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Abstract— This paper provides the mathematical derivation of 

the equivalent logic gates for spike code processing in neurons.  

It derives the computational equivalence between the binary 

code and spike code to illustrate the correspondence between 

binary and spike code logic operations theoretically.  It identifies 

the similarities and differences between biological neural 

processing and binary logic gate processing.  Using neural spike 

code for processing, a neuron can be generalized to process the 

equivalent of a multi-input OR-gate and a multi-input AND-gate 

by requiring a minimal number of m input spikes (from a set of 

all n inputs) before firing an output spike.  A MINm-gate is 

introduced as the equivalent of the generalized multi-input 

ANDm-gate and multi-input ORm-gate that require a minimum of 

m inputs to fire an output spike. The MINm-gate is an equivalent 

of a statistical voting system that processes input spikes with a 

threshold of a minimum of m ≥ n/2 input spikes for a majority-

rule system. 
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I.  INTRODUCTION 

This paper examines the computational equivalence 
between biological neural circuitries and digital logic so that 
the similarities and differences between them can be 
established.  Although the similarities between artificial neural 
networks and digital logic circuitries have been explored [1-4], 
this paper focuses on addressing the computational 
equivalence of biological neurons using pulse-coded signals 
for processing rather than binary-coded signals.  The unique 
computational characteristics using spike-coded signals (a 
special class of pulse-coded signals) are addressed in this 
paper, so that the computational equivalence between neural 
processing and binary processing can be identified.  It will be 
shown below that if spike codes were used in the logic gates 
(instead of binary code), there exists an equivalent between a 
multi-input AND-gate and a multi-input OR-gate that can be 
replaced by a MIN-gate with a minimum threshold of m active 
inputs out of all total n inputs.  Varying the threshold m will 
provide a majority-rule voting logic gate by a set of 
generalized AND-gates or OR-gates without requiring any 
custom-design complex voting VLSI digital logic circuitry [5-
8].  Spike-coded signals can also be processed asynchronously 
without relying on any external clock pulse for 
synchronization. 

II. BINARY CODE VS. SPIKE CODE ENCODING 

In order to identify the computational differences between 
a spike-coded signal and binary signal for the subsequent 
mathematical derivation of the spike code processing logic, a 
brief review is provided here.  The difference between binary-
coded signals and spike-coded signals is that binary codes 
represent time-independent up/down states, whereas spike 
codes are time-dependent pulse-coded signals the represents a 
point process. 

Pulse code uses both pulse width and pulse height to 
encode information [9].  That is, the time duration of the pulse 
does encode information (in addition to encode information by 
the amplitude of the pulse) [10].  In contrast, the time duration 
of the binary signals does not encode any additional 
information, since the binary information is encoded in the 0’s 
and 1’s only (up/down states without any dependence on how 
long the binary states last in time). 

The spike code is a special type of binary-coded pulse code 
in which it takes on the value of 0’s and 1’s (as amplitude), 
except that the time duration of 1’s is always fixed (a constant 

t), whereas the duration of 0’s is a variable t.  This time-
dependent information encoding will result in producing some 
major differences between how signals are processed and what 
computations they can perform. 

III. CHARACTERISTICS OF SPIKE TRAINS 

The major difference is that spike code encodes the time 
occurrence of events (by using 1’s to denote the time of 
occurrence of an event at time t, and 0’s to denote absence of 
any event).  Thus, spike-coded signal is a special class of 
pulse-coded signal with these distinct characteristics: 

(1) The occurrences of an event and nonevent information 
are encoded by the binary code (fixed amplitude 
signals of 1’s for encoding occurrence of events, and 
variable time duration of 0’s for encoding non-
occurrence of events, respectively);  

(2) The timing information of the 1’s (spikes) is encoded 
as the time of occurrence of an event; 

(3) The timing information of the 0’s (non-spikes) is 
encoded as silence (period of non-occurrence of 
events); 
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(4) The pulse width of the 0’s (time duration of the 0’s) 
encodes the silence period (without any intervening 
events); 

(5) But the pulse width of the 1’s does not encode any 
additional timing information, since a spike is always 
fixed in duration and amplitude (i.e., constant pulse 

width of t and pulse height of 1, representing the 
occurrence of an event only, but not the duration of the 
event); 

(6) The spike can be considered as representing a point in 

time (with infinitesimal time t in duration); 

(7) A series of spike code in time can be considered as a 
time-series of point processes; 

(8) The time-series of spikes is considered as a spike train, 
representing the time of occurrence of spikes. 

IV. INTERPRETATION OF 1’S AND 0’S IN SPIKE TRAINS 

The 1’s and 0’s in spike code have very different meaning 
from the 1’s and 0’s in binary code.  Since spike codes are 
encoding a time-series of events, the occurrence of an event 
can be considered as a point (in time) with an infinitesimal 

time t in duration.  Therefore, spike code processing is 
essentially processing a time-series of point processes [11], 
which is different from the interpretation of the 1’s and 0’s of 
binary coded signals.  The spike train encodes the time-series 
of spike occurrences in time [12] rather than a series of static 
1’s and 0’s without any timing information embedded in the 
binary code.  Most biological neurons use spike trains to 
encode information and to communicate instead of using 
binary signals without any timing information (cf. [13, 14]). 

Thus, the major difference between spike and binary codes 
is that spike-coded signal processing essentially processes 
event signals specifically, whereas binary-coded signal 
processing can process any information encoded by the 1’s and 
0’s.  The information encoded by binary code is not limited 
only to events and nonevents.  That is, binary code encodes 1’s 
and 0’s equally without any predetermined informational 
content (usually representing up/down states or on/off states), 
whereas spike code encodes 1’s specifically as the time of 
occurrence of an event, while it encodes 0’s as the silence 
period (the absence of any intervening events). 

There is an asymmetry of the information encoded by 1’s 
(as discrete events) and 0’s (as silence period) in spike-coded 

signals.  The duration t of the 1’s (spikes) has no significant 
information, but the duration of 0’s (silence) has significant 
information — encoding the silence period (with no 
intervening events).  We will show below that even though 
spike code encodes very specific information content of event 
occurrences, it has the advantage of simplifying the circuitry in 
signal processing.  It reduces the complexity of the 
computational load, if the time-dependent spike code logic 
were used, instead of the time-independent binary code logic. 

V. NEURAL CODE 

Biological neurons essentially use both digital and analog 
signals for processing signals electrically.  They use an 
equivalent analog circuitry (embedded in the membrane) to 
process the incoming signals, and then use the same circuitry 
to generate the digital signals to be transmitted to the next 
neurons.  Higher animals use primarily digital signals for 
transmission and communication, while lower animals use 

analog signals.  The digital signal is the spike-coded signal 
represented by the waveform of an action potential [15].  The 
mechanism for generating the electrical spike waveform is 
well-understood in what is known as the Hodgkin-Huxley 
equation [15].  The analog waveform of an action potential is 
represented by an analog pulse signal caused by a sudden 
change in the voltage across the neuron’s membrane.  The 
spike-coded signals used by neurons can be considered as 
hybrid signals encoding digitally for transmission and 
communication. 

The spike codes are generated by action potentials (nerve 
impulses) in neurons.  The spikes (1’s) are often considered as 
the active output of a neuron (firing an event), while 0’s 
(silence) are considered as an inactive output (no firing).  The 
spike code of 1’s is propagated along the axon (output of 
neuron), while maintaining the same pulse height electrically. 

This ability to maintain the constant spike amplitude 
provides the digital signal needed for communication and 
processing.  This constant spike amplitude is achieved by the 
regenerative process of action potential when it propagates 
over long distances without any signal decay.  The 
regenerative process of action potentials is described 
mathematically by the Hodgkin-Huxley equation [15]. 

VI. NEURAL PROCESSING OF ARTIFICIAL NEURAL 

NETWORKS 

The time-dependent spike code processing is unique to 
biological neurons, even though the computational equivalence 
of binary coded artificial neural networks has been extensively 
investigated and implemented in hardware [1-4].  The 
difference between artificial and biological neural networks is 
that artificial neurons often use binary code for processing, 
whereas biological neurons use spike code.  Even though 
spiking neurons are used in some of the artificial neural 
networks, a burst of spike firings is used to represent the 
binary on-state, and the silent period is used to represent the 
off-state [16-18]. 

That is, a burst of spike firings (a sequence of 1’s) is 
lumped together as a single firing state (“on” state) rather than 
treating individual single spike firing as an independent event. 
These bursts of spike firing are often treated as a single up-
state (a single 1, not a sequence of 1’s) while non-firing is 
treated as a single down-state (a single 0).  Since the 1’s and 
0’s are treated as on/off or up/down static “states,” the time-
dependence of spike firing is ignored.  This reduces the spike 
code back to the time-independent binary code rather than 
retaining the time-dependence of event occurrence information 
uniquely encoded by a spike. 

Thus, the neural processing in artificial neural network 
essentially processes binary state information (static state 
without any time dependence), rather than spike event 
information (dynamic state with time dependence on when 
these event occurred).  In other words, digital processing in 
most artificial neural networks deals with state transitioning 
between up (1’s) and down (0’s) states rather than processing 
the spike train time-series. 

In contrast, biological neural processing deals with point 
processing of events in the spike train.  It uses silence periods 
to represent absence of any point events.  Even though there 
are significance differences between the coding processes, we 
will introduce the equivalent processing between the binary 
code processing and spike train processing below. 
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VII. SPIKE CODE REPRESENTATION 

A spike train can be expressed mathematically by a Dirac 

delta, (t), function: 

 



(t) 
,

0,





 t 0

t 0
 (1) 

which is constrained to satisfy the identity: 

 



(t)dt




 1 (2) 

Although the above Dirac delta function theoretically has an 
infinite spike amplitude at time 0 (the time of occurrence of 

the spike), it can be reduced to a unit-delta, '(t), function with 
a small finite time increment, ∆t at time t: 

 



(t) 
1,

0,





 for 0  t  t          

for t  0  or  t  t  
 (3) 

The time-series of spike-coded signals x(t) at any given time t 
is then given by: 

 



x(t)  (t1) (t2)... (tn)   (4) 

where ti is the time of occurrence of a spike.  This is essentially 
the digital signal needed for processing of signals in spike train 
computation. 

VIII. SPIKE TRAIN PROCESSING WITHOUT EXTERNAL CLOCK 

PULSE FOR SYNCHRONIZATION 

The important distinction between spike code and binary 
code processing is that spike code processing is time sensitive.  
Processing occurs only during a small finite time window of ∆t 
when the inputs arrive simultaneously at the same time 
window because the duration of 1’s only lasts for ∆t.  
Furthermore, since ∆t is a constant, processing occurs only 
during the time window of ∆t, without depending on any 
external clock pulse for processing.  The clock pulse is self-
contained in the spike code itself.  

On the contrary, binary code processing is less time 
sensitive because the duration of 1’s can last much longer than 
∆t, and processing is dependent on an external clock pulse for 
synchronization.  Since binary code processing relies on an 
external clock pulse, the time window for processing can vary 
depending on the duration of the external clock pulse, 
providing for some flexibility of processing, unlike neural 
processing. 

IX. ASYNCHRONOUS PROCESSING BY SPIKE TRAINS 

Spike train processing implicitly carries its clock pulse ∆t 
as the 1’s, it is self-contained in synchronization, which means 
it can process asynchronously with any time delay in the signal 
transmission (without relying on any extra transmission line 
for delivering the clock pulse).  This self-contained clock pulse 
in spike code lends itself to asynchronous process for multi-
input processing even with variable time delays, which is 
intrinsic to signal transmission.  The processing is essentially 
self-timed asynchronously by its self-contained clock pulse in 
the spike. 

X. MULTI-INPUT LOGIC GATE EQUIVALENTS 

Most biological neurons integrate thousands of synaptic 
spike inputs simultaneously by a neuron (neural processor) to 
produce a single output spike.  In contrast, most digital logic 
gates process only two (or less) inputs to form one output.  The 
most common digital processing of two inputs to form one 
output includes the following logic gates such as: 

 AND-gate: for processing a = b AND c, 

 OR-gate: for processing a = b OR c, 

 NAND-gate: for processing a = b NAND c, and 

 NOR-gate: for processing a = b NOR c. 

An example of digital processing of one input to form a 
different output is: 

 NOT-gate: for processing a = NOT b. 

On the contrary, a single biological neuron often processes 
tens of thousands of inputs rather than two (or less) inputs, 
compared to most digital logic gates in computers.  For 
example, a Purkinje neuron (in the cerebellum) processes more 
than 100,000 synaptic inputs connections simultaneously [19], 
which exemplifies the massively parallel operation performed 
by a single neuron.  The equivalent logic gates for processing 
multiple inputs are: 

 AND-gate: for processing y = x1 AND x2 AND … AND xn 

 OR-gate: for processing y = x1 OR x2 OR … OR xn, 

where xi are the i-th inputs (for a total of n inputs) and y(t) is 
the output (Fig. 1). 

 

Figure 1.  Multi-input logic gates for ANDm-gate and ORm-gate that require a 
minimum of m active input spikes to produce an output spike.  The multi-in 

The logic processing can be generalized to include 
simultaneous multi-inputs to form a single output (see Table 
1).  All n-inputs can be operated on simultaneously, rather than 
sequentially.  If n is large, this provides a massively parallel 
hardware implementation of the multi-input gates.  
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Logic Gates Signal Processing of Multiple n-inputs 

ANDn-gate y = x1 AND x2 AND … AND xn 

ORn-gate y = x1 OR x2 OR … OR xn 
Table 1.  Digital logic gate operation for signal processing of multiple n-inputs 
(variables x1, x2, …, xn) simultaneously to form a single output (variable y). 

The multi-input time-independent n-input ANDn-gate can 
be represented in hardware by: 

 



y  x1 AND x2 AND ...  AND xn   (5) 

or by the AND() function in software:  

 



y  AND n (x1,x2,  ...  xn )   (6) 

where AND() is a function operating on the multiple 
parameters x1, x2, …, xn to produce a single output variable y.  
Note that this AND-gate binary code operation is time-
independent, unlike the time-dependent processing in spike 
train processing of a time-series of x(t). 

Although the multi-parameter ANDn() function is 
implemented in software as a pseudo-parallel operation, it is 
often done by the software compiler to instantiate the AND-
operations (multiple AND-ing operations) into a series of 
repeated hardware implementations (multiple cascaded AND-
gate operations).  This is accomplished by a sequential 
operation (instead of parallel operation) in a pipeline fashion, 
cascading a two-input AND-gate, i.e., AND(x1, x2) operation 
iteratively (see Fig. 1).  The software AND-operation does not 
process all n inputs, i.e., ANDn(x1, x2, … , xn), simultaneously 
nor in parallel.  The difference between parallel multi-input 
ANDn-gate operation and sequential two-input AND-gate 
pipeline is shown in Fig. 1. 

XI. TIME-DEPENDENT SPIKE TRAIN PROCESSING 

The time-dependent nature of the spike events is denoted 
by the time-series xi(t) and y(t) as a function of time t.  For 
time-dependent spike trains, the processing can be operated by 
the equivalent multi-input logic operator: 

 



y(t)  x1(t) AND x2(t) AND ... AND xn (t)

       ANDn x1(t),  x2(t),  ..., xn (t) 

      

1,  if xi(t) 
i1

in

  n,  for 0  t  t          

0,  if x i(t) 
i1

in

  n,  for t  0  or t  t 













(7) 

where xi(t) is the i-th inputs (for a total of n inputs) and y(t) is 
the output (Fig. 1).  Note that we express the above ANDn-
operator with an equivalent ANDn-function, which takes on a 
variable number of parameters x1, x2, …, xn (the second part of 
Eq. 7).  The last part of Eq. 7 indicates that, if the sum of all n 
inputs is greater than or equal to n, then the output is 1; 
otherwise, the output is 0.  This means that all of its input has 
to fire a spike before the neuron will fire an output spike, 
satisfying the definition of ANDn-gate for all incoming spikes. 

The multi-input digital logic ANDn() function is essentially 
an adder (ADD-gate) with a threshold of n set to produce a 
spike output of 1, only if the sum exceeds n; otherwise 0. 

Similarly, the multi-input n-input time-independent 
conventional ORn-gate can be represented in hardware by: 

 



y  x1 OR  x2 OR  ...  OR  xn   (8) 

or by the OR() function in software:  

 



y ORn(x1,x2,  ...  xn)   (9) 

where OR() is a function operating on the multiple parameters 
x1, x2, …, xn to produce a single output variable y. 

For spike train processing, the multi-input time-dependent 
ORn-gate can be expressed by setting the threshold to be 1 
instead of n.  The multi-input time-dependent ORn-gate can be 
re-expressed by the time-dependent input and output functions, 
xi(t) and y(t): 

 



y(t)  x1(t) OR x2(t) OR ... OR xn (t)

      ORn x1(t),  x2(t),  ..., xn (t) 

      

1,  if xi(t) 
i1

in

 1, for 0  t  t          

0,  if xi(t) 
i1

in

 1, for t  0  or t  t 













(10) 

The multi-input digital logic ORn() function would fire a spike 
output if any one of the n inputs fires a spike at time t, which 
satisfies the definition of OR-operation for the incoming 
spikes.  The last part of Eq. 10 indicates that, if the sum of all n 
inputs is greater than or equal to 1, then the output is 1; 
otherwise, the output is 0. 

That is, the multi-input digital logic ORn() function is also 
an adder (ADD-gate) with a threshold set to 1 to produce a 
spike output; otherwise no spike is generated.  That is, a 
minimum of one active input (a spike from its n inputs) is 
required to produce an output of 1 for an OR-gate operation, 
by definition.  The ORn-gate in Eq. 10 is the least restricted 
generalized OR-gate because it requires only a minimum of 
one spike (from its n inputs) for it to produce an output of 1 (a 
spike). 

XII. EQUIVALENCE BETWEEN ORN-GATE AND A MINIMUM 

OF 1-INPUT FOR AND1-GATE 

Most often in the real world neurons, it requires more than 
one spike to fire an output spike.  That is, it requires a 
minimum of m active inputs for the generic OR-gate rather 
than a minimum of one active input in the conventional OR-
gate.  Extending this to a generalized ORm-gate, it requires a 
minimum of m input spikes firing at time t before producing an 
output spike in the massively parallel signal processing of the 
ORm function.  (Note that we use the subscript m in the ORm-
gate here to denote the minimum of m inputs in its processing.)  
The multi-input ORm-gate is given by (see Fig. 1): 
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

y(t)  x1(t) ORm x2(t) ORm  ... ORm xn (t)

      ORm x1(t),  x2(t),  ..., xn (t) 

      

1,  if x i(t) 
i1

in

 m,  for 0  t  t          

0,  if x i(t) 
i1

in

  m,  for t  0  or t  t 













(11) 

Similarly, the same interpretation can apply to the multi-input 
time-dependent ANDn-gate (for a minimum threshold of firing 
all n spikes to generating an output spike, which is already 
given by Eq. 7). 

In most circumstances, neurons rarely require the strict 
condition that all n (tens of thousands) inputs need to be firing 
simultaneously in order to generate an output spike.  The 
requirement is that only a majority m of the inputs are 1’s 
(firing) rather than all n of them are 1’s (firing).  Thus, the 
condition in which a minimum of m spikes is required to 
produce an output spike is given by the generalized ANDm-gate 
(Fig. 1):  

 



y(t)  x1(t) ANDm x2(t) ANDm  ... ANDm xn (t)

       ANDm x1(t),  x2(t),  ..., xn (t) 

      

1,  if x i(t) 
i1

in

 m,  for 0  t  t          

0,  if x i(t) 
i1

in

  m,  for t  0  or t  t 













(12) 

XIII. GENERALIZED MULTI-INPUT MINIMUM THRESHOLD 

LOGIC GATES (MIN-GATE) 

Comparing the last part of the equations Eq. 11 and 12, it is 
obvious that they are identical.  This implies that the 
generalized ORm-function (for a minimum threshold m inputs 
to fire) and ANDm-functions (for a minimum threshold m 
inputs to fire) are equivalent.  More specifically, the 
conventional OR-gate is equivalent to the ORm-function (Eq. 
11), with the minimum threshold m set to 1 (Eq. 10).  It 
requires a minimum of one input spike to fire an output spike 
(the equivalent of OR1-gate). 

Similarly, the conventional AND-gate is equivalent to the 
ANDm-function (Eq. 7), with the minimum threshold m set to n 
(Eq. 12).  It requires a minimum of all n inputs to fire a spike 
before it will fire an output spike (the equivalent of ANDn-
gate).  This illustrates that multi-input OR1-gate and ANDn-gate 
are the extreme ends of a continuum (with a threshold set at 1 
and n minimum input spikes for OR1-gate and ANDn-gate, 
respectively) in digital processing. 

In general, only a minimum of m spikes at time t is sufficed 
to satisfy the condition, producing the most generalized multi-
input logic gate, without specifying whether it is an AND-gate 
or OR-gate.  This theoretical formulation provides a generic 
description of the multi-input logic gate operation, independent 
of specific AND-gate or OR-gate requirement, by adding a 
minimum of m input spikes as the threshold to fire an output 
spike by a MINm-gate: 

 



y(t)  x1(t) MINm  x2(t) MINm  ... MINm xn (t)

       MINm x1(t),  x2(t),  ..., xn (t) 

      

1,  if x i(t) 
i1

in

 m,  for 0  t  t          

0,  if x i(t) 
i1

in

  m,  for t  0  or t  t 













(13) 

Most importantly, the generalized ORm and ANDm 
functions are interchangeable, thus eliminating the needs for 
designing a specific multi-input hardware logic gate for the 
generalized ORm-gate or the generalized ANDm-gate.  Both 
ORm-gate and ANDm-gate can be replaced by an equivalent 
logic operation, MINm-gate, i.e., 

 ORn-gate = AND1-gate (14) 

and 

 ANDm-gate = MINm-gate (15) 

That is, 

 ORm-gate = ANDm-gate = MINm-gate. (16) 

 

Figure 2.  Multi-input logic equivalent gates for ANDm-gate, ORm-gate and 
MINm-gate that require a minimum of m active input spikes to produce an 
output spike. 

Fig. 2 shows the block diagrams for the equivalence of 
ANDm-gate, ORm-gate, and MINm-gate.  This provides a 
generic neural processer for a set of generalizable logic gates 
with a variable number of m (for either majority rule or 
minority rule logic operations).  

XIV. MULTI-INPUT OPERATION VS. SEQUENTIAL CASCADE 

2-INPUT OPERATION 

To illustrate the efficiency of multi-input operation for 
AND-gate, the simultaneous parallel operation of multi-input 
ANDn() function can be decomposed into a sequential cascaded 
2-input AND-gate operation (see Fig. 1): 



AND x1(t),  x2(t),  ... ,  xn (t) 

 x1(t) AND  x2(t)  AND  x3(t)  ...  AND  xn(t) 
 (17) 

If there are a thousand inputs to be processed per neuron 
simultaneously, then implementing the computation using 
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multiple cascaded 2-input AND-gates will lengthen the 
processing time by a thousand-fold. 

For an ANDm-gate with a minimum m-input threshold, the 
logic gate design would be compounded by additional circuitry 
needed for testing the condition to see whether a minimum of 
m spikes is exceeded in each stage of the sequential cascade 
operation.  This sequential cascade implementation of multi-
input AND-gate is inefficient.  It is computationally expensive 
in time and physically expensive in space. 

XV. MAJORITY/MINORITY RULE VOTING SYSTEM 

The above neural processing is essentially a generalized 
vote counting system that processes input votes statistically: 

 If m ≥ n/2, it becomes a majority rule voting system. 

 If m < n/2, it becomes a minority rule voting system. 

That is, the requirement of a minimum of m spikes (from the n 
inputs) before firing an output spike by the neuron is 
essentially a vote counting system.  As long as it has a 
majority of votes (m ≥ n/2), independent of which input it is 
coming from, the processing (decision) of the neuron is to cast 
another vote of 1 as output to continue the process.  Similarly, 
minority rule can be achieved by requiring less than half of the 
votes as the condition for forwarding the vote. 

Even though VLSI voting digital circuitry had been 
implemented in hardware [5, 6, 8] and in bridging fault voting 
circuitry [7], such circuitry could have been simplified by a 
generalized multi-input AND-gate or OR-gate using spike code 
instead of binary code.  Although there are many other neural 
logic circuitries implemented in hardware, most of them use 
binary logic rather than spike logic for processing.  Examples 
of these binary logic implementations are numerous, which 
include neural threshold logic circuitry [20], neural floating 
gates [21-24], neural AND/OR gates [25], neural Boolean 
logic satisfiability model [26], comparison neural gate [27], 
neural circuit MNOS [28], and neutromatrix [29], with the 
exception of the electronic spiking network [30, 31]. 

XVI. STATISTICAL PROCESSING BY NEURONS 

To extend the equivalent computations processed by 
spiking neurons, neurons can be shown to implicitly process 
signals statistically rather than deterministically.  Statistical 
processing is performed by the vote counting process, without 
specifying which of its inputs is firing a spike, as long as a 
majority m ≥ n/2 input has reached.  Most significantly, it can 
even be used as a minority rule voting system if m < n/2 is 
satisfied statistically. 

This illustrates the statistical nature of neural processing, 
which is a stochastic system; unlike most modern computers, 
which are deterministic system.  The difference is that neural 
processing does not require absolute deterministic origin of 
where the spikes are coming from to fire its own output.  The 
stochastic nature of neural processing lends itself in fault 
tolerance, which means that even if some of the inputs are 
unreliable, as long as other inputs can compensate for it, the 
statistical processing continues. 

XVII. EXAMPLE COMPUTATIONAL CIRCUITRY 

Finally, as an example, the versatility of such generalized 
multi-input processing can be realized in the real world 
computation of the mathematical cross-correlation function 
[32].  It has be shown that, in a time-delayed neural network 

(TDNN) with successive delays of ∆t to form multi-input for a 
neural network, it can compute the cross-correlation function 
of two sets of input streams by a hardwired digital neural 
circuitry [32].  This provides an example computation by a set 
of custom designed neural circuitry to perform high throughput 
signal processing in a massively parallel configuration.  Other 
examples of computation can be designed to take advantage of 
the multi-input processing by these neural processors for 
integrating signals once the theoretical operations of these 
principles are implemented in hardware. 

XVIII. CONCLUSIONS 

Multi-input neural spike code processing can accomplish a 
set of equivalent digital signal processing of OR- and AND-
gates.  It provides the most generalized signal integration by 
allowing for a minimum of m spikes firing at time t to generate 
an output spike that encapsulates both OR-gate and AND-gate 
at the extreme ends of a minimum of one or all n active inputs 
set as threshold for OR-gate and AND-gate, respectively.  Most 
importantly, self-contained spike-coded signals can eliminate 
the reliance on any external clock pulse for processing.  This 
allows self-timed asynchronous massively parallel processing, 
accounting for transmission delay, without needing any extra 
transmission line (carrying the clock pulse signal) for every 
processor (logic gate) to perform its function.  The generalized 
ORm-function or ANDm-function provides a generic statistical 
voting system for majority rule or minority rule logic 
operations of the MINm-function.  It performs statistical 
processing implicitly.  This provides a theoretical description 
of the equivalence between digital processing (in computers) 
and multi-input neural spike code processing (in biological 
neurons).  Massively parallel processing with 100,000 
simultaneous inputs is typical in biological neurons, whereby 
similar large-scale implementations of multi-input processing 
can be achieved by these simple generalizable ORm-gate, 
ANDm-gate and MINm-gates. 
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