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Abstract—Semi-supervised clustering is an important method 

which can improve clustering performance by introducing 

partial supervised information. This paper mainly studies the 

semi-supervised fuzzy clustering based on Mahalanobis distance 

and Gaussian Kernel for SCAPC algorithm. Here, we give a new 

semi-supervised fuzzy clustering objective function. By solving 

the optimization problem with above objective function, we 

obtain a semi-supervised fuzzy clustering algorithm F-SCAPC 

which includes F(M)-SCAPC and F(K)-SCAPC. And we do 

experimental research for proposed algorithm F-SCAPC using 

the selected standard data set and the artificial data set. Besides, 

we compare performance of presented algorithm F-SCAPC with 

one of FCM, CA, AFFC, KCA, KFCM-F and SCAPC algorithms. 

From the results, we can see that F-SCAPC is effective in the 

convergence speed and the clustering accuracy. 
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Mahalanobis distance; Gaussian Kernel 

I.  INTRODUCTION 

Semi-supervised clustering is an important research 
direction for semi-supervised learning. It mainly uses a small 
amount of supervision information and a large number of 
unlabeled samples to learn. In general, the supervision 
information is given by two kinds of the different forms: one is 
the pairwise constraints, such as must-link and cannot-link; the 
other one is directly given by the few labeled samples. 
Currently, researchers have proposed many different semi-
supervised clustering algorithms for two kinds of the 
supervision information. These methods can be roughly 
divided into two categories: 1) Introducing the supervision 
information to the existing clustering algorithm in order to 
obtain a semi-supervised clustering algorithm. 2) Using the 
supervision information to learn some metric [1-3]. For 
example, Bar-Hillel et al. [2] used must-link constraints to give 
a non-iterative method RCA by learning Mahalanobis metric. 
After that, Yeung et al. [4] made an extension for RCA method 
by introducing both must-link constraints and cannot-link 
constraints. In addition, kernel-based learning is also an 
important area of research in machine learning and choosing a 
good kernel function can further improve the classification 
accuracy. However, how to choose better parameter value for 
kernel function becomes an important problem. After that, non-

parametric kernel learning is presented and Cristianini et al. [5] 
studied the non-parametric kernel learning. Yang et al. [6] 
discussed the kernel learning with metric strategy. Sindwani et 
al. [7] proposed a semi-supervised kernel learning framework 
which modifies the existing kernel function by unlabeled data 
to determine the kernel function. Zhang et al.[8] researched 
FCM algorithm for different kernel-based learning methods 
and proposed fuzzy clustering algorithm KFCM based on 
kernel learning. Graves et al. [9] used different kernel functions 
to map the high-dimensional nonlinear data to the linear data 
and proposed KFCM-K and KFCM-F based on FCM algorithm.  
Baghshah [10] proposed a nonlinear kernel matrix metric 
learning algorithm for semi-supervised learning. It can be seen 
that for most clustering algorithms, which include unsupervised 
clustering and semi-supervised clustering, the number of 
clusters should be artificially given before the clustering 
process. But in practical applications, it is more difficult to 
obtain number of clusters in advance. For solving this problem, 
Frigui et al. [11] proposed CA algorithm, which automatically 
calculates the appropriate number of clusters by the 
competition. It is regretful that the accuracy of the clustering 
results for this method is low. In order to solve this problem, 
Grira et al. [12,13] proposed the AFCC algorithm by 
combining the semi-supervised clustering with the CA 
algorithm. In 2010, Gao et al.[14] further proposed SCAPC 
algorithm by modifying the objective function in AFCC 
algorithm. It can be seen that both AFCC and SCAPC 
algorithm are designed based on the Euclidean distance which 
mainly applies to spherical data. For non-spherical, high-
dimensional nonlinear and the overlapping data, clustering 
results are not very good using these algorithms. In order to 
solve these problems, we study semi-supervised fuzzy 
clustering by introducing Mahalanobis metric and Gaussian 
kernel into SCAPC’s objective function. And we obtain a new 
objective function and present semi-supervised fuzzy clustering 
algorithm F-SCAPC. 

II. SEMI-SUPERVISED FUZZY CLUSTERING 

ALGORITHM F-SCAPC 

Currently, most algorithms mainly use the Euclidean 
distance to compute similarity between two samples. Surely, 
the Euclidean distance has better results during processing 
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spherical data. However, for the high-dimensional, non- 
spherical, nonlinear or the overlapping data, the error rate will 
be increased and clustering speed is also very slower. We know 
that Mahalanobis metric has good properties. In addition, 
kernel trick can make complex and nonlinear problem to 
become linearly separable problem in the feature space after 
nonlinear transform. For better studying semi-supervised fuzzy 
clustering, we first propose a generalized objective function.  

Given data set of N samples X={xi|i ∈ {1,…,N}}, it is 

divides into C clusters S1,S2,…,SC. Let V={vk|k∈{1,…,C}} to 

represent set of the cluster centers and U=(uik) is a matrix of 
membership degree, where uik is the membership of the 
elements xi to the cluster center vk. The generalized objective 
function of algorithm F-SCAPC is written as follows: 
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For Mahalanobis metric,  2 ,i kf x v is denoted 
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It is seen that when Gaussian kernel is used,  , 1K x x  . 
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In order to distinguish between above two methods, we 
denote by F(M)-SCAPC  and F(K)-SCAPC using Mahalanobis 
metric and kernel function, respectively. 

Therefore, the improved semi-supervised clustering 
algorithm is attributed to following optimization problem: 
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In the following, we first consider semi-supervised 
clustering using Mahalanobis metric. By minimizing (2) with 
respect to λi and applying Lagrange multipliers, we obtain the 
following Lagrangian function: 
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We know that 
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Using  Nk and computing urs by (5), we have 
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By  (7), we obtain the following expression λr : 
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By substituting  the right side with (6) for λr  , we obtain 
new equation for the membership urs, namely 
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Similarly, we can get the (9) when f (x) takes Gaussian 
kernel.  
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In above objective function, parameter α and β are 
adjustment factors of the clusters which are computed by (10) 
and  (11) , respectively[13]: 
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In order to obtain the cluster centers, we take Mahalanobis 

distance into the object function F SCAPCJ 
and get 

thefollowing expression: 
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Similarly, we can get the cluster center vk when f (x) is 
Gaussian kernel.  
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In the following, we give the detailed algorithm F-SCAPC. 

(1) Initialize the maximum number of clusters C, 

threshold  e and ε. 

(2) Choose the cluster center and the membership. 

(3) Calculate covariance matrix Ck or Gaussian kernel 

 
2 2( ) /

, i kx v

i kK x v e
 

 . 

(4) Calculate fk or fm. 

(5)   Compute β using  (10) and α using (11). 

(6)  Compute cardinalities  
1

1,2, ,
N

k ik

i

N u ,k C


  , if Nk 

< e then discarding cluster k and updating number of 

clusters C . 

(7)  Compute the new membership um or uk using (8) or Eq. 

(9), and update cluster centers vkm or vk using (12) or 

(13). 

(8) Repeat step 3 to step 7 until the iteration terminal (Two 

adjacent loop have the same number of clusters and 

 ( ) 1F SCAPC F SCAPCJ t J t     ). 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to verify the effectiveness of algorithm, we use 
UCI datasets to test performance with F -SCAPC which 
includes F(M)-SCAPC and F(K)-SCAPC. The selected data 
sets are Iris, Diabetes, Breast and Wine from UCI database, 
respectively. In the meantime, we also generate artificial data 
set to conduct the experiment. In experiments, we set the 
cardinalities’ threshold e=7 and ε=0.001. And we select 10 
constraints from the sample set. According to the known 
labeled samples, sets of Must-link and Cannot-link are created. 
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A. Parameter Analysis With Algorithm F(M)-SCAPC 

1) Relation between parameters (include α and β) and 

number of iteration. 
According to the objective function (3), parameter α 

(Alpha) is a balance factor of the F(M)-SCAPC algorithm. It 
reflects the importance of constraint items and directly affects 
the adjustment size of the penalty term of the objective 
function. For iris data set, we conduct the experimental study 
with parameter α whose results are shown in Fig 1. It may be 
seen that as increasing with the number of iteration, the value 
of α first increases and then decreases. Especially, in the early 
of the iteration, since constraint penalty term is to adjust the 
membership, classification is not very clear when α increases. 
And then α gradually stabilizes and the objective function does 
not basically changes. 

 
Figure 1.  Relation between value of α and number of iteration 

 
Figure 2.   Relation between value of  β  and number of iteration 

Similarly, we also conduct the experiment with β(Beta). 
Experimental result is given in Fig 2. According to Fig 2, when 
increasing with the number of iterations, the value of β is 
gradually decreases. And there are some fluctuations in the 
middle. In the initial iteration, the value of β is relatively large 
and the classification is not stable. But as the number of 
iterations increases, both the number of clusters and the value 
of β also gradually stabilize. 

Moreover, β depends on the selected value of η0 which will 
affect the clustering results at some extent and the number of 
iterations. In Table 1, the experimental results are given. 

TABLE I.  INFLUENCE OF 
0  ON THE NUMBER OF CLUSTERS AND THE 

NUMBER OF ITERATIONS 

η0 No. of clusters  No. of iterations 

1 16 21 

1.5 14 21 

2 13 21 

4 3 20 

4.5 3 19 

5 3 17 

7 1 16 

8 2 16 

9 1 16 

Seen from Table 1, the value of η0 will affect the number 
of clusters and the convergence speed of the algorithm. It can 
be known that the number of correct cluster is 3 for data set 
Iris, however, when original number of clusters is initialized as 
18 and value of η0 ranges from [1,2], the number of clusters for 
data set Iris is 16 and 13,which shows  that it is hard to get the 
correct number of clusters. The objective function will be 
stable after 21 iterations in this case. When η0  is in the range 
[4,5], the final classification number is 3,which shows that the 
correct number of clusters is obtained and the number of 
iterations is about 18 times. When η0 is in the range [7,9], the 
final number of clusters that is smaller than the correct    
number of cluster is 1 or 2,which shows that the balance factor 
is too large and the competition is over normal range, where 
the number of iterations is about 16 times. These show that the 
bigger is η0, the smaller is the number of iterations. Test results 
show that a better result will be got when η0 is in the interval 
[4,5]. 

2) Comparison of convergence speed in  clustering 
In this subsection, we mainly compare the convergence 

speed with different data set. We selected   Iris, Diabetes and 
Wine data set from UCI database. The experimental 
parameter’s values are as follows: The maximum number of 
cluster Cmax are initialized as 18, 13, and 18, respectively. ε 
and η0 is set as 0.001 and 4, respectively. Results are shown in 
Fig 3with the convergence speed of the SCAPC and F(M)-
SCAPC on different data set. According to Fig 3, SCAPC 
algorithm makes the objective function to stabilize after 24 
iterations on the Iris data set, while the algorithm F(M)-SCAPC 
only uses 17 iterations. Moreover, for F(M)-SCAPC algorithm, 
correct number of clusters is obtained in the 7th iteration, while 
SCAPC obtains correct number of clusters in the 8th iteration. 
For Diabetes and Wine data sets, the similar conclusions can be 
also obtained. This shows that convergence speed of algorithm 
F(M)-SCAPC is faster than the convergence speed of algorithm 
SCAPC. 
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Figure 3.   Comparison with convergence speed between SCAPC and F(M)-

SCAPC on the Iris, Diabetes and wine dataset 

Moreover, to verify performance of the modified algorithm 
F(M)-SCAPC, we generate an artificial data set Data to test. 
This dataset is given a three-dimensional data which contains 
150 sample points and equally divided the dataset into 3 
classes. That is to say, each subset contains 50 sample points. 
Fig 4 is a representation of the three-dimensional space of the 
given dataset. In experiment, the initial number of clusters is 
set as 18 and threshold ε of objective function is set as 0.001. 
Fig 5 is the clustering convergence speed of this data set which 
shows that F(M)-SCAPC completes the correct number of 
classification at the 7th iteration on Data dataset, but SCAPC 
does in the 9th iteration. This also shows that the convergence 
speed of F(M)-SCAPC is faster than SCAPC. 

 

Figure 4.  Generated dataset Data 

 
Figure 5.  Comparison with convergence speed between SCAPC                                                                                                                     

and F(M)-SCAPC on the Data dataset 

3) Pairwise constraints and clustering performance 
We know by above analysis that if known pairwise data 

with constraint sets is wrongly classified during the clustering 
process, the penalty term of objective function will be bigger. 
Here, the penalty item will be continued to adjust the value of 
the membership. Thus, by adjusting the penalty term in the 
objective function, some wrongly clustering samples will be 
divided into the correct cluster, so the accuracy of clustering 
result will be higher eventually. To verify above conclusions, 
for the selected datasets, we test the relation between the given 
number of constraints and the clustering results. In 
experiments, η0s are set as 4, 5, 5.5 and 6 with Iris, Diabetes, 
Wine, Data dataset, respectively. The maximum number of 
clusters C is initialized as 18 and objective function’s threshold 
ε is set as 0.001. Experimental results are given by Fig 6. 

 
Figure 6.  Accuracy with different number of constraints on different dataset 

The experiments show that as the number of constraints 
(must-link and cannot-link) increases, accuracy of F(M)-
SCAPC algorithm clustering results will be higher. It also 
shows that penalty term of the objective function has an impact 
on adjustment. When the number of constraints is small, 
accuracy of clustering results is relatively very low. When the 
number of constraints increases, the accuracy of clustering 
results have a significant improvement. When the number of 
constraints reaches a certain number, the curve will be steady 
gradually where its effect on clustering result will be gradually 
small. 
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TABLE II.  CLUSTERING ACCURACY BY DIFFERENT ALGORITHMS 

Data set Algorithm Parameter 
Pair-wise 

constraints 

Accuracy（%） 

1 2 3 4 5 

Iris 

FCM — — 89.3 89.3 89.3 89.3 89.3 

CA η0=4 — 72.7 70 81.3 72.7 70.7 

AFCC η0=4 5 90.7 90.6 88.7 82.7 90 

SCAPC η0=4 5 91.3 91.3 90.7 90.7 91.3 

F(M)-SCAPC η0=4 5 92.7 92.7 92.7 91.3 92.7 

KCA η0=4, σ=10 — 82.7 73.3 89.3 82 82.7 

KFCM-F η0=4,σ=15 — 90.7 84 89.3 81.3 86 

F(K)-SCAPC η0=4,σ=15 5 93.3 94 91.3 92.7 92.7 

Diabetes 

FCM — — 55.9 55.9 55.9 55.9 55.9 

CA η0=4 — 55.6 55.6 55.6 55.6 55.6 

AFCC η0=4 15 56.6 62.5 56.6 56.6 62.5 

SCAPC η0=4 15 58.3 58.3 58.3 58.3 58.3 

F(M)-SCAPC η0=4 15 68.8 68.8 68.8 68.8 68.8 

KCA η0=4, σ=25 — 55.9 56.6 56.6 55.9 56.6 

KFCM-F η0=4,σ=25 — 65.6 65.4 65.6 52.5 65.8 

F(K)-SCAPC η0=4,σ=30 15 68.2 68.2 67.4 69.8 68.2 

Wine 

FCM — — 62.5 62.5 62.5 62.5 62.5 

CA η0=4 — 55.6 55.6 55.6 55.6 55.6 

AFCC η0=4 10 70.2 70.2 70.2 69.1 70.2 

SCAPC η0=4 10 73 73 73 73 73 

F(M)-SCAPC η0=4 10 75.3 75.3 75.3 75.3 75.3 

KCA η0=4, σ=30 — 67.4 64.6 67.4 67.4 67.4 

KFCM-F η0=4,σ=95 — 70.2 71.9 48.3 70.2 72.5 

F(K)--SCAPC η0=4, σ=30 10 77.5 75.8 74.1 75.8 74.1 

Heart 

FCM — — 59.3 59.3 59.3 59.3 59.3 

CA η0=4 — 59.3 59.3 59.3 59.3 59.3 

AFCC η0=4 15 60.1 60.1 60.1 60.1 60.1 

SCAPC η0=4 15 61.1 60.7 61.5 61.5 61.1 

F(M)-SCAPC η0=4 15 63.7 62.6 63.7 63.7 63.7 

KCA η0=4, σ=25 — 59.6 59.6 59.6 59.6 59.6 

KFCM-F η0=4,σ=95 — 60.7 60.7 60.7 60.7 60.7 

F(K)-SCAPC η0=4, σ=30 15 66.7 64.8 64.8 66.7 66.7 

 

B. Experimental results with algorithm F(K)-SCAPC 

1) Comparison with different algorithms 
To validate the effectiveness of presented algorithm F (K)-

SCAPC, we selected four data sets from the UCI database as 
the experimental data objects which are Iris, Diabetes, Wine 
and Heart. We compare F(M)-SCAPC and F(K)-SCAPC which 

we proposed with FCM，CA，AFCC，SCAPC，KCA，
KFCM-F to the clustering result. And F(M)-SCAPC algorithm 
is a semi-supervised learning algorithm which based on the 
Mahalanobis metric, and F (K)-SCAPC is another semi-
supervised learning algorithm which based on Gaussian kernel 
metric. FCM and CA are unsupervised algorithms. AFCC and 
SCAPC are semi-supervised algorithms based on the Euclidean 
distance. KCA is an unsupervised clustering algorithm which 
introduce Gaussian kernel into the CA algorithm. KFCM-F is 
an unsupervised algorithm which based kernel learning. We 

use the accuracy of clustering r as an evaluated method which 
is defined as r= (c/N) ×100%, where c is the correct 
classification number of points and N is the number of points 
in the dataset.  The value of the parameters we used in the test 
is as follows: The initial maximum number of clusters 
Cmax=18. The algorithm terminates threshold value ε=0.001. 
The cardinality of the threshold value e=7. The number of 
constraints is different for different data set. In order to obtain a 
more fair comparison, we performed five times for each 
algorithm tests which with its best clustering parameters that 
we have. The clustering results are shown in Table 2 and the 
parameters we used in the experiment are also list.  

From the Table 2 we can see that F-SCAPC has a better 
performance than the other algorithms in the data sets iris, 
diabetes, wine and heart. And F (K)-SCAPC algorithm which 
based on kernel has a good performance to deal with the high 
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dimension data sets such as wine and heart. That means F (K)-
SCAPC can map the nonlinear high-dimensional data to the 
feature space and obtain a linearly separable data in the new 
feature space. The algorithm F(M)-SCAPC which base on 
Mahalanobis metric can deal with the data sets that with large 
relatively correlation between samples such as wine data set. 
We take iris data set as an example. The pairwise constraints 
we used in the algorithms are 5 for must-link 3 and cannot-link 
2. The average accuracy of the five tests for F(M)-SCAPC is 
92.42% and the average accuracy of the five tests for F (K)-
SCAPC is 92.8%. Both of the two algorithms average accuracy 
is higher than SCAPC which is 91.0%. In order to obtain the 
best clustering result to compare, we used different value of 
parameters for different algorithms. And only the best 
combinations of the parameters are list in the table. From the 
table we can see different data set need different parameter in 
one algorithm to have the best clustering result. 

2) Influence of Gaussian kernel parameters σ on the 

cluster results 
Gaussian kernel can be largely affected by the value of σ. 

Thus, we study value of σ impact on algorithm F(K)-SCAPC’s 
performance. Here, besides above chosen three data sets, we 
also chose data set Heart from the UCI database. And the range 

of σ we choose is 0.5 to 40. The initial maximum number of 

clusters Cmax is set as 18. Threshold  ε is set as 0.001. The 
threshold value e with cardinality is 7 and η0 is 4. The number 
of constraints we used in this experiment is set as 5. The results 
are listed in Tab 3, where symbol “—“ means that algorithm do 
not gets the right number of clusters. 

TABLE III.  INFLUENCE OF  ON THE CLUSTERING RESULTS 

(ACCURACY %) 

σ Iris  Wine Heart  Diabetes 

0.5 52.7 33.7 45.2 44.3 

1 — 34.8 44.8 — 

5 84.3 50.7 65.3 58.2 

10 89.3 68.3 55.9 62.7 

15 92.7 73.9 59.2 60.6 

20 88.7 70.2 60.3 63.8 

25 92 69.8 63.2 68.2 

30 88.7 62.3 61.7 51.3 

35 91.3 65.2 60.8 58.7 

40 81.3 60.8 55.1 53.6 

From Tab 3, we can see that low accuracies are obtained for 
most of the data sets when the value of σ is less than 1. What's 
worse is Iris and Diabetes cannot obtain correct classes in this 
condition. And when σ ranges from 15 to 35, better clustering 

results can obtained for most data sets. When the values of σ 

are 15, 20,25 and 25, the best results can be got for Iris, Wine, 
Heart and Diabetes, respectively. 

IV. CONCLUSION 

In this paper, we combine the semi-supervised clustering 
with Mahalanobis metric and Gaussian kernel to propose a new 
semi-supervised fuzzy clustering algorithm F-SCAPC. For 

different data sets including iris, diabetes, wine, Data and heart, 
respectively, we conduct a series of experiments from 
clustering speed and accuracy of clustering. Experiments show 
that the modified algorithm clearly improves the accuracy of 
clustering and speed of convergence. In the meantime, we also 
conduct the comparison on performance with FCM, CA, 
AFCC, KCA, KFCM-F and SCAPC. Experimental results 
show that the presented algorithm F-SCAPC is a more 
effective semi-supervised fuzzy clustering algorithm. In future, 
we further study semi-supervised fuzzy clustering algorithm 
based on other metric learning. 
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