
inputs is greater than or equal to n, then the output is 1;
otherwise, the output is 0. This means that all of its input has
to fire a spike before the neuron will fire an output spike,
satisfying the definition of ANDn-gate for all incoming spikes.

The multi-input digital logic ANDn() function is essentially
an adder (ADD-gate) with a threshold of n set to produce a
spike output of 1, only if the sum exceeds n; otherwise 0.

Similarly, the multi-input n-input time-independent
conventional ORn-gate can be represented in hardware by:



y  x1 OR x2 OR ... OR xn (8)

or by the OR() function in software:



y ORn(x1,x2, ... xn) (9)

where OR() is a function operating on the multiple parameters
x1, x2, …, xn to produce a single output variable y.

For spike train processing, the multi-input time-dependent
ORn-gate can be expressed by setting the threshold to be 1
instead of n. The multi-input time-dependent ORn-gate can be
re-expressed by the time-dependent input and output functions,
xi(t) and y(t):



y(t)  x1(t) OR x2(t) OR ... OR xn (t)

 ORn x1(t), x2(t), ..., xn (t) 

 

1, if xi(t)
i1

in

 1, for 0  t  t

0, if xi(t)
i1

in

 1, for t  0 or t  t













(10)

The multi-input digital logic ORn() function would fire a spike
output if any one of the n inputs fires a spike at time t, which
satisfies the definition of OR-operation for the incoming
spikes. The last part of Eq. 10 indicates that, if the sum of all n
inputs is greater than or equal to 1, then the output is 1;
otherwise, the output is 0.

That is, the multi-input digital logic ORn() function is also
an adder (ADD-gate) with a threshold set to 1 to produce a
spike output; otherwise no spike is generated. That is, a
minimum of one active input (a spike from its n inputs) is
required to produce an output of 1 for an OR-gate operation,
by definition. The ORn-gate in Eq. 10 is the least restricted
generalized OR-gate because it requires only a minimum of
one spike (from its n inputs) for it to produce an output of 1 (a
spike).

XII. EQUIVALENCE BETWEEN ORN-GATE AND A MINIMUM

OF 1-INPUT FOR AND1-GATE

Most often in the real world neurons, it requires more than
one spike to fire an output spike. That is, it requires a
minimum of m active inputs for the generic OR-gate rather
than a minimum of one active input in the conventional OR-
gate. Extending this to a generalized ORm-gate, it requires a
minimum of m input spikes firing at time t before producing an
output spike in the massively parallel signal processing of the
ORm function. (Note that we use the subscript m in the ORm-
gate here to denote the minimum of m inputs in its processing.)
The multi-input ORm-gate is given by (see Fig. 1):

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 825



y(t)  x1(t) ORm x2(t) ORm ... ORm xn (t)

 ORm x1(t), x2(t), ..., xn (t) 

 

1, if x i(t)
i1

in

 m, for 0  t  t

0, if x i(t)
i1

in

  m, for t  0 or t  t













(11)

Similarly, the same interpretation can apply to the multi-input
time-dependent ANDn-gate (for a minimum threshold of firing
all n spikes to generating an output spike, which is already
given by Eq. 7).

In most circumstances, neurons rarely require the strict
condition that all n (tens of thousands) inputs need to be firing
simultaneously in order to generate an output spike. The
requirement is that only a majority m of the inputs are 1’s
(firing) rather than all n of them are 1’s (firing). Thus, the
condition in which a minimum of m spikes is required to
produce an output spike is given by the generalized ANDm-gate
(Fig. 1):



y(t)  x1(t) ANDm x2(t) ANDm ... ANDm xn (t)

  ANDm x1(t), x2(t), ..., xn (t) 

 

1, if x i(t)
i1

in

 m, for 0  t  t

0, if x i(t)
i1

in

  m, for t  0 or t  t













(12)

XIII. GENERALIZED MULTI-INPUT MINIMUM THRESHOLD

LOGIC GATES (MIN-GATE)

Comparing the last part of the equations Eq. 11 and 12, it is
obvious that they are identical. This implies that the
generalized ORm-function (for a minimum threshold m inputs
to fire) and ANDm-functions (for a minimum threshold m
inputs to fire) are equivalent. More specifically, the
conventional OR-gate is equivalent to the ORm-function (Eq.
11), with the minimum threshold m set to 1 (Eq. 10). It
requires a minimum of one input spike to fire an output spike
(the equivalent of OR1-gate).

Similarly, the conventional AND-gate is equivalent to the
ANDm-function (Eq. 7), with the minimum threshold m set to n
(Eq. 12). It requires a minimum of all n inputs to fire a spike
before it will fire an output spike (the equivalent of ANDn-
gate). This illustrates that multi-input OR1-gate and ANDn-gate
are the extreme ends of a continuum (with a threshold set at 1
and n minimum input spikes for OR1-gate and ANDn-gate,
respectively) in digital processing.

In general, only a minimum of m spikes at time t is sufficed
to satisfy the condition, producing the most generalized multi-
input logic gate, without specifying whether it is an AND-gate
or OR-gate. This theoretical formulation provides a generic
description of the multi-input logic gate operation, independent
of specific AND-gate or OR-gate requirement, by adding a
minimum of m input spikes as the threshold to fire an output
spike by a MINm-gate:



y(t)  x1(t) MINm x2(t) MINm ... MINm xn (t)

  MINm x1(t), x2(t), ..., xn (t) 

 

1, if x i(t)
i1

in

 m, for 0  t  t

0, if x i(t)
i1

in

  m, for t  0 or t  t













(13)

Most importantly, the generalized ORm and ANDm
functions are interchangeable, thus eliminating the needs for
designing a specific multi-input hardware logic gate for the
generalized ORm-gate or the generalized ANDm-gate. Both
ORm-gate and ANDm-gate can be replaced by an equivalent
logic operation, MINm-gate, i.e.,

 ORn-gate = AND1-gate (14)

and

 ANDm-gate = MINm-gate (15)

That is,

 ORm-gate = ANDm-gate = MINm-gate. (16)

Figure 2. Multi-input logic equivalent gates for ANDm-gate, ORm-gate and
MINm-gate that require a minimum of m active input spikes to produce an
output spike.

Fig. 2 shows the block diagrams for the equivalence of
ANDm-gate, ORm-gate, and MINm-gate. This provides a
generic neural processer for a set of generalizable logic gates
with a variable number of m (for either majority rule or
minority rule logic operations).

XIV. MULTI-INPUT OPERATION VS. SEQUENTIAL CASCADE

2-INPUT OPERATION

To illustrate the efficiency of multi-input operation for
AND-gate, the simultaneous parallel operation of multi-input
ANDn() function can be decomposed into a sequential cascaded
2-input AND-gate operation (see Fig. 1):



AND x1(t), x2(t), ... , xn (t) 

 x1(t) AND x2(t)  AND x3(t)  ... AND xn(t) 
 (17)

If there are a thousand inputs to be processed per neuron
simultaneously, then implementing the computation using

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 826

multiple cascaded 2-input AND-gates will lengthen the
processing time by a thousand-fold.

For an ANDm-gate with a minimum m-input threshold, the
logic gate design would be compounded by additional circuitry
needed for testing the condition to see whether a minimum of
m spikes is exceeded in each stage of the sequential cascade
operation. This sequential cascade implementation of multi-
input AND-gate is inefficient. It is computationally expensive
in time and physically expensive in space.

XV. MAJORITY/MINORITY RULE VOTING SYSTEM

The above neural processing is essentially a generalized
vote counting system that processes input votes statistically:

 If m ≥ n/2, it becomes a majority rule voting system.

 If m < n/2, it becomes a minority rule voting system.

That is, the requirement of a minimum of m spikes (from the n
inputs) before firing an output spike by the neuron is
essentially a vote counting system. As long as it has a
majority of votes (m ≥ n/2), independent of which input it is
coming from, the processing (decision) of the neuron is to cast
another vote of 1 as output to continue the process. Similarly,
minority rule can be achieved by requiring less than half of the
votes as the condition for forwarding the vote.

Even though VLSI voting digital circuitry had been
implemented in hardware [5, 6, 8] and in bridging fault voting
circuitry [7], such circuitry could have been simplified by a
generalized multi-input AND-gate or OR-gate using spike code
instead of binary code. Although there are many other neural
logic circuitries implemented in hardware, most of them use
binary logic rather than spike logic for processing. Examples
of these binary logic implementations are numerous, which
include neural threshold logic circuitry [20], neural floating
gates [21-24], neural AND/OR gates [25], neural Boolean
logic satisfiability model [26], comparison neural gate [27],
neural circuit MNOS [28], and neutromatrix [29], with the
exception of the electronic spiking network [30, 31].

XVI. STATISTICAL PROCESSING BY NEURONS

To extend the equivalent computations processed by
spiking neurons, neurons can be shown to implicitly process
signals statistically rather than deterministically. Statistical
processing is performed by the vote counting process, without
specifying which of its inputs is firing a spike, as long as a
majority m ≥ n/2 input has reached. Most significantly, it can
even be used as a minority rule voting system if m < n/2 is
satisfied statistically.

This illustrates the statistical nature of neural processing,
which is a stochastic system; unlike most modern computers,
which are deterministic system. The difference is that neural
processing does not require absolute deterministic origin of
where the spikes are coming from to fire its own output. The
stochastic nature of neural processing lends itself in fault
tolerance, which means that even if some of the inputs are
unreliable, as long as other inputs can compensate for it, the
statistical processing continues.

XVII. EXAMPLE COMPUTATIONAL CIRCUITRY

Finally, as an example, the versatility of such generalized
multi-input processing can be realized in the real world
computation of the mathematical cross-correlation function
[32]. It has be shown that, in a time-delayed neural network

(TDNN) with successive delays of ∆t to form multi-input for a
neural network, it can compute the cross-correlation function
of two sets of input streams by a hardwired digital neural
circuitry [32]. This provides an example computation by a set
of custom designed neural circuitry to perform high throughput
signal processing in a massively parallel configuration. Other
examples of computation can be designed to take advantage of
the multi-input processing by these neural processors for
integrating signals once the theoretical operations of these
principles are implemented in hardware.

XVIII. CONCLUSIONS

Multi-input neural spike code processing can accomplish a
set of equivalent digital signal processing of OR- and AND-
gates. It provides the most generalized signal integration by
allowing for a minimum of m spikes firing at time t to generate
an output spike that encapsulates both OR-gate and AND-gate
at the extreme ends of a minimum of one or all n active inputs
set as threshold for OR-gate and AND-gate, respectively. Most
importantly, self-contained spike-coded signals can eliminate
the reliance on any external clock pulse for processing. This
allows self-timed asynchronous massively parallel processing,
accounting for transmission delay, without needing any extra
transmission line (carrying the clock pulse signal) for every
processor (logic gate) to perform its function. The generalized
ORm-function or ANDm-function provides a generic statistical
voting system for majority rule or minority rule logic
operations of the MINm-function. It performs statistical
processing implicitly. This provides a theoretical description
of the equivalence between digital processing (in computers)
and multi-input neural spike code processing (in biological
neurons). Massively parallel processing with 100,000
simultaneous inputs is typical in biological neurons, whereby
similar large-scale implementations of multi-input processing
can be achieved by these simple generalizable ORm-gate,
ANDm-gate and MINm-gates.

ACKNOWLEDGMENT

I would like to thank Ms. Krista Smith for the helpful
suggestions, and for proofreading the manuscript.

REFERENCES

[1] J. Davis, "An Introduction to Neural Networks,"

Journal of Cognitive Neuroscience, vol. 8, pp. 383-

383, 1996/10/01 1996.

[2] R. Hecht-Nielsen, "Theory of the backpropagation

neural network," in Neural Networks, 1989. IJCNN.,

International Joint Conference on, 1989, pp. 593-605

vol.1.

[3] D. Psaltis, A. Sideris, and A. A. Yamamura, "A

multilayered neural network controller," Control

Systems Magazine, IEEE, vol. 8, pp. 17-21, 1988.

[4] S. Haykin, Neural Networks: A Comprehensive

Foundation: Prentice Hall PTR, 1994.

[5] M. Radu, D. Pitica, and C. Posteuca, "Reliability and

failure analysis of voting circuits in hardware

redundant design," in Electronic Materials and

Packaging, 2000. (EMAP 2000). International

Symposium on, 2000, pp. 421-423.

[6] G. Yang, W. N. N. Hung, X. Song, and M. Perkowski,

"Majority-based reversible logic gates," Theoretical

Computer Science, vol. 334, pp. 259-274, 4/15/ 2005.

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 05, September 2013

www.ijcit.com 827

[7] S. D. Millman and J. M. Acken, "Special applications

of the voting model for bridging faults," Solid-State

Circuits, IEEE Journal of, vol. 29, pp. 263-270, 1994.

[8] D. B. Carlton, N. C. Emley, E. Tuchfeld, and J. Bokor,

"Simulation Studies of Nanomagnet-Based Logic

Architecture," Nano Letters, vol. 8, pp. 4173-4178,

2008/12/10 2008.

[9] W. M. Goodall, "Telephony by pulse code

modulation," The Bell System Technical Journal, vol.

26, pp. 395-409, July 1947.

[10] H. S. Black and J. O. Edson, "Pulse Code Modulation,"

American Institute of Electrical Engineers,

Transactions of the, vol. 66, pp. 895-899, 1947.

[11] H. Wold, "On stationary point processes and Markov

chains," Scandinavian Actuarial Journal, vol. 1948,

pp. 229-240, 1948/01/01 1948.

[12] W. Truccolo, U. T. Eden, M. R. Fellows, J. P.

Donoghue, and E. N. Brown, "A point process

framework for relating neural spiking activity to

spiking history, neural ensemble, and extrinsic

covariate effects," J Neurophysiol, vol. 93, pp. 1074-

89, Feb 2005.

[13] S. Homma, T. Musha, Y. Nakajima, and Y. Okamoto,

"Estimation of the rising phase of EPSP analyzed by

computer simulation of the coding process," Neurosci

Res, vol. 1, pp. 53-65, Feb 1984.

[14] M. A. Fitzurka and D. C. Tam, "A joint interspike

interval difference stochastic spike train analysis:

detecting local trends in the temporal firing patterns of

single neurons," Biol Cybern, vol. 80, pp. 309-26, May

1999.

[15] A. L. Hodgkin and A. F. Huxley, "A quantitative

description of membrane current and its application to

conduction and excitation in nerve," J Physiol, vol.

117, pp. 500-44, Aug 1952.

[16] J. J. Hopfield and D. W. Tank, ""Neural" computation

of decisions in optimization problems," Biol Cybern,

vol. 52, pp. 141-52, 1985.

[17] J. J. Hopfield, D. I. Feinstein, and R. G. Palmer,

"'Unlearning' has a stabilizing effect in collective

memories," Nature, vol. 304, pp. 158-9, Jul 14-20

1983.

[18] D. W. Tank and J. J. Hopfield, "Neural computation by

concentrating information in time," Proc Natl Acad Sci

U S A, vol. 84, pp. 1896-900, Apr 1987.

[19] D. Marr, "A theory of cerebellar cortex," J Physiol, vol.

202, pp. 437-70, Jun 1969.

[20] R. Lashevsky, K. Takaara, and M. Souma, "Neuron

MOSFET as a way to design a threshold gates with the

threshold and input weights alterable in real time," in

Circuits and Systems, 1998. IEEE APCCAS 1998. The

1998 IEEE Asia-Pacific Conference on, 1998, pp. 263-

266.

[21] M. Holler, T. Simon, H. Castro, and R. Benson, "An

electrically trainable artificial neural network

(ETANN) with 10240 'floating gate' synapses," in

Neural Networks, 1989. IJCNN., International Joint

Conference on, 1989, pp. 191-196 vol.2.

[22] B. W. Lee, B. J. Sheu, and H. Yang, "Analog floating-

gate synapses for general-purpose VLSI neural

computation," Circuits and Systems, IEEE

Transactions on, vol. 38, pp. 654-658, 1991.

[23] O. Fujita and Y. Amemiya, "A floating-gate analog

memory device for neural networks," Electron Devices,

IEEE Transactions on, vol. 40, pp. 2029-2035, 1993.

[24] P. Hasler and T. S. Lande, "Overview of floating-gate

devices, circuits, and systems," Circuits and Systems

II: Analog and Digital Signal Processing, IEEE

Transactions on, vol. 48, pp. 1-3, 2001.

[25] H. K. Lam and F. H. F. Leung, "Design and Training

for Combinational Neural-Logic Systems," Industrial

Electronics, IEEE Transactions on, vol. 54, pp. 612-

619, 2007.

[26] S. Chakradhar, V. Agrawal, and M. Bushnell, "Neural

net and Boolean satisfiability models of logic circuits,"

Design & Test of Computers, IEEE, vol. 7, pp. 54-57,

1990.

[27] D. A. Durfee and F. S. Shoucair, "Comparison of

floating gate neural network memory cells in standard

VLSI CMOS technology," Neural Networks, IEEE

Transactions on, vol. 3, pp. 347-353, 1992.

[28] J. P. Sage, K. Thompson, and R. S. Withers, "An

artificial neural network integrated circuit based on

MNOS/CCD principles," AIP Conference Proceedings,

vol. 151, pp. 381-385, 5 June 2008.

[29] R. Melzack, "From the gate to the neuromatrix," Pain,

vol. 82, Supplement 1, pp. S121-S126, 8// 1999.

[30] A. van Schaik, "Building blocks for electronic spiking

neural networks," Neural Netw, vol. 14, pp. 617-28,

Jul-Sep 2001.

[31] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D.

Beeman, J. M. Bower, et al., "Simulation of networks

of spiking neurons: a review of tools and strategies," J

Comput Neurosci, vol. 23, pp. 349-98, Dec 2007.

[32] D. Tam, "Theoretical Analysis of Cross-Correlation of

Time-Series Signals Computed by a Time-Delayed

Hebbian Associative Learning Neural Network," The

Open Cybernetics & Systemics Journal, vol. 1, pp. 1-4,

2007.

