
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 02– Issue 05, July 2013 

 

www.ijcit.com                                                                  603 
 

Periodic Error Correcting Perfect Codes 

Vinod Tyagi 

Department of Mathematics, Shyam Lal College,  

University of Delhi, Shahdara, Delhi 110032, India 

vinodtyagi@hotmail.com 

Ambika Tyagi  

Research Scholar ,Department of Mathematics,  

University of Delhi, Delhi 110032, India 

e-mail: ambikajnu {at} gmail.com

 

 
Abstract— In this paper, we present a new class of perfect codes 

to be known as periodic error correcting perfect codes. Periodic 

errors were introduced as alternate errors by Tyagi and Das 

(2010). The occurrence of periodic errors can be seen in 

communication channels like Astrophotography, Gyroscope and 

in computed tomography. These errors are caused by run out or 

gear teeth spacing discrepancies in the mount's RA (Right 

Ascension) worm gears. It becomes “periodic” in a sense that as 

the worm gear rotates, you encounter the same problematic part 

of the gear over and over again. The time period of the error 

depends on how long the worm gear completes one revolution. If 

one revolution is completed after s-components, then the errors 

are termed as s-periodic errors. By a periodic error, we mean a 

vector whose non zero components are located at a certain fixed 

shifting positions in a code vector. For example, the 1-periodic 

error vectors are the ones where errors occur in ...5,3,1 thrdst
 

positions or ,...6,4,2 ththnd
 Positions and so on. Such codes 

are studied by Tyagi and Das. 

Keywords- Periodic errors, parity check matrix, syndromes and 

perfect codes. 

I. INTRODUCTION 

A system’s noise environment can create errors in the 
transmitted message. Properties of the resulting errors depend 
upon characteristics of the channel and system. Errors which 
are encountered can be classified mainly into two categories. 

(i) Random errors: The bit errors are independent of each 

other. Additive noise typically causes random errors. 

(ii) Burst errors: The bit errors occur sequentially in time and 

as groups. Media defects in digital storage systems can 

cause burst errors. 

Most of the studies in error correcting codes are with 
respect to these two categories of errors. Codes correcting such 
errors are known as Random error correcting codes and Burst 
error correcting codes. In certain other communication 
channels like: Astrophotography [3], Gyroscope [4] and 
Computed Tomography [5], it has been found that whenever 
error occurs, it is in periodic form. 

1) Astrophotography — Where small mechanical error 

occurs periodically in the accuracy of the tracking in a 

motorized mount that results small movements of the 

target that can spoil long-exposure images, even if the 

mount is perfectly polar-aligned and appears to be tracking 

perfectly in short tests. It repeats at a regular interval — 

the interval being the amount of time or period it takes the 

mount's drive gear to complete one revolution.  

 

2) Gyroscope — Gyroscope has periodic error items and the 

gyroscope output need data even process before navigate 

calculation in strap-down inertial navigation system. The 

frequency error of period item in zero drift is the main 

factor to influence the gyroscope accuracy by the analysis 

method of seeking every period parameter's error transfer 

coefficients with error analysis theories. The influence of 

the data smooth process upon the frequency characteristics 

of period item is described in mathematics form and the 

frequency transfer model is established, then the frequency 

transfer characteristics are analyzed.  
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3) Computed Tomography — Structured noise in computed 

tomography effects of periodic error sources. The artifact 

in computed tomography (CT) images due to cyclic 

projection errors, such as errors due to periodic 

fluctuations in x-ray intensity, is derived and verified by 

computer simulation. The radius of appearance of this 

fundamental artifact is independent of the frequency of the 

periodic error signal and will only be visible in 4-G CT 

scanners. The effects of sampling are derived and 

illustrated by simulation for first-, third-, and fourth-

generation CT-scanner geometries. The radius of 

appearance of all but the fundamental artifact is shown to 

be dependent on the frequency of the periodic signal.  

 

Hence there is a need to develop codes that can take care 
of periodic errors. Tyagi and Das (2010, 2012) have introduced 
codes that can detect and correct s-alternate errors. We have 
named these alternate errors as periodic errors in this paper. 
The paper is organized into four sections. In section II, we give 
some basic definitions that are frequently used in this paper. 
Section III deals with s -periodic error correcting perfect codes 

(PECPC). Conclusions and open problems are given in section 
IV. 

II. DEFINITIONS 

s -periodic error. A s -periodic error is an n -tuple whose 

non zero components are located at a gap of s  positions and 

the number of its starting positions is first 1s   components, 

where 1,2,3, ,( 1)s n  . For 1s  , the 1 -periodic error 

vectors are the ones where error may occur in 1 ,3 ,5st rd th  

positions or 2 ,4 ,6 ,nd th th  positions. 

For example, in a vector of length 8, 1-periodic error 
vectors are of the type 10101000, 00101000, 10101010, 
10001010, 01010101, 01000101, 00000101, etc. 

Similarly, for 2s   , the 2-periodic error vectors are those 

where error may occur in 1 ,4 ,7 ,st th th  positions or 

2 ,5 ,8 ,nd th th  positions or 3 ,6 ,9 ,rd th th  positions. 

The 2-periodic error vectors may look like 10010010, 
10000010, 00010010, 01001001, 01000001, 00001001, etc. in 
a vector of length 8. 

Thus, if s -periodic error occurs in an n -tuple 

1 2 3 4 2 1 1 2 2 1( , , , , , , , , , , , , , )s s s s s s na a a a a a a a a a a   
, then the 

location of errors can be given in the following 1s   exclusive 

sequences:  

1 2 2 3 2 3 2 4

3 4 2 5 1 2 3 1

2 1 3 2 1 2 2 3 3

{ , , , },{ , , , },

{ , , , }, ,{ , , , },

{ , , , },{ , , , }.

s s s s

s s s s s

s s s s s s

a a a a a a

a a a a a a

a a a a a a

   

   

    

 

s -periodic error correcting ( s -PEC) linear code. A 

code is called s -PEC linear code if it corrects all s -periodic 

errors. 

 

III. PERFECT CODES 

 
Tyagi and Das (2010) have obtained necessary and 

sufficient bounds over the number of parity check digits 
required for correcting s -periodic errors in a linear code. The 

lower bound on the necessary number of parity check digits 

required for an ( , )n k  linear code over GF( )q  is as follows: 

Theorem (Tyagi and Das, 2010). The number of parity check 

digits in a linear code over GF( )q  that corrects all s -periodic 

errors is at least  

                  
0

log 1 ( 1)i

s
k

q

i

q


 
  

 
  (1) 

Where 
1

i

n i
k

s

 
   

 ; 0,1,2, ,i s . 

Whenever one obtains a bound, it is desirable to know as to for 
which values of the parameters the bound is realized. To look 
into the values of various parameters for which the bound is 
tight, we must consider inequality in (1) as equality, viz.  

0

1 ( 1)i

s
kn k

i

q q



                                                   (2) 

For binary case, we have  

0

2 1 (2 1)i

s
kn k

i





               (3) 

In order to obtain s -periodic error correcting perfect codes, we 

now examine the values of ik , s  and n k . 

(i) For 2s  , equality (3) becomes  

0 1 22 2 2 2 2
k k kn k                 (4) 
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We now examine the values to 
0 1 2, , ,n k k k  to check the 

possibilities of 2-periodic perfect codes. 

Case 1. For 3n   and 
0 1 2 1k k k    , from (4) we obtain the 

value of 1k  . This may give us (3,1)  2-periodic perfect code. 

Case 2. For 5n   and 
0 1 2k k k   and 

2 1k   the equality (4) 

gives the value of 2k  . This may result into (5,2)  2-periodic 

perfect code. 

(ii) For 4s  , equality (3) becomes  

0 31 2 42 2 2 2 2 2 4
k kk k kn k                  (5) 

Here also, we examine the values to 
0 1 2 3, , , ,n k k k k  and 

4k  to 

check the possibilities of 4-periodic perfect codes. 

Case 1. For 6n  , 
0 2k  , 

1 2 3 4 1k k k k   , the equality (5) 

gives 3k  . This may give rise to (6,3)  4-periodic perfect 

code. 

Consider the matrix  

3 6

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

H



 
 

  
 
 

             

If we consider the matrix H  as the parity check matrix for 

(6,3)  periodic perfect code, then it can be verified from the 

error pattern-syndrome table that the code is a perfect code. 

                       Error Pattern      Syndrome 

100000   100 

000001   011 

100001   111 

010000   010 

001000   001 

000100   101 
000010   110 

Case 2. For 10n   , 243210  kkkkk  , the 

equality (5) gives 6k  . This may give rise to (10,6)  4-

periodic perfect code. 

Let us consider the following matrix as parity check matrix for 

(10,6)  code.  

4 10

1 0 0 0 1 0 0 1 1 0

0 1 0 0 0 1 0 0 1 1

0 0 1 0 1 1 1 0 0 0

0 0 0 1 0 0 1 1 0 1

H



 
 
 
 
 
 

 

It can be verified from the following error pattern and 

syndrome table that (10,6)  code is a 4-periodic perfect code. 

 

Error Pattern       Syndrome 

1000000000   1000 

1000010000   1110 

0000010000   0110 

0100000000   0100 

0100001000   0111 

0000001000   0011 

0010000000   0010 

0010000100   1011 

0000000100   1001 

0001000000   0001 

0001000010   1101 

0000000010   1100 

0000100000   1010 

0000100001   1111 
         0000000001   0101 

This shows that the (10,6)  code whose parity check matrix 

is given above is   4-periodic perfect code. 

(iii) For 6s  , the equality (3) becomes  

0 3 5 61 2 42 2 2 2 2 2 2 2 6
k k k kk k kn k                   (6) 

 We now examine the values to 
0 1 2 3 4 5, , , , , ,n k k k k k k  and 

6k  to check the possibilities of 6-periodic Perfect codes. 

Case1 

For 11n  , 1,2 6543210  kkkkkkk , the 

equality (6) gives 7k  . This shows the possibility of the 

existence of (11,7)  6-periodic perfect code. 

Consider the matrix  

4 11

1 0 0 0 0 1 1 0 0 1 1

0 1 0 0 1 0 1 1 0 0 1

0 0 1 0 0 1 1 1 1 0 0

0 0 0 1 1 0 1 0 1 1 0

H



 
 
 
 
 
 

 

 If this matrix is considered as a parity check matrix for 

(11,7)  code, then it can be verified from the following error 

pattern-syndrome table that the code under discussion is (11,7)  

6-periodic perfect code. 

 

                         Error Pattern                 Syndrome 

10000000000   1000 

10000001000   1110 

00000001000   0110 

01000000000   0100 

01000000100   0111 

00000000100   0011 

00100000000   0010 

00100000010   1011 

00000000010   1001 

00010000000   0001 
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00010000001   1101 

00000000001   1100 

00001000000   0101 

00000100000   1010 
                    00000010000             1111 

 

(iv) For 8s   , the equality (3) becomes  

0 3 5 6 7 81 2 42 2 2 2 2 2 2 2 2 2 8
k k k k k kk k kn k              (7) 

We now assign values to 
0 1 2 3 4 5 6 7, , , , , , , ,n k k k k k k k k  and 

8k  

to check the possibilities of 8-periodic perfect codes. 

Case 1. For 8s   and for the values of the parameters 12n  , 

0 1 2 2k k k   ; 
3 4 5 6 7 8 1k k k k k k       the equality 

(7) gives 8k  . 

This may give rise to (12,8)  8-periodic perfect code. If we 

consider the matrix  

4 12

1 0 0 0 0 1 1 1 1 0 0 1

0 1 0 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 0 0 1 1 1 0

0 0 0 1 1 0 0 1 1 0 1 1

H



 
 
 
 
 
 

 

as the parity check matrix for (12,8)  code then it can be 

verified from error pattern syndrome table that the (12,8)  code 

is 8-periodic perfect code. 

         Error Pattern       Syndrome 

100000000000  1000 

100000000100  1110 

000000000100  0110 

010000000000  0100 

010000000010  0111 

000000000010  0011 

001000000000  0010 

001000000001  1011 

000000000001  1001 

000100000000  0001 

000010000000  0101 

000001000000  1010 

000000100000  1100 

                               000000010000     1101 
                          000000001000     1111 

(v) For 10s  , the equality (3) becomes  

0 3 51 2 4

6 7 8 9 10

2 2 2 2 2 2 2

2 2 2 2 2 10

k k kk k kn k

k k k k k

      

     
          (8) 

We now examine the values to 

0 1 2 3 4 5 6 7 8 9, , , , , , , , , ,n k k k k k k k k k k  and 10k  to check the 

possibilities of 10-periodic perfect codes. 

Case 1. 10s   and for the values of the parameters 13n  , 

1,2 109876543210  kkkkkkkkkkk

 the equality (8) gives 9k  . 

This may give rise to (13,9)  10-periodic perfect code. If 

we consider the matrix  

4 13

1 0 0 0 0 1 1 1 1 1 1 0 0

0 1 0 0 1 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 0 1 1 1

0 0 0 1 1 1 0 1 0 1 1 0 1

H



 
 
 
 
 
 

 

as the parity check matrix for (13,9)  code then it can be 

verified from error pattern syndrome table that the (13,9)  code 

is 10-periodic perfect code 

     Error Pattern          Syndrome 

1000000000000  1000 

1000000000010  1110 

0000000000010  0110 

0100000000000  0100 

0100000000001  0111 

0000000000001  0011 

0010000000000  0010 

0001000000000  0001 

0000100000000  0101 

0000010000000  1001 

0000001000000  1010 

0000000100000  1011 

0000000010000  1100 

0000000001000  1101 

                         0000000000100           1111  

 

IV. CONSTRUCTION OF PECP-CODES 

In the previous section we have considered codes for all 
possible values of the parameters for periodicity 2,4,6,8s   

and 10 , and we have seen that these codes are perfect codes. 

For the construction of the parity check matrix of these 

codes, it is sufficient to construct ths i  and ths i  columns of 

the parity check matrix for the following reasons: 

Suppose that ths i  and ths i  columns are constructed. 

This means that the syndromes of the first s i  and last is   

single error pattern and double error patterns are different. If 
the number of all such syndromes is deleted from the total 

n k  tuples, we remain with exactly s , ( )n k  tuples. Since 

we are correcting only single errors in s  tuples, the remaining 

s  tuples can be taken as the columns of the parity check matrix 

H  irrespective of their order. 
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For example, if we consider 4s   and 

1 2 3 4 5 6 7 8 9 10 111 1 1 1 1 1 1 1 1 1 1 1( )
n

H h h h h h h h h h h h h  then, If 
11h  is in error 

and period is 4 , then 
61

thh  place will be in error and so on. 

In general, if 
1 2 3 2 2 2 2 3 11 1 1 1 1 1 1 1 1( )

s s s s n n
H h h h h h h h h h

   
  

denotes the parity check matrix for an ( , )n k  s -PECP codes 

and if the error starts from the first place, then the other 
element that will be in error will appear after s -places from 

second place i.e. 2ths   place. 

So while constructing the parity scheck matrix H  , we will 

first construct 
11h  and 

th

s
h

21 
 columns and verify that they 

should be linearly independent and their linear combination 

should also be independent of 
11h  and 

21 s
h . The remaining 

columns of the parity check matrix will then be arranged in 

between 
11h  and 

21 s
h  in any order. The matrix so constructed 

will be a parity check matrix of s -periodic error correcting 

perfect code. It is by this technique that we can write down 
parity check matrices of the codes other than those whose 
parity check matrices are given in this paper. In fact we notice 
that periodic error correcting perfect codes exists only if the 
period s  is a multiple of q . We now propose some open 

problems: 

Problem 1. In this paper, the existence of such codes has been 
shown only in the binary case. The existence of such codes in 
non-binary case is not known. 

Problem 2. The existence of such codes is shown only when 
the period s  is a multiple of q . 

Problem 3. Can there be a systematic way of constructing 
these codes. 

It is hoped that the existence of such codes may prove to be 
fruitful for the development of the subject as well as from 
application point of view. 
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