
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 581

A Simple Malware Test Environment

Sam Lundie and Daniel Rolf

School of Computing and Information Systems

University of Tasmania

Launceston, Tasmania, Australia

e-mail: {slundie, Daniel.Rolf} @utas.edu.au

Abstract— Malware does not need to compromise the operating

system kernel in order to provide an untrustworthy browsing

experience for the user. This paper describes a simple, virtual

machine-based, malware test environment built using freeware

and open source software. The system was designed to allow

the high-level behaviour of a piece of malware to be studied

quickly and conveniently by monitoring network, process and

file activity. The system proved effective when trialled against

different samples of the well-known malware Zeus and was

verified further by tests conducted with the commercially

available anti-malware products PC-Tools and Trusteer.

Although tests were conducted with variants of the Zeus

malware, the techniques discussed in this paper are equally

applicable to any other malware and can be used to quickly

assess the effectiveness of potential anti-malware solutions.

Also, the system is portable and simple, requiring only a

general level of technical knowledge to operate, allowing it to

be used as a convenient platform for a wide student and

professional audience.

Keywords – Zeus, online banking, malware

I. INTRODUCTION

Governments and corporate enterprises are increasingly

dependent on computer networks for their day-to-day and

critical operations. In this network-centric environment it is

necessary for all participants to appreciate the importance of

required network and computer security measures. It is also

useful for security professionals to quickly become aware of

any changed threat conditions, allowing necessary new

countermeasures to be designed and implemented.

The purpose of this project was to develop a simple

malware testing platform and to demonstrate its ability as an

educational and research tool. The test platform was based

on laptop hardware and freeware tools implemented in a

virtual environment, making it affordable as well as

portable.

Although, there are many different types of malware, credit

card fraud is one of the most notable targets for malware

developers and organised crime because of its impact on the

finance industry and general public. Statistics from the

Australian Payments Clearing Association show that card-

not-present fraud increased by 38% for the calendar year

2010, with 35.6 cents in every $1,000 dollars falling victim

to fraud [1]. However, similar figures for fraud perpetrated

against Online Banking are much harder to obtain as banks

are seemingly reluctant to divulge loss figures. The

Symantec Corporation has claimed that cybercrime has

surpassed illegal drug trafficking as a criminal money-

maker [2].

It has been estimated that Zeus is guilty of approximately

44% of all banking malware infections [3]. In August 2009

Gunter Ollmann the VP for research at Damaballa [4]

positioned the Zeus malware as the number one botnet

threat with 3.6 million infections in the US alone (about

19% of the installed base of PCs in the US). Zeus is

ever changing, and many modifications exist in the wild,

each targeted towards a specific set of exploits. Currently,

Gameover is one such variant [5] which, according to the

United States Federal Bureau of Investigation (FBI), has

“…the capability to steal usernames and passwords and

circumvent most common authentication methods” [6].

Zeus was specifically designed to operate against the

Windows suite of operating systems (OSs) because

Windows enjoys the majority share of the OS market. The

majority of people transacting online use a version of

Microsoft Windows, with WinXP, Win7, WinVista and

Win2003 taking up over 90% of the total desktop computer

OS market share [7]. The major non-Windows OSs,

MacOSX and iOS, have a combined market share of only

7%. This means that targeting machines running a windows

operating system provides much better Return on

Investment (ROI) for those committing fraud. Microsoft

also acknowledges this threat and spends considerable time

and resources on taking down Command and Control

servers that target machines running its operating systems

[8].

Given the above reasons, for the purpose of this project, the

target systems were chosen from the range of Windows

operating systems and the sample malware chosen was

mailto:slundie

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 582

Zeus. The approach taken is equally applicable to other

malware affecting Windows OSs.

II. COMPROMISING WINDOWS

There are many vectors of compromise for Windows

systems. Some are offensive, such as worms like Conflicker

exploiting remote vulnerabilities, and others are reactive

where the end user performs some sort of action that

triggers the exploitation. Recent research by the SANS

Institute found that the number one initial infection vector

was exploitation targeting client-side software [9]. In 2010,

the National Vulnerability Database [10] indicated that web

browsers and document management software accounted for

the majority of the applications being exploited, with

multimedia players being strongly represented. Client-side

applications have more integration with the Internet and

offer more functionality providing a greater attack surface

for developing exploits. These vulnerabilities can be

exploited from many different sources: some are executed

just by visiting a webpage having embedded malicious

content, known as ‘Drive-by’ infection, whilst others are

more targeted ‘Phishing’-style emails containing either

embedded exploited software, or lures to sites where such

malicious content is hosted.

Rootkits are designed to hide a program from the guest OS

to avoid detection and sustain their life span on the infected

machine. They have the ability to hide files, processes,

registry keys, open network ports and other system objects.

By subverting the OS they cloak their operations from anti-

virus/malware products that search for them. Modern

Trojans, such as Zeus, leverage the power of rootkits, to

keep their activities hidden from the OS and any anti-virus

software that may be running on the compromised PC.

Trojans want to run but also want to remain hidden and, as

such, face a similar paradoxical situation to rootkits [11].

Another problem faced by Trojans is how to install

themselves on a system without alerting the user to their

malicious intent. Some of the more prevalent online banking

Trojans, such as Zeus, or its predecessor Torpig, only

operate within the context of the user who executed them

and this restricts the depth to which they can embed

themselves within the OS [12]. They are unable to employ

kernel level rootkit techniques because they require access

to the kernel to execute and thus require a higher level of

privilege. Such Trojans are restricted to using a shallower

user level rootkit.

One reason that these Trojans may choose to avoid using

a higher level of privilege is to avoid triggering Windows
User Access Control (UAC). As part of Microsoft’s security
push to increase the security of their OSs, UAC was
introduced into Windows Vista ™ [13]. The goal of UAC
was to lock the screen and give the user a visual prompt
requesting explicit consent to allow a process to execute

actions requiring a higher level of permission than that of its
current context.

The Trojan appears to weigh up the advantages of

running at a higher privilege level against the risk of alerting
the user to its malicious intentions (because of UAC). The
fact that Trojans such as Zeus and Torpig can implement
User Mode Rootkits, inject code into other processes and
establish outbound connections via injected processes such
as Internet Explorer, indicates that the permission level of the
system account used as the context for their execution is too
high. However Windows is at pains to avoid over-prompting
the user for requests to elevate privileges. Microsoft
overhauled the UAC functionality after feedback from users
of Vista™ indicating that it was too onerous and that too
much of their time was spent accepting the UAC prompts
from the OS [14]. As such, Microsoft is in the tricky position
of having to provide better security for its users whilst still
allowing the flexibility of using the OS unhindered.

III. FUNCTIONALITY OF THE ZEUS TROJAN

The Zeus Trojan is a bot that installs itself on the victim

machine and provides a framework for remote control of

that machine. Once infected, the machine will report back to

a Command and Control (C&C) server periodically to

update it with the status of the local machine. Zeus is

designed to be deployable to end systems that sit behind

sophisticated network infrastructure. It is specifically

designed for the Windows OS and will install on a machine

with only Guest privileges. It has the ability to communicate

with its C&C over TCP port-80 (http) and be operated using

the SOCKs protocol. It will spy on the user and has the

ability to capture information from within the browser

which, thanks to its API hooking, includes sessions secured

by Secure Socket Layer (SSL).

Zeus is a modular Trojan designed for easy customisation to

the needs of those deploying it. Once a bot is loaded on a

system it calls to the C&C address (which is hard-coded in

the binary) for a newer version of a configuration file. This

allows the controllers of the bot net or ‘Bot-herders’ to

update their Botnet by simply uploading a new

configuration file containing a list of web-injects - the sites

from which the Trojan is targeting to steal information. This

communication is via a thread injected into the Explorer

Process by the Trojan. Apart from the initial call to the

C&C, all communications are encrypted with the RC4

algorithm using a pre-shared key that is obfuscated within

the Trojan executable. Zeus and its operation have been

studied at depth by Binsalleeh and his group [3].

One of the most powerful methods that Zeus uses to subvert

customer Online Banking sessions is its ability to perform

Man-in-the-Browser (MitB) style attacks. In an MitB attack

the web-browser is subverted to display the content that the

Trojan wants the user to see. By using API hooking

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 583

techniques the Trojan can intercept the content before it is

rendered by the browser and insert its own content instead.

Zeus uses web injects to target specific financial institutions

by including custom scripting tailored to emulate the layout

of the targeted bank, thereby enticing the user to think the

content they are viewing is that of the bank, thus negating

any of the end to end security of SSL encryption between

the source website and the victim.

According to Gühring [15], by injecting content directly into

the web browser it is possible to circumvent many of the

security mechanisms currently used by financial institutions.

“The WYSIWYG concept of the browser is

successfully broken. No advanced authentication

method (PIN, TAN, iTAN, Client certificates,

Secure-ID, SmartCards, Class3 Readers, OTP, ...)

can defend against these attacks, because the

attacks are working on the transaction level, not on

the authentication level. PKI and other security

measures are simply bypassed, and are therefore

rendered obsolete.” [15]

Any form of second-factor authentication that is not bound

to the transaction the customer wished to perform can be

subverted for the purposes of the Trojan. For example,

during a customer payment transaction, once the Trojan

detects the customer has submitted the payment, Zeus can

intercept the POST request and populate it with a malicious

payment. When the user is presented with an authentication

screen requesting confirmation of payment Zeus will

manipulate the output seen by the user so they see, not the

malicious payment, but the payment they were attempting to

make. When the user supplies an authentication credential

Zeus will use it to authenticate the malicious payment. The

balances and payment details of the customer can then be

altered by the Trojan to display as if the original payment

was performed and not the malicious payment. This on-the-

fly transaction manipulation presents a complete

compromise of the online banking system.

IV. THE TEST ENVIRONMENT

A. Physical Set Up

Static analysis methods can be time-consuming and while

the effort expended could be warranted for a new strain of

malware with new behaviours the focus on an iteration of a

known variant can be excessive. The ability to quickly

execute a piece of malware to observe its high level

functionality can be useful in determining if the particular

sample exhibits any new traits or behaviour not already

seen.

Using virtual machines (VMs) has the distinct advantage of

providing a platform that is both easily reset to a known

clean state, and easily controlled. Note that some versions of

the Zeus is VM aware and as such may not function

correctly if it can see particular process IDs running.

Multiple machines can also been run on the same host to test

the functionality of the malware against different OS types

and versions. C&C infrastructure can be simulated within

the confines of a single computer, hosting multiple VM

images. Fig.1 shows the basic logical network configuration

used. Note that all computers shown are

virtual devices.

Figure 1: Logical Network Configuration

For our experimentation a test system consisting of 4 virtual

machines, all running on a Virtual-Box platform was

configured on a Windows-7 64 bit system. The underlying

hardware comprised an Intel i5 processor running at

2.66GHz X4 with 4GB RAM. The virtual machines

comprised the C&C server, an Intrusion Detection and

Prevention System (IDS/IPS), and two target machines. All

virtual machines could be run simultaneously, with some

noticeable degradation to the performance of the host

machine when significant program loads were placed on

both host and guest machines.

The IPS virtual machine was setup to run the Snort engine,

to obtain detailed information about generated traffic. This

was built from Insta-Snorby [16], an Ubuntu build that

already has Snort configured and only requires a limited

amount of setup. Alerts are displayed in a very clean web

interface which runs on the Ruby on Rails platform.

Windows XP and Windows 7 were chosen as the target

machines’ Operating Systems as, currently, they represent

the two most dominant Windows OS versions in use. The

RAM allocation to each can be easily adjusted within the

Virtual-Box software and was chosen to be low enough to

allow all virtual machines to run simultaneously with

sufficient functionality from the one host machine (Table 1).

Command and

Control Server

Ubuntu Proxy system

running Snort, Squid

Windows Test

System

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 584

The network was controlled by a simple ADSL

Router/Modem running the 802.11g wireless protocol and

hosting the DNS Server. Statically mapped IP addresses

were used for the hosts to enable the bots to call back to the

C&C Server. The C&C Server has its network interface

configured to bridged mode, using a device driver on the

host system to filter data from the physical network adapter.

This driver is therefore called a "net filter" driver. It allows

Virtual-Box to intercept data from, and inject data into, the

physical network, effectively creating a new network

interface in software. When a guest is using such a new

software interface, it looks to the host system as though the

guest were physically connected to the interface using a

network cable: the host can send data to the guest through

that interface and receive data from it. This means that you

can set up routing or bridging between the guest and the rest

of your network [17].

Table 1: Details of the Virtual Machine Images used in the test system

Specifications C&C

Server

Target 1 Target 2 IPS

Operating
System

Ubuntu
11.04

Windows
XP-32bit

Windows7-
32bit

Ubuntu
10.04

(Snorby)

Base Memory 1267MB 314MB 1287MB 822MB

Disk Space 10GB 10GB 10GB 6GB

Network
Configuration

Bridged NAT NAT Bridged

Virtual-Box

Image Size

1.8GB 3.6GB 3.06GB 1.02GB

Network Address Translation (NAT) mode was used for the

two Windows target machines. NAT mode allows a

machine to access the internet via Virtual-Box’s NAT

filtering but the machine can’t be used as a server as it is not

internet-addressable in this mode.

B. Software Tools used for Testing:

In order to understand the malware’s operation we used

tools to capture information about network, process, and file

activity. Network activity was monitored using the packet

sniffing tool WireShark, but running local copies of Fiddler

(a plugin for Internet Explorer) was used to look at all

HTTP/HTTPS communications because of its simplicity.

Fiddler also “allows one to fiddle with incoming and

outgoing data” if desired [20].

Based on the Windows Mini-Spy filter-driver, CaptureBat

has the ability to monitor processes at a kernel and user

level. Results should be reliable with malware such as Zeus

that only work within the malware executes kernel level

hooking. CaptureBat saves any files that are deleted, a

useful feature as the tested Zeus samples were observed to

delete certain files associated with their unpacking process.

Graphical monitoring of processes and their associated

threads and files was used to show the lineage of a process

and determine parent and child relationships between

processes. The utility “SysInternals Process Monitor”, a

freely available advanced monitoring tool for Windows, was

used as it allows real-time activity on the file system and

registry as well as process and thread activity to be viewed.

GMER was chosen to look for evidence of hooking on

Windows API calls by comparing its output from before and

after installation of the malware. GMER finds hooks in the

System Service Dispatch Table (SSDT) - a kernel structure

that lists native system service' addresses. GMER also

encrypts traffic from the keyboard and decrypts it again in

the browser, to stop keyboard logging. HandleDiff.exe was

also useful for finding evidence of hooking as it operates by

comparing the difference between two snapshots of open

file handles. The interval between the snapshots is a

configurable parameter.

V. THE TEST PROCEDURE

As the Zeus Trojan uses the Explorer process on the

machine it proved easier to use Fiddler on the local machine

to capture the traffic between the bot and the C&C rather

than rely on the network packet sniffer. “Fiddler” has the

added advantage of being able to see the other http requests

without having to reconstruct them from observed network

traffic. As Zeus communicates at the application layer such

a level of detail would add unnecessary complexity.

The actual network design included an IDS/IPS to capture

and monitor traffic on the network (see Fig. 2). Any

communication between the infected PCs and the internet or

C&C server could be monitored in this way. VRT labs have

a rule set for detecting the initial call from the infected

machine back to the C&C. The rules capture the initial

POST and GET request traffic between the infected

machine and the C&C, and this is the only traffic that is not

encrypted [18]. The remaining traffic is encrypted using

RC4 and a shared secret key.

Figure 2: Detailed Logical Configuration used for Malware Dynamic

Analysis

 Victim PCs running Windows OS

Snorby:
Snort IDS/IPS

Windows XP-SP2 Windows-7

Ubuntu:
• Apache
• MySQL
• PHP-5

Static IP

address

Command and Control

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 585

A. Capturing Network Traffic

A snapshot was taken of the victim machine before it was

infected to allow a quick reset to a known clean state. Then,

for each test, a clean VM Snapshot was loaded into

VirtualBox, with all the monitoring tools already running.

The programs running on the virtual machine, prior to the

malware being executed, were:

 System Internals TCP View, to show current open

TCP/IP and UDP Ports

 Fiddler IE Plugin, to monitor http/s traffic

 CaptureBat

 WireShark

 GMER (run to ensure that the machine is in a clean

state)

 HandleDiff.exe

The malware was loaded and executed and a second

snapshot was taken by HandleDiff after 60secs (using the

command HandleDiff.exe -d -s 60 -f zeus.txt). GMER was

run a second time to check the system for evidence of Root-

Kits, and WireShark was stopped so the network traffic

could be checked. CaptureBAT was checked for artefacts

and the output from Fiddler was examined for calls made to

the C&C (requesting an updated configuration file). The

malware sample was then checked in ‘Virus Total’ ™ to

determine how many AV products were able to detect it.

Two variants of Zeus were used, as shown in Table 2 and

Table 3. The first sample was retrieved from the Trusteer

website (http://www.trusteer.com/). Before executing the

malware, GMER was run to look for anything hooking the

system and, as expected initially, it located no rootkits.

Table 2: Wild Zeus Variant

Specs Sample 1

Description Zeus 2.x Binary

MD5 c0b87175875743a7c560e915b711b50e

Source Rapport

Timestamp Sat, 2011-07-30 20:04

Size 194048 bytes

Filename 0.886293863363183.exe

Table 3: Zeus Bot from Source Code

Specs Sample 2

Description Zeus 2.x Binary

MD5 2d5ec50a525269dc9e05c04bd57a116d

Source Zeus Source Code

Timestamp Sat, 2011-09-22 22:1

Size 163840 bytes

Filename Bot.exe

Execution of the Wild Sample:

MD5(c0b87175875743a7c560e915b711b50e)

As soon as the malware was executed on the XP Virtual

Machine, the dropper file created two executable files and a

batch file. The malware launched the executable files and

used a command window to launch the batch file. The three

artefacts detected by captureBAT (blank lines have been

inserted for readability) were:

device\harddiskvolume1\documents and settings\guest\

application data\uhkete\ychy.exe

device\harddiskvolume1\documents and settings\guest\

application data\owveny\ucrie.are

device\harddiskvolume1\documents and settings\guest\local

settings\temp\tmp92a62147.bat

Figure 3: Files created on Zeus Execution

The batch file appeared to be responsible for deleting both

itself and the original dropper.

“SysInternals Process Monitor” was used to verify each of

the events and show that no child processes were created for

the second executable. GMER was then run a second time

whereupon it detected the rootkit.

B. Establishing persistence

The output from HandleDiff showed the malware had

registered one of the newly created executable files with the

Windows registry, ensuring that it would execute every time

Windows was started.

Registry Keys modified by Zeus to reload on reboot

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

(Dropper) Malware Executable

Application

Data

uhkete\ychy.exe owveny\ucrie.exe

Batch file

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 586

Key (Not Verified) = {01C7C6E1-3DCC-BCB5-3E13-

6DCD65A2CF91}

File it wants to run =

c:\users\admin\appdata\roaming\isbaga\lier.exe

Shortly after execution of the malware the default Windows

firewall detected an operation trying to make a modification.

A “Windows Security Alert” was displayed advising that a

program had been blocked, however, the malware’s

communication had not been effected as it had disabled the

firewall. The malware issued a request for an updated

version of the configuration file using an http GET request

and Fiddler captured this as:

GET http://commanderseeckings.com/config.bin HTTP/1.1

As a verification step these details were given to ZeuS

Tracker, a web based facility which tracks Zeus hosts

around the world. Zeus Tracker was searched for the

configuration file based on the outbound call to

commanderseeckings.com and showed that this ZeuS C&C

was listed previously. However the file was removed on

2011-08-04 at 04:51:28 (UTC) due to the C&C no longer

being operational as the hosting domain had been

blacklisted. The output from ZeuS Tracker is shown in

Table 4.

Table 4: ZeuS Tracker Output for commanderseeckings.com

ZeuS C&C: commanderseeckings.com

Date added: 2011-08-01 20:03:20 (UTC)

Last updated: 2011-08-03 05:39:09 (UTC)

Uptime
(hh:mm:ss)

33:35:49

Removal date: 2011-08-04 04:51:28 (UTC)

Removal reason: Domain suspended

C. Testing of security products against Zeus

Once the test system had been used to observe and verify

the operation of the two Zeus samples, two commercial

security products, Trusteer Rapport (for PC and Mac

security) and the PC-Tools suite were evaluated.

1) Trusteer

Trusteer uses a similar method to CaptureBAT, to monitor

changes in the operating system, monitors Windows

systems at a Kernel level by implementing its own driver.

The Trusteer Rapport product website says about their

product:

“Protects end-user endpoints against financial

malware and phishing attacks. By preventing

attacks such as Man-in-the-Browser and Man-in-

the-Middle, it secures credentials and personal

information and stops financial fraud and account

takeover. And, it keeps endpoints malware-free by

blocking malware installation and removing

existing infections.” [19]

The Trusteer product is capable of both detection and

mitigation of the Zeus malware, as well as implementation

of some other anti-phishing techniques. Trusteer proved

capable of detecting both samples of malware tested. After

installation on a Windows-7 machine with sample-1

installed, Trusteer lay dormant until the Australia and New

Zealand (ANZ) bank website was visited

(http://anz.com.au/), specifically the sign-in page for their

internet banking. Sample-1 had the URLs for ANZ internet

banking within its configuration file, and would have been

capturing the form fields relating to customer number and

password from the ANZ site, most likely triggering the

detection.

2) PC-Tools

“PC-Tools” is an anti-virus (AV) suite that was recently

purchased by Norton. When the malware was run against it,

PC-Tools detected events on various levels. Malware binary

sample-1 was not detected as malicious by PC-Tools,

however once executed it triggered several alerts. When the

malware attempted to inject itself into the Windows

Explorer Process PC-Tools alerted to the fact that another

process was attempting to write to the memory space of

Explorer. PC-Tools also alerted when the malware

attempted to deactivate the windows firewall.

Sample-1 was packaged with a ‘cryptor’, meaning that

detection based on the signature of the binary alone would

have been hampered, as the binary would not look like other

bots produced with that version of Zeus. However when the

malware attempted to place hooks into the address space of

Explorer, the anti-virus triggered based on heuristic

detection mechanisms.

Sample-2 was built from the Zeus source code and had no

such packaging or obfuscation. It was detected solely based

on the binary and raised Generic Zbot/Zeus detection by

PC-Tools. As the MD-5 hash for this binary had never been

submitted to any AV engines, some form of analysis of the

compiled code may have triggered the detection.

VI. CONCLUSION

Using open source and freeware tools allowed a simple

virtual environment to be built for observing the behaviour

of malware. These tools require only general technical

knowledge for their set up and understanding making this

system useful for a wide student and professional audience.

The well-known, well-researched, malware Zeus was used

for system testing and evaluation of the performance of anti-

http://commanderseeckings.com/config.bin%20HTTP/1.1

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 04, July 2013

www.ijcit.com 587

malware tools. Tests were conducted with PC-Tools and the

Trusteer suite of products, and both demonstrated the ability

to detect the Zeus variants being utilised. It was found that

the use of signature-based detections was not as effective as

the heuristic rules used in both the PC-Tools and Trusteer

products. Once the malware started to perform the actions it

needed to complete its subversion of a browser session, its

hand was also revealed to the AV Products, showing that

malware such as Zeus, used to subvert the browser can be

detected using the techniques discussed in this paper.

The popularity of the Windows platform for its modular and

flexible nature appears to be at odds with its security as a

platform to perform online banking. The core Kernel of the

OS can be compromised because of the lack of separation

between trusted OS components and untrusted user

programs.

Malware such as Zeus does not need to compromise the

Kernel to provide an untrustworthy browsing experience for

the user. Although Microsoft has taken measures such as

Kernel Patch Protection and User Access Control (UAC),

there is still plenty of leeway for malware to subvert the OS

and perform internet banking fraud. Without a path of trust

from the kernel level up, the trustworthiness of the

information being displayed by the OS will always be

questionable. If banks want their customers to perform their

banking online with confidence, solutions that mitigate the

risk posed by the current Windows OS’s need to be

considered.

REFERENCES

[1] Australian Payments Clearing Association, “Payments fraud in

Australia , media release,” 22 June 2011. [Online]. Available:

http://www.apca.com.au/Public/apca01_live.nsf/ResourceLookup/Me
dia_Release_Payments_Fraud_Statistics_June_2011.pdf/$File/Media

_Release_Payments_Fraud_Statistics_June_2011.pdf. [Accessed 24

September 2011].
[2] Symantec, “Cybercrime has surpassed illegal drug trafficking as a

criminal moneymaker,” 2009. [Online]. Available:

www.symantec.com. [Accessed 24 September 2011].
[3] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Yousse, M.

D. and L. Wang, “On the analysis of the zeus botnet crimeware,”

National Cyber Forensics and Training Alliance Canada, 2009.
[4] G. Ollmann, “Sizing a botnet – “You’re doing it wrong!” 25 August

2009. [Online]. Available: http://blog.damballa.com/?p=326.

[Accessed 1 May 2012].
[5] R. Naraine, “Zeus returns: FBI warns of 'Gameover' ID-theft

malware,” 9 January 2012. [Online]. Available:

http://www.zdnet.com/blog/security/zeus-returns-fbi-warns-of-
gameover-id-theft-malware/10002. [Accessed 30 April 2012].

[6] FBI, “Federal Bureau of Investigation,” 6 January 2012. [Online].

Available:
http://www.fbi.gov/news/stories/2012/january/malware_010612

[Accessed 30 April 2012].

[7] StatCounter, “Top 5 operating systems from April 2011 to April
2012,” 02 May 2012. [Online]. Available:

http://gs.statcounter.com/#os-ww-monthly-201104-201204-bar.

[Accessed 02 May 2012].
[8] Microsoft, “Microsoft joins financial services industry to disrupt

massive Zeus cybercrime operation that fuels worldwide fraud and

identity theft,” 25 March 2012. [Online]. Available:

http://www.microsoft.com/en-us/news/press/2012/mar12/03-
25CybercrimePR.aspx. [Accessed 26 April 2012].

[9] SANS, “Top cyber security risks,” September 2009. [Online].

Available: http://www.sans.org/top-cyber-security-
risks/summary.php. [Accessed 19 September 2011].

[10] DHS National Cyber Security Division/US-CERT, “National

vulnerability database version 2.2,” 19 September 2011. [Online].
Available: http://nvd.nist.gov/home.cfm. [Accessed 19 September

2011].

[11] K. Jesse, “Exploiting the rootkit paradox with Windows memory
analysis,” International Journal of Digital Evidence, vol. 5, no. 1,

2006.

[12] B. Andreas, “Torpig – back to the future or how the most
sophisticated trojan in 2008 reinvents itself,” 16 June 2011. [Online].

Available: http://www.tidos-group.com/blog/?p=362. [Accessed 1

October 2011].
[13] P. Cooke, “Windows 7 security enhancements,” 2009. [Online].

Available: http://technet.microsoft.com/en-us/library/dd560691.aspx.

[Accessed 01 October 2011].
[14] O. Garnham, “Microsoft to overhaul UAC in Windows 7,”

Computerworld, 10 October 2008. [Online]. Available:

http://news.idg.no/cw/art.cfm?id=E761F194-17A4-0F78-
31064BD6CDF046A7. [Accessed 2 August 2012].

[15] P. Gühring, “Concepts against man-in-the-browser attacks,” 24

January 2007. [Online]. Available:
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf.

[Accessed 2 October 2011].
[16] Terracatta, “TurnKey Linux,” 24 January 2011. [Online]. Available:

http://www.turnkeylinux.org/forum/general/20101206/insta-snorby-

official-snort-snorby-turn-key-solution. [Accessed 29 May 2012].
[17] VirtualBox, “VitualBox manual,” 2011. [Online]. Available:

http://www.virtualbox.org/manual/ch06.html. [Accessed 01 October

2011].
[18] VRT Labs, “VRT labs - Zeus trojan analysis,” [Online]. Available:

http://labs.snort.org/papers/zeus.html. [Accessed 01 August 2010].

[19] Trusteer, “Trusteer Solutions,” 2011. [Online]. Available:

http://www.trusteer.com/solutions. [Accessed 10 October 2011].

[20] Fiddler, “Introducing Fiddler,” 02 May 2012. [Online]. Available:

http://www.fiddler2.com/fiddler2/. [Accessed 02 May 2012].

